


Target C#
Simple Hands-On Programming 

with Visual Studio 2022

Gerard Byrne



Target C#: Simple Hands-On Programming with Visual Studio 2022

ISBN-13 (pbk): 978-1-4842-8618-0  ISBN-13 (electronic): 978-1-4842-8619-7
https://doi.org/10.1007/978-1-4842-8619-7

Copyright © 2022 by Gerard Byrne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza, 
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole 
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc 
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, 
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available  
to readers on GitHub (https://github.com/Apress). For more detailed information, please visit  
http://www.apress.com/source- code.

Printed on acid-free paper

Gerard Byrne
Belfast, Ireland

https://doi.org/10.1007/978-1-4842-8619-7


My book is dedicated to Maura, Ryan, and Peter.



v

About the Author �����������������������������������������������������������������������������������������������������xv

Acknowledgments �������������������������������������������������������������������������������������������������xvii

Introduction ������������������������������������������������������������������������������������������������������������xix

Table of Contents

Chapter 1:   �NET ��������������������������������������������������������������������������������������������������������� 1

. NET: What Is It? ............................................................................................................................ 1

. NET Core: What Is It? .................................................................................................................... 2

C# Language Versioning ................................................................................................................ 3

. NET and C# Compilation Process ................................................................................................. 5

Compile Time and Runtime ........................................................................................................... 6

Framework and Library ................................................................................................................. 7

Library ..................................................................................................................................... 7

Framework .............................................................................................................................. 8

Managed and Unmanaged Code ................................................................................................. 10

Chapter Summary ....................................................................................................................... 10

Chapter 2:   Software Installation ����������������������������������������������������������������������������� 13

About the .NET Framework ......................................................................................................... 13

Installing the .NET Framework .............................................................................................. 14

Installing Visual Studio .......................................................................................................... 21

Chapter Summary ....................................................................................................................... 25

Chapter 3:   Introduction������������������������������������������������������������������������������������������� 27

Computer Program ...................................................................................................................... 27

Programming Languages ...................................................................................................... 28

A Computer Program: A Recipe ............................................................................................. 29

https://doi.org/10.1007/978-1-4842-8619-7_1
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_1#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_2
https://doi.org/10.1007/978-1-4842-8619-7_2#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_2#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_2#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_2#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_3
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec3


vi

Type in C# .............................................................................................................................. 32

The Basic Operations of a Computer ..................................................................................... 37

C# Program Application Formats ................................................................................................ 37

Format 1: Console Application ............................................................................................... 37

Format 2: .NET MAUI .............................................................................................................. 39

Format 3: ASP.NET Web Applications ..................................................................................... 40

The Structure of a C# Program ................................................................................................... 40

Namespaces .......................................................................................................................... 46

Classes .................................................................................................................................. 47

Chapter Summary ....................................................................................................................... 50

Chapter 4:   Input and Output ����������������������������������������������������������������������������������� 53

Write to and Read from the Console ........................................................................................... 53

Change Console Display Settings .......................................................................................... 69

Chapter Summary ....................................................................................................................... 75

Chapter 5:   Commenting Code ��������������������������������������������������������������������������������� 77

C# Single-Line Comments........................................................................................................... 79

New .NET 6 Templates ................................................................................................................ 84

C# Multiple-Line Comments ........................................................................................................ 89

Chapter Summary ....................................................................................................................... 91

Chapter 6:   Data Types ��������������������������������������������������������������������������������������������� 93

Data Types, Variables, and Conversion ........................................................................................ 93

Data Types ............................................................................................................................. 93

Conversion from One Data Type to Another ........................................................................... 96

C# 8 Nullable Reference Types ............................................................................................ 126

Chapter Summary ..................................................................................................................... 140

Chapter 7:   Casting and Parsing ���������������������������������������������������������������������������� 143

Data Types, Casting, and Parsing .............................................................................................. 143

Chapter Summary ..................................................................................................................... 157

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_3#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec12
https://doi.org/10.1007/978-1-4842-8619-7_3#Sec14
https://doi.org/10.1007/978-1-4842-8619-7_4
https://doi.org/10.1007/978-1-4842-8619-7_4#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_4#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_4#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_5
https://doi.org/10.1007/978-1-4842-8619-7_5#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_5#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_5#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_5#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_6
https://doi.org/10.1007/978-1-4842-8619-7_6#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_6#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_6#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_6#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_6#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_7
https://doi.org/10.1007/978-1-4842-8619-7_7#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_7#Sec2


vii

Chapter 8:   Arithmetic ������������������������������������������������������������������������������������������� 159

Arithmetic Operations ............................................................................................................... 159

Common Arithmetic Operators ............................................................................................ 161

Integer Division .................................................................................................................... 162

Solution Explorer and Project Analysis ................................................................................ 166

Chapter Summary ..................................................................................................................... 192

Chapter 9:   Selection ��������������������������������������������������������������������������������������������� 195

Arithmetic Operations ............................................................................................................... 195

Selection .............................................................................................................................. 195

Comparison Operators ......................................................................................................... 196

The switch Construct ........................................................................................................... 217

The switch Construct Using when ....................................................................................... 225

switch with Strings .............................................................................................................. 231

switch with Strings .............................................................................................................. 239

Logical Operators ................................................................................................................ 247

Using the AND Operator ....................................................................................................... 249

Using the OR Operator ......................................................................................................... 255

Using the NOT Operator ....................................................................................................... 260

Conditional Operator (Ternary Operator) .............................................................................. 264

Nested Ternary Conditional Operator ................................................................................... 268

Chapter Summary ..................................................................................................................... 273

Chapter 10:   Iteration��������������������������������������������������������������������������������������������� 275

Iteration and Loops ................................................................................................................... 275

Introduction to Iteration ....................................................................................................... 275

For Loop ............................................................................................................................... 276

While Loop ........................................................................................................................... 298

Do (While) Loop ................................................................................................................... 313

Chapter Summary ..................................................................................................................... 327

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_8
https://doi.org/10.1007/978-1-4842-8619-7_8#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_8#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_8#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_8#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_8#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_9
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec12
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec13
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec14
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec15
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec16
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec17
https://doi.org/10.1007/978-1-4842-8619-7_9#Sec18
https://doi.org/10.1007/978-1-4842-8619-7_10
https://doi.org/10.1007/978-1-4842-8619-7_10#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_10#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_10#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_10#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_10#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_10#Sec12


viii

Chapter 11:   Arrays ������������������������������������������������������������������������������������������������ 329

Arrays: A Data Structure ............................................................................................................ 329

Single-Dimensional Arrays .................................................................................................. 332

foreach Loop ........................................................................................................................ 348

Ranges and Indices: C# 8 and Above ................................................................................... 362

Chapter Summary ..................................................................................................................... 372

Chapter 12:   Methods �������������������������������������������������������������������������������������������� 375

Methods: Modularization ........................................................................................................... 375

Methods: Concepts of Methods and Functions .................................................................... 375

Some Points Regarding Methods ........................................................................................ 377

Three Types of Methods....................................................................................................... 381

Void Methods ....................................................................................................................... 382

Value Methods ..................................................................................................................... 397

Parameter Methods ............................................................................................................. 407

Method Overloading ............................................................................................................ 425

C# 7 Local Function ............................................................................................................. 429

C# 8 Static Local Function ................................................................................................... 434

C# 10 Null Parameter Checking ........................................................................................... 437

C# 10 Null Parameter Checking Approach ........................................................................... 441

Chapter Summary ..................................................................................................................... 443

Chapter 13:   Classes ���������������������������������������������������������������������������������������������� 447

Classes and Objects in OOP ...................................................................................................... 447

A Class Is a Data Structure .................................................................................................. 448

Constructor .......................................................................................................................... 490

Additional Example for Classes and Objects ....................................................................... 503

Chapter Summary ..................................................................................................................... 521

Chapter 14:   Interfaces ������������������������������������������������������������������������������������������ 523

Interfaces and Abstract Classes ................................................................................................ 523

The Interface or Abstract Class as a Manager ..................................................................... 525

Instantiate the Abstract Class? ............................................................................................ 533

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_11
https://doi.org/10.1007/978-1-4842-8619-7_11#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_11#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_11#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_11#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_11#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec12
https://doi.org/10.1007/978-1-4842-8619-7_12#Sec13
https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_13#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_13#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_13#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_13#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_13#Sec14
https://doi.org/10.1007/978-1-4842-8619-7_14
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec3


ix

Static Members of the Abstract Class ................................................................................. 539

Concept of an Interface ....................................................................................................... 552

Implementing Multiple Interfaces ........................................................................................ 562

Concept of Default Method in an Interface .......................................................................... 582

Concept of Static Methods and Fields in an Interface ......................................................... 590

Chapter Summary ..................................................................................................................... 592

Chapter 15:   String Handling ��������������������������������������������������������������������������������� 595

String Handling and Manipulation ............................................................................................. 595

String Literals ...................................................................................................................... 597

Substring ............................................................................................................................. 601

Length ................................................................................................................................. 604

StartsWith( ) ......................................................................................................................... 605

Split( ) ................................................................................................................................... 607

CompareTo( ) ........................................................................................................................ 611

ToUpper( ) and ToLower( ) ..................................................................................................... 615

Concat( ) ............................................................................................................................... 616

Trim( ) ................................................................................................................................... 617

Replace( ) ............................................................................................................................. 619

Contains( ) ............................................................................................................................ 621

IndexOf( ) .............................................................................................................................. 622

Insert( ) ................................................................................................................................. 624

String.Format( ) .................................................................................................................... 627

What About $@ or @$? ....................................................................................................... 637

Chapter Summary ..................................................................................................................... 644

Chapter 16:   File Handling ������������������������������������������������������������������������������������� 647

File Handling ............................................................................................................................. 647

An Overview of File Handling .............................................................................................. 648

File Class ............................................................................................................................. 649

Writing to a File ................................................................................................................... 658

Reading from a File ............................................................................................................. 665

Copy a File ........................................................................................................................... 671

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_14#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_14#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_15
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec12
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec13
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec14
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec15
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec20
https://doi.org/10.1007/978-1-4842-8619-7_15#Sec22
https://doi.org/10.1007/978-1-4842-8619-7_16
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec12


x

Delete a File ......................................................................................................................... 674

StreamReader Class ............................................................................................................ 677

StreamWriter Class .............................................................................................................. 679

Reading from a Stream ....................................................................................................... 680

Writing to a Stream ............................................................................................................. 682

Async Methods and Asynchronous Programming ............................................................... 685

FileStream ........................................................................................................................... 687

Chapter Summary ..................................................................................................................... 691

Chapter 17:   Exception Handling ��������������������������������������������������������������������������� 693

Exceptions ................................................................................................................................. 693

What Is an Exception? ......................................................................................................... 693

try ........................................................................................................................................ 696

catch .................................................................................................................................... 697

finally ................................................................................................................................... 699

throw ................................................................................................................................... 699

Multiple Exceptions ............................................................................................................. 704

FileNotFoundException ........................................................................................................ 707

finally ................................................................................................................................... 710

StackTrace ........................................................................................................................... 713

throw ................................................................................................................................... 714

rethrow ................................................................................................................................ 716

Chapter Summary ..................................................................................................................... 725

Chapter 18:   Serialization �������������������������������������������������������������������������������������� 727

Serialization and Deserialization ............................................................................................... 727

Deserialization ..................................................................................................................... 728

Attribute [NonSerialized] ..................................................................................................... 728

Serializing the Object .......................................................................................................... 738

Deserializing the Serialized File to a Class .......................................................................... 743

Access Modifier [NonSerialized].......................................................................................... 749

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_16#Sec14
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec16
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec20
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec21
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec22
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec23
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec25
https://doi.org/10.1007/978-1-4842-8619-7_16#Sec27
https://doi.org/10.1007/978-1-4842-8619-7_17
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec12
https://doi.org/10.1007/978-1-4842-8619-7_17#Sec13
https://doi.org/10.1007/978-1-4842-8619-7_18
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec6


xi

Serialization Using XML ....................................................................................................... 751

Serialization Using JSON ..................................................................................................... 762

Chapter Summary ..................................................................................................................... 770

Chapter 19:   Structs����������������������������������������������������������������������������������������������� 773

Concept of a Struct as a Structure Type .................................................................................... 773

Difference Between Struct and Class .................................................................................. 774

Struct with a Default Constructor Only ................................................................................ 776

Struct with a User Constructor ............................................................................................ 779

Struct Instantiation Without the New Keyword .................................................................... 780

Struct Instantiation with the New Keyword ......................................................................... 781

Creating a Constructor......................................................................................................... 783

Creating Member Properties (Get and Set Accessors) ......................................................... 784

Encapsulation ...................................................................................................................... 788

Readonly Struct ................................................................................................................... 788

Creating a Readonly Struct .................................................................................................. 789

C# 8 readonly Members ...................................................................................................... 793

C# 8 Nullable Reference Types ............................................................................................ 797

Chapter Summary ..................................................................................................................... 802

Chapter 20:   Enumerations ������������������������������������������������������������������������������������ 803

Concept of Enumerations .......................................................................................................... 803

Defining an Enumeration ..................................................................................................... 804

Enumerated Values: Use and Scope .................................................................................... 806

Enumeration Methods ......................................................................................................... 809

Using the foreach Iteration .................................................................................................. 811

Enumeration Values: GetValues() ......................................................................................... 814

Assigning Our Own Values to the Enumeration ................................................................... 815

Use the GetName() and GetValues() Methods ...................................................................... 817

Sample Application Using Enumerations ............................................................................. 818

Chapter Summary ..................................................................................................................... 830

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_18#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_18#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_19
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec12
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec13
https://doi.org/10.1007/978-1-4842-8619-7_19#Sec14
https://doi.org/10.1007/978-1-4842-8619-7_20
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_20#Sec11


xii

Chapter 21:   Delegates ������������������������������������������������������������������������������������������ 831

Concept of Delegates ................................................................................................................ 831

Single Delegate ................................................................................................................... 835

Multicast Delegates ............................................................................................................. 838

More Complex Example ....................................................................................................... 842

Chapter Summary ..................................................................................................................... 852

Chapter 22:   Events ����������������������������������������������������������������������������������������������� 853

Concept of Events ..................................................................................................................... 853

Publisher and Subscriber .................................................................................................... 853

Declare an Event ................................................................................................................. 856

Raise an Event ..................................................................................................................... 857

Handle an Event................................................................................................................... 857

Add a Method to an Event Using += ................................................................................... 864

Refer the Event to a Second Method Using += ................................................................... 865

Refer the Event to a Third Method Using += ....................................................................... 867

Remove a Method from an Event Using -= ......................................................................... 869

Chapter Summary ..................................................................................................................... 870

Chapter 23:   Generics �������������������������������������������������������������������������������������������� 873

Concept of Generics .................................................................................................................. 873

Generic Class, Generic Method, Generic Parameters .......................................................... 877

Generic Class, Generic Method, Mixed Parameter Types ..................................................... 883

Generic Method Only ........................................................................................................... 885

Chapter Summary ..................................................................................................................... 891

Chapter 24:   Common Routines ����������������������������������������������������������������������������� 893

Common Programming Routines with C# ................................................................................. 893

Linear Search ...................................................................................................................... 893

Binary Search (Iterative Binary Search) .............................................................................. 900

Bubble Sort .......................................................................................................................... 908

Insertion Sort ....................................................................................................................... 914

Chapter Summary ..................................................................................................................... 922

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_21
https://doi.org/10.1007/978-1-4842-8619-7_21#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_21#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_21#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_21#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_21#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_22
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec7
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec8
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec9
https://doi.org/10.1007/978-1-4842-8619-7_22#Sec10
https://doi.org/10.1007/978-1-4842-8619-7_23
https://doi.org/10.1007/978-1-4842-8619-7_23#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_23#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_23#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_23#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_23#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_24
https://doi.org/10.1007/978-1-4842-8619-7_24#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_24#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_24#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_24#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_24#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_24#Sec7


xiii

Chapter 25:   Programming Labs ���������������������������������������������������������������������������� 923

C# Practice Exercises................................................................................................................ 923

Chapter 4 Labs: WriteLine( ) ................................................................................................. 924

Chapter 6 Labs: Data Types ................................................................................................. 928

Chapter 7 Labs: Data Conversion and Arithmetic ................................................................ 936

Chapter 8 Labs: Arithmetic .................................................................................................. 940

Chapter 9 Labs: Selection .................................................................................................... 942

Chapter 10 Labs: Iteration ................................................................................................... 947

Chapter 11 Labs: Arrays ...................................................................................................... 953

Chapter 12 Labs: Methods ................................................................................................... 959

Chapter 13 Labs: Classes .................................................................................................... 966

Chapter 14 Labs: Interfaces ................................................................................................. 974

Chapter 15 Labs: String Handling ........................................................................................ 977

Chapter 16 Labs: File Handling ............................................................................................ 982

Chapter 17 Labs: Exceptions ............................................................................................... 986

Chapter 18 Labs: Serialization of a Class ............................................................................ 989

Chapter 19 Labs: Structs ..................................................................................................... 996

Chapter 20 Labs: Enumerations......................................................................................... 1002

Chapter 21 Labs: Delegates ............................................................................................... 1011

Chapter 22 Labs: Events .................................................................................................... 1017

Chapter 23 Labs: Generics ................................................................................................. 1026

Chapter Summary ................................................................................................................... 1031

Chapter 26:   C# 11 ����������������������������������������������������������������������������������������������� 1033

C# New Features ..................................................................................................................... 1033

Raw String Literals ............................................................................................................ 1034

New Lines in String Interpolations .................................................................................... 1042

List Patterns ...................................................................................................................... 1044

Auto Default Struct ............................................................................................................ 1050

Warning Wave 7 ................................................................................................................. 1055

Chapter Summary ................................................................................................................... 1057

Index ������������������������������������������������������������������������������������������������������������������� 1059

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8619-7_25
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec11
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec20
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec25
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec28
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec35
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec44
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec51
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec56
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec61
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec64
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec69
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec74
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec79
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec84
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec89
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec94
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec99
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec104
https://doi.org/10.1007/978-1-4842-8619-7_25#Sec109
https://doi.org/10.1007/978-1-4842-8619-7_26
https://doi.org/10.1007/978-1-4842-8619-7_26#Sec1
https://doi.org/10.1007/978-1-4842-8619-7_26#Sec2
https://doi.org/10.1007/978-1-4842-8619-7_26#Sec3
https://doi.org/10.1007/978-1-4842-8619-7_26#Sec4
https://doi.org/10.1007/978-1-4842-8619-7_26#Sec5
https://doi.org/10.1007/978-1-4842-8619-7_26#Sec6
https://doi.org/10.1007/978-1-4842-8619-7_26#Sec7


xv

About the Author

Gerard Byrne is a senior technical trainer for a US-based 

Forbes 100 company. He works to upskill and reskill 

software engineers who develop business-critical software 

applications. He also helps refine the programming skills of 

“returners” to the workforce and introduces new graduates 

to the application of software development within the 

commercial environment.

Gerard's subject expertise has been developed over a 

multidecade career as a teacher, lecturer, and technical 

trainer in a corporate technology environment. He has 

delivered a range of courses across computer languages and 

frameworks and understands how to teach skills and impart 

knowledge to a range of learners. He has taught people in the use of legacy technologies 

such as COBOL and JCL and more “modern” technologies and frameworks such as C#, 

Java, Spring, Android, JavaScript, Node, HTML, CSS, Bootstrap, React, Python, and Test-

Driven Development (TDD).

Gerard has mastered how to teach difficult concepts in a simple way that makes 

learning accessible and enjoyable. The content of his notes, labs, and other materials 

follows the simple philosophy of keeping it simple while making the instructions 

detailed. He is passionate about software development and believes we can all learn to 

write code if we are patient and understand the basic coding concepts. 



xvii

Acknowledgments

Writing a book is a rewarding undertaking, but it requires time, effort, and patience, 

patience from those around you in your life.

So I have to start by thanking my wife, Maura, and my sons, Ryan and Peter, for 

“facilitating” me as I worked over many hours, days, weeks, and months to write this 

programming book.

I also wish to thank my great friend David from whom I have learned so much and 

with whom I have had the pleasure of delivering many enjoyable programming courses. 

If I need coding inspiration and humor, I always know to talk to David.

Finally, I want to say thank you to Joan Murray from Apress for helping me get the 

book proposal approved and to the whole Apress team who have worked with me and 

worked behind the scenes to get the book published. I am grateful for your help and fully 

understand that this book has so much of your effort within it.



xix

Introduction

The chapters in this book will cover coding in C# using the Visual Studio Integrated 

Development Environment (IDE) from Microsoft. Other Integrated Development 

Environments exist, such as Visual Studio Code, and the code from the applications 

in the chapters will work within any Integrated Development Environment capable of 

running C# code. While the step-by-step instructions and screenshots in the book are 

based around the Visual Studio Integrated Development Environment, they can still be 

used by those preferring a different Integrated Development Environment.

The first two chapters of the book introduce us to the .NET framework, the Visual 

Studio Integrated Development Environment, and how to complete the required 

software installation. With the necessary tools installed, we are then introduced to what 

a computer program is, before we start to write our own computer programs. We then 

begin to cover the core concepts needed when developing C# code and which can be 

applied to other programming languages. We cover a wide range of core programming 

concepts, including data types, selection, iteration, arrays, methods, classes and 

objects, serialization, file handling, string handling, and exception handling. Studying 

these chapters is more than enough to allow us to develop applications that emulate 

commercial application code.

All examples in the chapters are fully commented to ensure we can understand the 

code and to enhance our knowledge of the C# programming language. Reading the 

comments within the code examples is essential; they are an integral part of the book 

and will enhance our understanding of C# and will help explain why the code does 

something or what the code is doing.

After we have completed the core chapters, Chapters 1–13, we 

continue our C# journey by looking at more advanced topics 

starting with interfaces and abstract classes, which are essential 

concepts for all developers. In later chapters we work with classes 

and “lightweight” classes such as structs. We also look at more 

complex concepts when we study delegates in Chapter 21, and 

https://doi.org/10.1007/978-1-4842-8619-7_1
https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_21


xx

this leads us naturally into Chapter 22 on events and Chapter 23  

on generics. We also study chapters involving the common 

concepts of string handling and file handling where we see 

the importance of exception handling, which we also study in 

Chapter 17. Having gained lots of coding experience and having 

read and applied the core and advanced C# concepts, we look at 

common programming routines and use C# to code them. The 

routines include linear search, binary search, bubble sort, and 

insertion sort.

The book then completes with labs, additional exercises, for the 

majority of the programming chapters we have covered. Each 

exercise in a lab is supported with a working solution just in case 

we have difficulty completing any of the lab exercises.

The book is ideal for beginners, those refreshing their C# skills, or 

those moving from another programming language. It is ideally 

suited for students studying programming at high school or at 

university and is an excellent resource for teachers who deliver 

programming lessons. The book offers detailed explanations and 

the code has excellent comments to support learning. By using 

clean code with proper naming, the code is intuitive to read and 

understand.

Reading the book is one thing, but actually coding the examples 

using an Integrated Development Environment is the most 

important thing if we wish to get the best understanding of the C# 

language. Hands-on experience while reading this book is the key 

to success.

We should think about two things before we begin our 

programming journey through this book:

“Life begins at the edge of our comfort zone” and

“Think about now, and believe.”

Often the thought of getting started can make us “frightened” and “uncomfortable.” 

We need to believe in ourselves and understand that while there will be “lows” during 

the learning, we will survive them and move to the inevitable “highs.”

InTroduCTIon

https://doi.org/10.1007/978-1-4842-8619-7_22
https://doi.org/10.1007/978-1-4842-8619-7_23
https://doi.org/10.1007/978-1-4842-8619-7_17


xxi

Programming can be rewarding and thankfully it is within our ability to write code. 

The chapters in this book will help us to learn about coding, teach us how to code, and 

make us realize that it is indeed realistic for us to program in the C# language.

As we start learning C#, it is important to realize that the target of being able to write 

computer applications in C# will seem large as there is a lot to learn, but we should take 

comfort in the fact that as we complete each chapter and gain experience in writing our 

applications, the target gets closer and the amount of learning gets smaller. In essence, 

as we move along our learning pathway, we gain competence in concepts that will be 

continually used in our application code.

InTroduCTIon



1

CHAPTER 1

.NET

 .NET: What Is It?
First, let us say that C# is a programming language, while .NET is the runtime that C# 

and other languages are built on. They are very different things, and when we program 

in C#, we need to be aware that we will intrinsically be using .NET. The version of .NET 

will be whatever version we download when we wish to start programming in C#. What 

.NET gives us as developers are libraries of code that save us from having to write our 

own code to perform particular tasks. For now, just think of a library as something where 

there are methods, small blocks of code, that perform a particular process.

A simple example would be a method in the library that allows us as developers 

to display text to a console window. This could be the WriteLine() method, and it is 

located in the Console class, which belongs inside a namespace called System. Our line 

of code could be

System.Console.WriteLine("------- Learn To Code With C# ------");

Or later as we become more familiar with the code, we will probably want to code it 

like this:

Console.WriteLine("------- Learn To Code With C# -------");

Either way, for now, we simply want to understand that if we add the text to be 

displayed between the open and close brackets () of the WriteLine() method, it will be 

displayed to the console. We do not have to write the code that makes it display in the 

console; we just accept that the C# language and .NET handle all this for us. So let us just 

think of .NET as giving us code in the form of methods that will save us lots of time when 

developing an application. Also, we should think method when we see the open and 

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_1

https://doi.org/10.1007/978-1-4842-8619-7_1#DOI


2

close brackets (). Other examples of methods that we will become very familiar with are 

Write() and ReadLine(), but there are many built-in methods from the libraries that we 

will use.

We should also be aware that we can program in languages other than C#, like F# 

and Visual Basic (VB), but .NET is underpinning all of the programming languages 

supported by it. The libraries in .NET are shared between all the languages, thereby 

avoiding duplication of libraries and their contained methods. This makes sense as “on 

the surface” the WriteLine() method for displaying to the console should be the same 

no matter what .NET-supported language we program in. We do not need to concern 

ourselves that the different languages “under the hood” use different compilers.

As well as supplying developers with invaluable functionality through its methods 

and constructs, .NET includes a runtime environment for applications. This runtime 

environment is called the Common Language Runtime (CLR), and it is the “engine” 

that produces the magic to allow us as developers to write code in any of the .NET- 

supported languages, and it will run on any device that has .NET installed. It is a “virtual 
machine” that lets .NET exist on a device and then it can manage .NET applications 

running within.

Finally, think of .NET this way: it is the environment and C# lives within it, as do 

other languages. Yes, it is like us: the earth is the environment, and we live within it 

alongside others. The environment supplies us with many useful facilities like sunshine, 

air, and rain, and we use these in our life as we wish to do. Our environment offers us 

many facilities, some we use and some we don't use. Well, the same goes when we 

program in C# and use .NET; we will use some of the facilities, and we will not use others.

 .NET Core: What Is It?
We have just read about .NET being the runtime that C# and other languages are built 

on, but there is a history to .NET that can confuse us, so we will look at this history in 

order to help us better understand how we have reached the stage where we now just say 

.NET, as we have done in the preceding introductory paragraphs.

The evolution and progression of .NET implementations and their names has led to 

confusion around the .NET topic. The history has been as follows:

• .NET Framework was launched as .NET Framework 1 in 2002 and 

went on to have versions up to the last version of .NET Framework 

4.8. It allowed only for the development of Windows applications.

Chapter 1  .Net



3

• .NET Core was introduced in 2016 in an attempt to include cross- 

platform support, for example, for Linux and MacOS. .NET Core went 

from version 1 to the last version, 3.

• .NET was introduced as .NET 5 in 2020 with Microsoft dropping 

the name Core and naming it with 5 rather than 4, in an attempt to 

differentiate from the .NET Framework, which was version 4. .NET 6 

then followed in 2021 and in 2022 .NET 7.

So we can see that .NET Core aimed, for the first time, to give developers the facilities 

to develop for non-Windows devices such as mobile phones and Linux and Mac 

operating systems, using a standard set of libraries, which we mentioned earlier as being 

methods that give us functionality without having to write the code. It was not created to 

allow for development of desktop applications.

.NET Core was aimed at making .NET more modern, faster, and more scalable, 

and we could say that the philosophy behind it was to allow developers to build code 

once and that would run on any platform. Nowadays, we will hear a lot of talk about 

micro-services, small units of code living independently in the ecosystem, but able to 

communicate with each other when required, and .NET Core offers developers the 

opportunity to build micro-services.

We can therefore see that Microsoft started by offering us the .NET Framework, 

which ran only on Windows, and then evolved to offering us .NET Core, which allowed 

for cross-platform development. And now we have .NET, which runs on any platform 

and is the future with new releases every November. .NET is therefore a replacement for 

the other two.

As we are interested in developing our C# programming skills, we do not need to 

concern ourselves with the underlying runtime.

 C# Language Versioning
There are many versions of the C# programming language, and this can cause confusion 

when we wish to write code and are required to choose a language level. To make the 

situation more confusing, there are many versions of .NET, which the C# language must 

work with. To help us and take the “pain” out of making the C# language version choice, 

the C# compiler will make the decision as to which version of C# to use, based on the 

.NET version we have chosen to develop our application in. This is a feature aimed at 

Chapter 1  .Net



4

ensuring that we, as developers, are using the latest C# version for the chosen .NET 

version. When we use the Visual Studio Integrated Development Environment, it will 

use the .NET version installed on our computers, and, consequently, we will be availing 

of the latest version of the C# language that can be used with this .NET version. By using 

the highest C# version, we get the latest language features, but we still have the choice to 

use a different version if this is required. Caution is required when manually choosing 

the language level as we may be trying to use language features not supported by the 

selected .NET version.

By looking on the Microsoft site docs.microsoft.com, we will get the latest 

information about versions of the .NET framework and the C# language. We can also 

download versions of .NET from the Microsoft site dotnet.microsoft.com. So information 

from the site and relevant to our discussion and learning is as follows:

• C# 10 is only supported on .NET 6 and newer versions.

• C# 9 is only supported on .NET 5 and newer versions.

• C# 8 is only supported on .NET Core version 3.x and newer versions.

• C# 7.3 is the latest supported version for the .NET Framework.

Once we start to write our code in the Visual Studio Integrated Development 

Environment, we will create a C# project, which will generate a .csproj file, and it is 

within this file that we are able to set the language level. Visual Studio does not supply 

us with a user interface (UI) to make changes to the .csproj file, but we can select the file 

and edit its contents to ensure that the language version is set. An example of the code 

contained in the .csproj is shown in Listing 1-1.

Listing 1-1. Language level within the .csproj file

<PropertyGroup>

   <LangVersion>10</LangVersion>

</PropertyGroup>

Chapter 1  .Net

http://docs.microsoft.com
http://dotnet.microsoft.com


5

Figure 1-1. .NET evolution – .NET Framework to .NET Core to .NET

 .NET and C# Compilation Process
Part of the .NET framework is based on giving developers the tools they require to 

convert their C# code into a format that can be understood by the operating system that 

will run the application. As developers we follow a process to make the code we have 

written in our chosen .NET programming language into machine-readable code. Here 

are the steps of the compile process:

• Write the code in C# or another .NET programming language.

• Compile the code using the compiler, which checks the code for 

errors such as in syntax. We can then make the required changes.

• The compiler produces Common Intermediate Language (CIL) 

files and these files for C# would be similar if we had written our  

code in another .NET programming language. That is the “beauty”  

of .NET – write in any language and it will compile to the same thing.

• The Common Language Runtime (CLR) takes control of the process, 

and we previously read that the Common Language Runtime is

the “engine” that produces the magic to allow us as developers to write 
code in any of the .NET-supported languages, and it will run on any 
device that has .NET installed.

• Once the intermediate language has been generated, the Common 

Language Runtime process uses the Just-In-Time (JIT) compiler 

to create the code that the specific operating system running the 

application requires. This means our development code has been 

Chapter 1  .Net



6

compiled twice, first to the Common Intermediate Language and 

second to machine-specific code.

For developers what is nice about .NET is that the Common Language Runtime is 

common, which means that it is the same runtime “engine” for all .NET programming 

languages, for example, C# and VB.NET. Another great thing about programming in 

C# and using the .NET framework is that as developers we do not have to concern 

ourselves with the inner workings of compiling, intermediate language, Just-In-Time 

compiling, and machine code. It is all handled for us. We write the C# code and get it free 

of compilation errors, and .NET takes over. We do not even have to concern ourselves 

about different hardware and processors. As long as the .NET framework is available on 

the device running the application, everything is handled. Figure 1-2 offers a way to look 

at the compile process.

Figure 1-2. The compile process

 Compile Time and Runtime
As we learn about programming, we hear the terms compile time and runtime, so it 

is important to understand the difference and their role in the development process. 

Figure 1-3 offers a way to look at which parts of the development process are compile 

time and which are runtime.

Figure 1-3. Compile time and runtime

Chapter 1  .Net



7

When we choose to compile our code, the compiler takes the code and does 

some processing. Often the compile process finds errors in the code, for example, 

typographical errors, and we will be prompted to make changes to fix these compilation 
errors. So we are at compile time when we have written some code, and we choose to 

compile it in one of several different ways, for example, choosing Run from a menu, 

pressing a specified function key like F5, or typing a command at the command line. At 

compile time our code is still C#, but when the compiler finishes its processing, it will 

produce files in the form of an executable file, an .exe, or a dynamic link library, a .dll. 

These files are still not capable of being understood by the computer the code is to run 

on as the computer processor only understands machine code.

Now the second stage of the process is where we meet the runtime. When we 

want the application to run on a computer, this is the runtime, and it is the Common 

Language Runtime that handles this phase. At runtime the .exe or .dll files are converted 

to machine code capable of being read by the specific computer processor that the 

application is being run on. The conversion to machine code at runtime is handled by 

a specific part of the Common Language Runtime called the Just-In-Time compiler. 

Even though the compilation errors have been fixed and the code compiles, there is 

no guarantee that the code will run. If the code does not run at runtime, there will be 

runtime errors, and these are much more serious than compilation errors and present 

themselves where the end user can see them. This will not be a “happy” experience 

for the end user and should never happen, but things like this do happen. It is a rather 

unfortunate part of software development. A runtime error could occur because a file is 

not found or the memory is fully allocated, and often the consequence of a runtime error 

is the termination of the application.

 Framework and Library
While learning to program, we will hear the terms framework and library being used 

widely, but it is easy to get confused about what each does and why they are different.

 Library
At the start of this chapter, we read the following:

For now, just think of a library as something where there are methods, small 
blocks of code, that perform a particular process.

Chapter 1  .Net



8

This is a simple explanation, but we can go further and say that it is a collection of 

routines, blocks of code, that can be reused and have been thoroughly tried and tested. 

FinMath is a numerical library for the .NET platform that offers developers classes and 

methods for mathematical, scientific, and financial applications. As developers we use 

the libraries by calling the methods of the library whenever we require them in our 

code. We control the use of the libraries, and we should make use of libraries rather than 

writing our own code to perform the same functionality as library functions. All this fits 

in with the important concept of reusing software functionality when we can.

Think of a library in the context of building our own motor vehicle. We will choose 

the type of engine, the body shape, the number of seats, the wheel types, the color 

we will spray on the bodywork, etc. We are in control of what to include and what to 

leave out.

 Framework
At the start of this chapter, we read the following:

So let us just think of .NET as giving us code in the form of methods that will 
save us lots of time when developing an application.

This is also a simple explanation, but we can be more accurate by saying that the 

framework controls the calling of libraries rather than us as developers calling the 

libraries. Think of a framework like buying a limited-edition motor vehicle where have 

no choice in terms of the configuration. The vehicle is designed and built so we cannot 

customize it and we cannot pick the type of engine, the body shape, the number of seats, 

the wheel types, the color of the bodywork, etc. We are not in control of what to include. 

The special edition is a “constant,” and all the vehicles are identical.

Throughout our lifetime as developers, we will use many frameworks and libraries, 

and they both help us through their tested and reusable code. The essential difference 

is that as developers we call the code from the library, but the frameworks will call our 

code, as in Figure 1-4. Put in technical speak, we say it is all about inversion of control.

Chapter 1  .Net



9

Figure 1-4. Framework vs. library

In terms of real-world business, we can see that there are many food franchise 

companies and they offer people the opportunity to invest their own money and become 

a franchisee. As a franchisee you follow the framework set up by the franchise company. 

You use their logo, their paper cups, their coffee, their burgers, or whatever. A franchisee 

cannot pick and choose and say, “I'll use the paper cups, but I want to sell different 

coffee or different burgers or use different fillings.” The franchise company is like our 

coding framework, as shown in Figure 1-5.

Figure 1-5. Framework in business

On the other hand, a public house might be “tied” to a particular beer company 

and as such they can only sell the beer from that company. However, they can sell what 

soft drinks they want, whatever food they like, etc. This is like a library in that the public 

house owner has selected this beer company but can use other non-libraries for their 

soft drinks, meaning that they could choose a different supplier every day or choose a 

different soft drink every day, as shown in Figure 1-6.

Figure 1-6. Library in business

Chapter 1  .Net



10

 Managed and Unmanaged Code
Two terms we will hear when reading about C# and .NET are managed code and 

unmanaged code, and while starting to learn to program in C# it is not essential to fully 

understand the terms, it is worth having at a conceptual overview.

Managed code is code that is managed by the Common Language Runtime, which 

we read about earlier where we stated that

At runtime the .exe or .dll files are converted to machine code capable of 
being read by the specific computer processor that the application is 
being run on.

The Common Language Runtime also takes care of wider issues such as memory 

allocation and garbage collection. Therefore, we do not need to concern ourselves with 

these things; we just concentrate on coding the C#.

Unmanaged code is code that must be managed by us as developers. We take 

over the role of the Common Language Runtime, and we need to manage the wider 

issues such as memory allocation and garbage collection. This adds many additional 

tasks for us as developers and this is never an ideal situation to be in. Unmanaged 

code will be code built and compiled outside of the .NET environment and will be in 

machine-readable form, unlike managed code which will be in intermediate language. 

Unmanaged code is therefore read directly by the hardware operating system it is 

running on. The preference will always be that we are using managed code, and that is 

what we get when using C# and the .NET framework.

 Chapter Summary
In this chapter we have learned so much about the .NET framework, but it has been 

theoretical. However, it is theory we need to know before we start coding. We may not 

have fully comprehended all the theory, but be assured that many of the concepts will 

become crystallized as we continue our reading and when we code our C# applications.

There should be many key takeaways from this chapter, but we should clearly 

understand that C# is a programming language, while .NET is the framework that the 

C# and other languages are built on. We should also understand the difference between 

compile time and runtime. We learned that after compiling, our code files in the form 

of an executable file, an .exe, or a dynamic link library, a .dll, are produced. At runtime 

the .exe or .dll files are converted to machine code capable of being read by the specific 

Chapter 1  .Net



11

computer processor that the application is being run on. Very importantly, we also 

learned that a library is a collection of routines, blocks of code, that have been compiled, 

can be reused, and have been thoroughly tried and tested. And we will use them in 

coding our applications.

We have started reading this book with the aim of increasing our knowledge and 

understanding of C#. We are at the start of the learning journey and the final target can 

be thought of as being at the center of a set of concentric circles. As we progress through 

the chapters of this book, our knowledge, understanding, and ability to program in 

C# will gradually increase, while the amount we have to learn will decrease. The outer 

circles of the concentric circles will disappear as we move closer to the circle at the 

center, our target. Having completed this chapter, we are at the outer circle, but we are 

moving closer to our target.

 

Chapter 1  .Net



13

CHAPTER 2

Software Installation

 About the .NET Framework
Before we can write C# code, we will need to have the .NET framework installed on our 

computer. The .NET framework comes in two formats:

 1. The Software Development Kit (SDK)

The Software Development Kit is required when we wish to create 

.NET applications, and this is exactly what we will be doing as 

we complete the chapters in the book. Therefore, we will need to 

download the Software Development Kit to our computer.

 2. .NET runtime

The .NET runtime is used when we wish to run a .NET 

application. As we develop C# applications, we will use the 

Software Development Kit, but within it there will be the .NET 

runtime, so we can develop and run our applications using just 

the Software Development Kit. However, an end user of our 

application only needs the .NET runtime to run the application. If 

our application was to be run on a television, then the television 

would need to have the .NET runtime installed on it, or the 

developer would need to have included the .NET runtime with 

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_2

https://doi.org/10.1007/978-1-4842-8619-7_2#DOI


14

the application. Three different versions of the .NET runtime exist 

as indicated in this list:

• .NET runtime, which is the most basic runtime but will be suffice 

for most .NET applications

• Desktop runtime, which also includes the basic .NET runtime

• ASP.NET Core runtime, which also includes the basic 

.NET runtime

As we will be installing the Software Development Kit, we do not need to worry 

about the .NET runtime installation, as all three of the preceding .NET runtimes are 

installed for us.

 Installing the .NET Framework
The .NET framework installation can be performed using the Microsoft installer for 

Windows, MacOS, or Linux. The process is very similar no matter what operating system 

is being used.

 1. Go to the Microsoft download page:

https://dotnet.microsoft.com/en- us/download/dotnet

 2. Click the .NET framework to be downloaded. We will be using 

.NET 6.0, but from Figure 2-1 we can see that there is a preview 

version of .NET 7.0. We can also see that .NET 6.0 is the latest 

version. The latest version will change over time so it will be 

acceptable to download whatever the latest version is and the 

code within this book should still run.

Figure 2-1. .NET version on the Microsoft site

Chapter 2  Software InStallatIon

https://dotnet.microsoft.com/en-us/download/dotnet


15

Figure 2-1 has two terms with rectangles around them and two terms circled. It will 

be useful for us to understand the terms and their importance when developing C# 

applications. When we look at the Microsoft website .NET and .NET Core official support 

policy (microsoft.com), we see that they say the following:

We'll publish new major releases of .NET every year in November, enabling 
developers, the community, and businesses to plan their roadmaps. Even 
numbered releases are LTS releases that get free support and patches for 
three years.

• Long Term Support (LTS)

When we see that a .NET version, release, is annotated with 

LTS (Long Term Support), we are being told by Microsoft that 

the version will be supported by them for 3 years after its initial 

release. We can see from Figure 2-1 that .NET version 6.0 will 

be supported until November 12, 2024, and we could easily 

determine that .NET version 6.0 was released in November 2021.

.NET version 7 according to Microsoft will be released in 

November 2022 with LTS to November 2025.)

• Preview

When we see a .NET version annotated with Preview, we should, 

before we download and install, understand that such releases 

are typically not supported, but they are offered for public testing 

ahead of the final release. Once the preview goes live, the status 

changes and we can feel “safe” to download and install it.

There is also a term called Current and this release or version will 

be supported for 6 months after a subsequent Current or Long 

Term Support release.

Current releases are supported for 6 months after a subsequent Current or LTS 

release. As stated, earlier releases happen every 12 months so the support period for 

Current will be 18 months.

Chapter 2  Software InStallatIon

https://dotnet.microsoft.com/en-us/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/en-us/platform/support/policy/dotnet-core


16

• Full

Full means full support, and during the support period, .NET will 

be updated to improve the functional capabilities and mitigate 

security vulnerabilities.

• Maintenance

Maintenance means maintenance support, and during the 

support period, .NET will only be updated to mitigate security 

vulnerabilities. According to Microsoft the maintenance support 

period is the final 6 months of support for any release, Current 

or LTS. After the maintenance period ends, the release is out of 

support.

So, when we are choosing a download, it would seem appropriate to download the 

one annotated as latest and with Long Term Support.

Software Development Kit Version
The version of the Software Development Kit (SDK) to be downloaded will be 

dependent on the computer it is being installed on, for example, Windows, MacOS, or 

Linux. In our case it will be for a Windows platform as the chapters in the book use the 

instructions and screenshots from a Windows installation, but, if you choose to use a 

different installation, the instructions and screenshots will be very similar and little  

 – if any – changes will be required. The Windows version, like the MacOS and Linux 

versions, has different architecture options, and by selecting the architecture, we are 

specifying the device we wish to use with the SDK. The types of architecture are

x86

This represents a 32-bit CPU and operating system.

x64

This refers to a 64-bit CPU and operating system.

ARM and ARM64

Traditionally we would have had the x86 32-bit CPU, then we had the x64 64-bit CPU, 

and now we have the ARM and ARM64, which are used on a range of devices such as 

mobile devices and even Internet of Things (IoT) devices.

ARM and x86 are for 32-bit processors, whereas ARM64 and x64 are for 64-bit processors.

Usually for Windows computers, it will be the x64 version, as shown in Figure 2-2, 

but we should click the required version for our hardware to start the download.

Chapter 2  Software InStallatIon



17

 3. Click the version of the Software Development Kit required to start 

the download process.

Figure 2-2. SDK 

Chapter 2  Software InStallatIon



18

 4. Locate the downloaded file in the Downloads folder, as shown in 

Figure 2-3, or wherever you downloaded the file to.

Figure 2-3. Downloaded SDK 

 5. Double-click the downloaded file to open the file and run it.

 6. Click the Install button, as shown in Figure 2-4.

Figure 2-4. Installation start screen

Chapter 2  Software InStallatIon



19

 7. If asked about permitting the installation, as shown in Figure 2-5, 

click the Yes button to grant permission.

Figure 2-5. Permitting the installation

 8. After the installation, click the Close button.

We can see from the final installation window what was installed and where.

 Verify the .NET Framework Installation

We can now check that the .NET framework was successfully installed. To do this 

we will need to open the Command Prompt or PowerShell or the Terminal on a Mac 

operating system.

 1. Open the Start menu on Windows.

 2. Type cmd.

 3. Press the Enter key.

 4. A Command Prompt window should appear.

If the Command Prompt does not appear, we can use PowerShell, so 

click the Start menu and type PowerShell and press the Enter key, as in 

Figure 2-6.

Chapter 2  Software InStallatIon



20

Figure 2-6. Windows PowerShell 

 5. At the Command Prompt, >, type dotnet –list-sdks.

 6. Press the Enter key.

A list of the .NET Software Development Kits (SDKs) will be displayed as in 

Figure 2-7. There may only be one SDK, the 6.0.3 that we downloaded, and that is fine. 

Figure 2-7 shows a computer that has several SDKs installed.

Figure 2-7. Verification of the SDK installation

 7. At the Command Prompt, >, type dotnet –list-runtimes.

 8. Press the Enter key.

The message will appear as shown in Figure 2-8 and this verifies that the .NET 

runtimes have been installed successfully.

Chapter 2  Software InStallatIon



21

Figure 2-8. Verification of the runtimes installed

 Installing Visual Studio
To be able to use .NET when following this book, we will use Visual Studio 2022 with a 

version of 17.0, or higher, installed on our computer.

 1. Go to the Microsoft Visual Studio download page:

https://visualstudio.microsoft.com/downloads/

 2. Click Visual Studio 2022 when the web page opens, as in 

Figure 2-9.

Figure 2-9. Visual Studio 2022

Chapter 2  Software InStallatIon

https://visualstudio.microsoft.com/downloads/


22

 3. When the next window appears, choose Community 2022 from 

the drop-down list of versions as in Figure 2-10. Visual Studio 2022 

includes .NET and this is fine even though we downloaded .NET 

separately. The download should start.

Figure 2-10. Download of Visual Studio 2022 Community Edition

 4. Locate the downloaded file in the Downloads folder or wherever 

you downloaded it to.

 5. Double-click the file to open the file and run it.

 6. If asked about permitting the installation, click the Yes button to 

grant permission and then click the Continue button to allow the 

installer to continue its process, as in Figure 2-11.

Figure 2-11. Permitting the installer

Chapter 2  Software InStallatIon



23

The installer will begin and the software will be installed, as in Figure 2-12.

Figure 2-12. Installation

Now we need to decide on what workloads to download, and in the context of 

learning C# with this book and the coded applications, we will only need the .NET 

desktop development workload.

 7. Click the .NET desktop development tile and make sure the 

checkbox becomes ticked.

There will be a drop-down menu, as shown in Figure 2-13, and we can leave it at the 

default of Install while downloading.

Figure 2-13. Workload choices 

Chapter 2  Software InStallatIon



24

 8. Click the Install button.

Visual Studio will download the relevant files based on the workloads we selected, 

just the .NET desktop development workload in our case.

 9. Finally, click the Launch button.

 10. Now we need to sign in with our Microsoft account so click the 

Sign in button, or if we need to create a new account, click the No 

account link to create a Microsoft account.

Figure 2-14. Sign in

 Verify the Visual Studio Installation

We can now check that Visual Studio was successfully installed.

 1. Open the Windows Start menu.

 2. Type Visual Studio.

 3. Double-click the Visual Studio 2022 icon that appears.

The Integrated Development Environment should now open.

Chapter 2  Software InStallatIon



25

 Chapter Summary
In this chapter we have learned about downloading .NET and the Visual Studio 

Integrated Development Environment, both of which allow us to write C# applications. 

The setup is obviously crucial for developers and often it can be a “painful job” to get 

the setup right, but we saw that when we downloaded the Software Development Kit for 

.NET version 6, it supported Visual Studio 2022. Therefore, when we downloaded Visual 

Studio 2022, the two parts were compatible.

Finishing this chapter, we have increased our knowledge and we have advanced 

from the outer circle and are moving closer to the target.

 

Chapter 2  Software InStallatIon



27

CHAPTER 3

Introduction

 Computer Program
We will be using C# to write computer programs, just like many programmers in 

companies around the world use C# to write programs in the commercial environment. 

So a very good starting point before writing code is to fully understand what a computer 

program is. We can think of a computer program as

• A sequence of data instructions created by a programmer

• Instructions that tell the computer what operations it should execute

• Instructions that tell the computer how it should execute an 

operation

• Instructions written in a special programming language, for example, 

C#, Java, C++, or COBOL

Besides C# there are a large number of programming languages available to 

developers. Each programming language will have particular advantages and 

disadvantages when compared with the other programming languages, but they will 

all be useful for writing software applications. It is important to understand that some 

programming languages are

• More powerful than others, for example, C#

• Better for developing applications requiring fast processing, for 

example, C

• Better for developing web-based software applications, for example, 

JavaScript

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_3

https://doi.org/10.1007/978-1-4842-8619-7_3#DOI


28

• Better for developing computer games, for example, C++

• Better for data analytics, for example, Python

• Better for scripting, for example, Perl

The preceding points should help us understand that there are many programming 

languages available for software developers, but they all have concepts that can be 

applied across many of the languages. So, by the time we finish reading this book, 

entering and running all the example code, and doing all the exercises, we will be in a 

strong position to recognize and apply constructs in the Java programming language or 

the C++ language and indeed other programming languages, as well as our main focus, 

the C# language.

 Programming Languages
It is certainly great to have a choice of programming languages but at times this makes it 

difficult to choose the correct one when writing a software application. In the following 

list, we can see some facts about programming languages:

• There are many different programming languages to choose from.

• Each language has its own set of very strict language rules.

• C# is one such programming language.

• Other languages include Java, C++, Visual Basic, Python, JavaScript, 

COBOL, Swift, Objective-C, Ruby, and Go.

• Programming languages such as C#, Java, C++, and Visual Basic 

are high-level languages, since they have a high correlation with a 

spoken and written language.

• Assembly language is a low-level language, as it has a low 

correlation with a spoken and written language and is more like the 

language the computer can understand.

Chapter 3  IntroduCtIon



29

• Every computer program will need to be “translated” into “machine 
code” that the computer can understand, for example, byte code, 

object code, and binary code.

• The process of “translation” is carried out by compilers, 

interpreters, or assemblers.

 A Computer Program: A Recipe
Can we compare a computer program to a recipe used for baking or cooking? Let us 

think about a recipe that we might use in our kitchen to create the end product of 

fifteens, as in Figure 3-1.

Figure 3-1. A fifteen, the output from my favorite recipe

The information we need might be written in a book or on a website like that shown 

in Table 3-1.

Chapter 3  IntroduCtIon



30

Table 3-1. A recipe for fifteens

Ingredients Instructions

15 digestive biscuits

15 marshmallows

15 glacé cherries, cut into halves 

or smaller

about 150 ml of condensed milk

100 g of desiccated coconut

add 15 digestive biscuits to a bag and “smash” the biscuits with 

a rolling pin until they are fine crumbs.

place the crumbs in a mixing bowl.

Slice the 15 marshmallows into pieces; we decide how big the 

marshmallows should be.

Slice the 15 cherries in half or smaller; we decide how big the 

cherries should be.

add the cherries and marshmallows to the digestive biscuit 

crumbs in the mixing bowl.

Stir the mixture until the cherries and marshmallows are spread 

evenly around the biscuit crumbs.

pour the 150 ml of condensed milk on top of the biscuit, glacé 

cherry, and marshmallow mix.

Mix the contents in the bowl and add more condensed milk if 

required, so that the mixture is not dry.

Cut a large piece of tinfoil and spread half of the coconut onto 

the tinfoil.

Scoop the wet biscuit, glacé cherry, and marshmallow mix onto 

the tinfoil and add the other half of the coconut to the mixture.

roll the tinfoil over the mixture to create a sausage shape.

Move the rolled mixture to the fridge and leave in the fridge for 

3 or 4 hours.

remove the roll from the fridge and cut it into 15 slices.

As we can see, the recipe contains

• A list of instructions, directions, written in a language – in this case it 

is English.

Likewise, a computer program contains a list of statements, 

directions, written in a programming language such as C#.

Chapter 3  IntroduCtIon



31

• A list of ingredients. The ingredients are of various types, for example, 

biscuits, marshmallows, glacé cherries, condensed milk, and 

desiccated coconut.

Likewise, a computer program contains a list of variables, 

ingredients. The variables will be of various types, for example, 

numbers, text, Customer, and Policy.

The following two code examples show the structure of code for C# and Python. 

Even at this early stage, by looking at the code examples, we should see some similarities 

between the two different programming languages, C# and Python. By completing the 

chapters in this book, we will become more familiar with C# programming, and other 

programming languages will be less “daunting” to look at and to program with.

Listing 3-1 shows C# code, which will ask the user to input two values and then totals 

the values. The program is like our recipe; it is a set of instructions.

Listing 3-1. Sample C# program code

 

Chapter 3  IntroduCtIon



32

Listing 3-2 shows Python code, which will ask the user to input two values and then 

totals the values. The program is like our recipe; it is a set of instructions.

Listing 3-2. Sample Python program code

 

 Type in C#
In C# we will often refer to the variables and their types. So, when we see the word type 

in relation to a variable, we need to say to ourselves type means a variable that has a 

particular type, for example, int, float, or char. A type indicates the data type of the 

variable, which will be stored, for example, bool, byte, sbyte, char, decimal, double, 

float, int, long, or short.

In C# all data is defined within a type. So we could have a type called Car and the 

data might include the odometer reading. The odometer reading might be of type int 

and we would say that the odometer type is int and it is contained within a Car type.

For now, we just need to understand we will have variables in our C# code and they 

will have a type. We will get more information and knowledge of types as we progress 

through the chapters and topics. C# is a strongly typed programming language and this 

means the type of a variable cannot be changed once it has been declared. This is not the 

same principle in some other programming languages.

Chapter 3  IntroduCtIon



33

Following up on the last point on types, it is important to understand that C# is a 

collection of types and these can be thought of as

• Built-in types, also called predefined or primitive data types, which 

include the ones we previously mentioned, for example, bool, byte, 

sbyte, char, decimal, double, float, int, long, and short.

• User-defined types, which we as developers create because we wish 

to have our own custom types. We said earlier that the odometer 

type could be int and it could be contained within a Car type. But we 

should think, Where did the Car type come from? Well, the answer is 

we would have to create it. C# does not provide us with a primitive or 

predefined type called Car. When building applications, we may wish 

to have types like Car, Customer, Policy, Agent, Claim, etc. This will 

be covered when we meet Chapter 13.

When we write a C# program, we are linked to .NET, and we can avail of what is 

called the Common Type System (CTS). Think about professional programmers in 

companies throughout the world who use a variety of programming languages. Within 

a company there may be a team of developers building an application using Visual 

Studio, but some developers are writing their code using C#, while others are writing 

their code using VB.NET and each language has its own data types. So how will it work 

when they wish to put the application together and have the C# parts communicate with 

the VB.NET parts. Well, that is one of the benefits of .NET and its Common Type System 

as it takes control and ensures that the different types from the individual languages are 

compiled to a common data type.

The Common Type System defines types as being one of two kinds:

 1. Value type

Value type variables directly contain their values. The value types 

handled by the Common Type System are

• Primitives, for example, bool, byte, sbyte, char, decimal, 

double, float, int, long, and short

• Enumerations, which are used to assign constant names to a 

group of integer values, as in Listing 3-3

Chapter 3  IntroduCtIon

https://doi.org/10.1007/978-1-4842-8619-7_13


34

Listing 3-3. Example of an enumeration

enum PolicyStatus

{

  Live,

  Finished,

  Held

}

In this example, Listing 3-3, the compiler will assign the integer 0 to the constant 

value called Live, 1 to the constant value called Finished, and 2 to the constant value 

called Held.

Listing 3-4. Example of an enumeration with the default values overwritten

enum PolicyStatus

{

  Live = 1,        //  We are assigning the value as 1 rather than a 

default of 0

  Finished = 99,   // We are assigning the value as 99

  Held = 2         // We are assigning the value as 2

}

In this example, Listing 3-4, we as developers have assigned the integer value 1 to 

Live, 99 to Finished, and 2 to Held, thereby overriding the default values.

Listing 3-5. Example of an enumeration with default values assigned

enum WeekDays

{

    Monday,      // Monday is assigned a value of 0

    Tuesday,     // Tuesday is assigned a value 1

    Wednesday,   // Wednesday is assigned a value 2

    Thursday,    // Thursday is assigned a value 3

    Friday,      // Friday is assigned a value 4

    Saturday,    // Saturday is assigned a value 5

    Sunday       // Sunday is assigned a value 6

}

Chapter 3  IntroduCtIon



35

In this example, Listing 3-5, the compiler will assign the integer values 0–6 to the 

constant values held in the enum, the days of the week.

• Structure (struct), which is used to store data

Listing 3-6. Example of a struct

struct Policy

{

  public int PolicyId;

  public string PolicyType;

  public double MonthlyPaymentAmount;

}

In this example, Listing 3-6, we as developers have created a structure that will be 

used to hold data about a policy.

Listing 3-7. Another example of a struct 

struct Claim

{

  public int PolicyId;

  public double ClaimAmount;

}

In Listing 3-7, we as developers have created a structure that will be used to hold 

data about a claim. We will see more about enumerations and structs when we study 

them in their separate chapters.

 2. Reference type

When we talk about a reference type, we mean we are not dealing 

with the actual value, the real data, but we are dealing with 

a reference to the data held in memory. The reference types 

handled by the Common Type System are

• Root, for example, Object

• String, for example, string policyType;

Chapter 3  IntroduCtIon



36

• Arrays, for example, string[] repairShopClaims = new string[8];

• Classes

Listing 3-8 shows an example of a class called Policy.

Listing 3-8. Example of a class

namespace insurances

{

    class Policy

    {

        public int PolicyId;

        public string PolicyType;

        public double BasePremiumAmount;

        public  void CalculateBasePremium()

        {

            if (policyType.Equals("Home"))

            {

                basePremiumAmount = 100;

            }

            else

            {

                basePremiumAmount = 200;

            }

        } // End of CalculateBasePremium() method

    } // End of Policy class

} // End of namespace

• Interfaces

• Delegates

We should not be concerned about these Common Type System types, for now. It is 

just important that we realize there are different types within C# and the Common Type 

System of .NET. As we progress through the chapters, we will gain more knowledge of the 

types, and more importantly we will consistently use them in all our coding examples.

Chapter 3  IntroduCtIon



37

 The Basic Operations of a Computer
Under the direction of a program, written in a programming language and converted to 

machine-readable code, the computer can perform operations as shown in Table 3-2.

Table 3-2. Basic operations of a computer

Input the computer can accept user input from the keyboard.

Process the computer can perform arithmetic calculations and other types of processing.

Output the computer can display a message or a result on the screen or some other 

output source.

Combination the computer can combine these operations in three ways:

Sequentially – a sequence of operations is performed one after the other.

repeatedly – a sequence of operations is performed a number of times.

Selectively – one, two, or more sequences of operations are performed depending 

upon a condition, for example, is counter <2.

Subprograms a program can contain a number of smaller programs. We can for now call a 

subprogram a method or a function.

 C# Program Application Formats
Every programming language will have a structure that we need to understand and abide 

by if we wish to write code using that language. In the C# programming language, there 

are basic elements that all C# programs must have, and these basic elements depend 

on which format of application we are developing. In this book we will be concentrating 

on writing code for console applications, and as we go through the chapters in the 

book, we will gain more understanding of console applications. Using C#, we can write 

applications for different formats, three of which are discussed in the following.

 Format 1: Console Application
In a console application, we use the Command Prompt, better known as the console, 

to accept input from the user and to display output data to the user. In the distant past, 

we only had console applications. There were no “windowed” applications and fancy 

graphics. Figure 3-2 shows what the console might look like.

Chapter 3  IntroduCtIon



38

Figure 3-2. Console application sample output

We can think of the console as a two-tone screen like the black and white screen in 

the top section of Figure 3-2, although it can be changed, as shown in the lower section 

of Figure 3-2. The console is where input from the user is accepted and output from the 

computer program is displayed. Nowadays, while Windows and web-based applications 

are the predominant application formats for C#, console applications are still used to 

perform many tasks, which are not dependent on a “pretty” user interface (UI).

We will be using an Integrated Development Environment (IDE) called Visual Studio 

Community Edition, and when we write our C# code in the editor of Visual Studio, we 

will need to run it to make sure it works properly. Our C# console application will run 

in a console window, which may have a black background and white text or some other 

combination of colors.

In learning to program, it is very important that we understand the programming 

concepts and forget about user interface design. The interface design can be built 

into the applications that we create, after learning all the core programming concepts. 

In reality we need to concentrate on ensuring that our code is well designed, has no 

errors or bugs, and works as required. There would be no point in having code that did 

not work properly, and there would be absolutely no point in having a well-designed, 

“pretty” user interface that was not functioning as expected because the code behind it 

was not working correctly.

Figure 3-3 shows the console window for a very basic C# console application. It also 

shows the code that has been written to produce the console application. The code will 

be explained later in this chapter.

Chapter 3  IntroduCtIon



39

Figure 3-3. Console application code and sample output

 Format 2: .NET MAUI
Using .NET MAUI, we can develop apps that run on Windows, Android, iOS, and MacOS, 

as in Figure 3-4. .NET MAUI is a shortened version of .NET Multi-platform App UI. So 

.NET MAUI is a cross-platform framework for creating mobile and desktop applications 

with C# and XAML.

Figure 3-4. Cross-platform development using .NET MAUI

Chapter 3  IntroduCtIon



40

Figure 3-5 shows an example from the Microsoft website showing C# code and an 

Android emulator displaying an application.

Figure 3-5. .NET MAUI sample code from the Microsoft website

 Format 3: ASP.NET Web Applications
ASP.NET is a free web framework, created by Microsoft, to allow us to build modern web 

apps and services with .NET and C#. With ASP.NET we can use C# alongside HTML, 

CSS, and JavaScript allowing us to develop dynamic web pages, the “front end” of our 

application. For the “back end” of our application, we can use C# with ASP.NET to 

develop code for our business logic and that can interact with databases.

 The Structure of a C# Program
In this book we will concentrate on console applications, and this will allow us to focus 

on the C# programming language concepts rather than concerning ourselves about 

the design of a user interface. We saw in Figure 3-3 the general code of a C# console 

application, and the program code in Listing 3-9 shows similar “traditional” code so we 

can talk about a feature that can be used.

Chapter 3  IntroduCtIon



41

Listing 3-9. General syntax and format for a C# program

using System;

namespace ConsoleVersion1

{

    public class Program

    {

        public static void Main(string[] args)

        {

            Console.ReadLine();

        } // End of Main() method

    } // End of Program class

} // End of ConsoleVersion1 namespace

The 11 lines of code shown in Listing 3-9 represent what has been a “typical” starting 

point for a new console application when using Visual Studio. Interestingly, from all the 

lines of code, only one of them contains executable code, Console.ReadLine().

However, we can use a new feature called top-level statements, shown in 

Listing 3-10, that will allow us to simplify the code. We only need two lines of code. 

Really, one as the first line is a comment added by Microsoft.

Listing 3-10. Top-level statements, two lines

// See https://aka.ms/new-console-template for more information

Console.ReadLine();

With the C# templates for .NET version 6, we will be given top-level statements by 

default as a starter, which is very nice, but if we do not want to have them, we can either

• Delete them when the code appears and add our own code, which we 

will do throughout the chapters in the book.

• Switch them off when we are creating the project, as in Figure 3-6.

Chapter 3  IntroduCtIon



42

Figure 3-6. Switching off top-level statements

We will delete the top-level statements when they appear so we are reinforcing the fact 

that “under the hood” of these top-level statements there is code. When we are starting to 

learn C# code, it is good to see what the “real” code looks like, not the cut- down version. As 

we become experienced, it will be fine to use the top-level statements and indeed it would 

be expected that as developers we would do so. It is also important to understand that 

top-level statements can only be used in one source file in our project application, and we 

will be creating more than one file in our projects. If we tried to use top-level statements in 

more than one file in the project application, the compiler would give us an error.

Code Analysis
This analysis of the code in Listing 3-9 will help us fully understand the basic form of 

the C# console application code.

Namespace

• All code is enclosed within a namespace. In this example our 

namespace is called ConsoleVersion1. The name starts with the line

namespace ConsoleVersion1

Essentially, a namespace is like a folder, an area to store classes, 

the code. Namespaces provide us as developers with a way to keep 

one set of names separate from another. The class names declared 

in one namespace do not conflict with the same class names 

declared in another.

Chapter 3  IntroduCtIon



43

Think about a Microsoft Word document that we might create and 

save as CSharpNotes.docx:

• Understand that we cannot create a new Word document and save 

it with the same name in the same folder as the CSharpNotes.docx 

document, as this would cause the operating system to ask us if we 

wanted to replace, overwrite, the existing file.

• On the other hand, if we save the file with the same name but in a 

different folder, this will be fine.

The reason for this is that the folders allow us to keep files 

separate from one another and the actual name of the file will 

include the folder name.

Examples

C:\Gerry\Documents\MyNotes\CSharpNotes.docx

C:\Gerry\Documents\MyClassNotes\CSharpNotes.docx

In the same way that we have different folders to separate our 

Word or other documents, we have namespaces in C# to separate 

our classes, code files. Just like every Word document will be in a 

folder, every class must be inside a namespace.

• Below the namespace name is the opening curly brace, which is 

matched by the closing curly brace at the end. Therefore, all code is 

wrapped within the namespace braces. So the namespace code looks 

like Listing 3-11.

Listing 3-11. Namespace syntax

namespace ConsoleVersion1

{

} // End of namespace

Opening and closing braces are widely used to contain blocks of 

code and segregate the blocks of code from each other.

Namespaces are therefore used in C# to avoid name conflicts 

and to control the access to classes and so on. With namespaces 

it makes it easier to locate related classes that hold our code, 

Chapter 3  IntroduCtIon



44

and they provide a structure for projects, which, in a commercial 

application, could contain hundreds of classes and other files. 

This is what we read earlier when we said .NET contains many 

libraries of code that are useful to us when we write our code.

Class

• The C# code is wrapped within the namespace but it must also then 

be written or contained within a class. In this example our class is 

called Program. So the class looks like Listing 3-12.

Listing 3-12. Class syntax

    public class Program

    {

    } // End of Program class

• Below the class name is the opening curly brace, which is matched 

by the closing curly brace, just above the namespace closing brace. 

Therefore, our code is wrapped within the class braces.

Method

• The main entry point of our console application will be the method 

called Main. A method is simply a number of lines of code, a block of 

code. Later in this book, we will look at methods in detail.

• Our lines of code for the Main() method are enclosed between the 

opening curly brace and the closing curly brace. So the Main() 

method looks like Listing 3-13.

Listing 3-13. Main() method syntax

    public static void Main(string[] args)

    {

        Console.ReadLine();

    } // End of Main() method

Chapter 3  IntroduCtIon



45

The Main method has two keywords before it:

• static – Later in the book when we look at classes and methods in 

detail, we will become familiar with the use of the keyword static. 

For now, just forget about static and simply accept its use in the code 

as shown.

• void – This means that when all the lines of code within a method 

are executed, no value will be returned from the method – it is a void 

return. We will see more about this later in the book when we look at 

methods in detail.

The Main method has some text within the brackets:

• string[] – We will see more about this later in the book when we 

look at arrays in detail. Essentially, it means that the Main() method 

can accept, be given, input values that are of type string. The [] means 

that it is an array of strings, one or more string values. So the Main() 

method can accept a number of values, variables, of type string.

• args – args is the name of the string array. If we change the name 

from args to something else, it will not affect the running of the 

program. In Figure 3-7, args has been amended to gerry and the 

program has been run. The result is the same as that shown earlier, 

the only difference being the name of the array.

Figure 3-7. Renaming the args array to gerry

Chapter 3  IntroduCtIon



46

It should be noted that not all our code will be written inside the Main() method or 

indeed any method, but it will be written within a class, which is always contained within 

a namespace.

 Namespaces
As we have read earlier, a console application is contained within a namespace. A 

namespace may be thought of as a storage area for some classes, which themselves 

contain methods. Microsoft has written thousands of base classes and stored them in 

namespaces. When we write our C# code, we will create many more classes and we must 

follow the same practices as Microsoft and store our classes within our own namespaces. 

Storing our classes in namespaces makes code more manageable and easier to maintain.

A namespace can be likened to the folders that we keep our files in. We create 

different folders to hold different files in a structure that best suits our system. Likewise, 

we can create namespaces to hold our classes, and we can use the namespaces created 

by Microsoft in our code to get access to the Microsoft base classes. The lines of code at 

the start of the program code usually have a format that starts with the keyword using. 

The keyword using, as shown in Listing 3-14, refers to the fact that we wish to use 

classes that are contained in the namespace that follows the word using. In our earlier 

code example, Listing 3-9, we used the Console class. Therefore, the compiler needs to 

know where to look for this class, and that is why we have the using System statement 

at the top of the code. Remember, namespaces contain classes that themselves contain 

methods and it will be these methods, blocks of code, that we will use.

Listing 3-14. The using keyword for importing namespaces

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleVersion1

{

    public class Program

    {

        public static void Main(string[] args)

        {

Chapter 3  IntroduCtIon



47

            Console.ReadLine(;

        } // End of Main() method

    } // End of class

} // End of namespace

 Classes
As stated earlier a console application is contained within a namespace and within the 

namespace there will be a class or classes. A class is used to allow us to create our own 
types using C# code. A class is like an outline that will let us define the type we want, 

using other types, methods, and variables. In the example code, Listing 3-14, we have a 

class called Program. As we become more proficient in our C# coding, we will begin to 

develop our own more complex classes.

Here we will look at some examples that could be created in real applications:

• A class for the type Pizza, to define that all pizzas have

• A pizza base

• A pizza sauce

• Toppings

Once we define the blueprint class for the pizza, we will be able to use the class 

to create specific types of pizza. For example, we can create a Hawaiian pizza or a 

vegetarian pizza. The two classes, Hawaiian pizza and vegetarian pizza, are called 

instances of the class, and each instance will contain a pizza base, a pizza sauce, and a 

topping(s).

• A class for the type InsuranceQuote to define that all quotes 

must have

• An applicant's forename

• An applicant's surname

• An applicant's date of birth

• A method to calculate the insurance premium

Once we define the blueprint class for InsuranceQuote, we will be able to use 

the class to create specific types of InsuranceQuote. For example, we can create a 

CarInsuranceQuote or a HomeInsuranceQuote. The two classes, CarInsuranceQuote 

Chapter 3  IntroduCtIon



48

and HomeInsuranceQuote, are called instances of the class, and each instance will 

contain an applicant's forename, an applicant's surname, an applicant's date of birth, 

and a method to calculate the insurance premium.

What we should be clear about is that by the time we start Chapter 13 on classes and 

objects, which is a complex topic, we will be well prepared and should find the complex 

topic more manageable.

The starting point, before we code, is to be clear about the following concepts:

• A class exists inside a namespace.

• A class can contain variables, for example, forename, surname, and 

dateofbirth.

• A class can contain methods, for example, 
CalculateInsurancePremium().

The term instance has been used to describe our copy of the class. More importantly 

it is possible to say our “copy” is an object. We will study classes and objects in more 

detail in a future chapter.

As we go through the course chapters, we will be reminded of the fact that a class 
contains methods and variables. This is a key concept and will be relevant when 

programming all the code examples. We will also see later that, instead of saying 

variable, we will say property or field or member when we talk about them in classes, 

but in our learning just think variables.

To expand this key concept of variables and methods within a class, take a closer 

look at the way they have been written:

variable forename

variable surname

variable dateofbirth

method CalculateInsurancePremium()

• Notice that a variable has a name that we give to it. It is one word.

• Notice that a method has a name that we give to it followed by the 

open bracket, followed by the close bracket, that is, ().

So () means a method, like the Main() method as shown in 

Listing 3-15.

Chapter 3  IntroduCtIon

https://doi.org/10.1007/978-1-4842-8619-7_13


49

Listing 3-15. Main() method has open and close brackets ()

    public static void Main(string[] args)

    {

        Console.ReadLine();

    } // End of Main() method

The Main() method is interesting because it accepts an input. As developers we can 

code any method to accept input. Alternatively, we can code a method so it does not 

accept a value or values.

 Naming a Class: Class Identifiers

When using C#, we will notice that there are two naming conventions that are followed:

• camelCase – Where the first letter of the first word in an identifier 

is lowercase and the first letter of all other words are uppercase, for 

example, carInsurance

• PascalCase – Where the first letter of each word in an identifier is 

uppercase, for example, CarInsurance

In terms of clean code, some things should be considered as good practices:

• When naming a class, we should use a noun phrase.

• The class name should describe what the class does; make the name 

descriptive.

• Use the singular rather than the plural, for example, use Agent rather 

than Agents.

• Start the class name with a capital letter.

• Keep the class name and the filename the same. This is not always 

required, but it would be seen as the norm and makes for consistent 

naming across all classes.

• Use PascalCase, which means every word in the class name starts 

with a capital letter. This is better than using underscores, as in 

Table 3-3.

Chapter 3  IntroduCtIon



50

• The class name could begin with an @ symbol, which would also 

allow us to use C# keywords as the class name, but maybe not a 

good idea!

When we are learning to code, using naming conventions can be helpful, but do not 

obsess over them. The important thing is to get to understand and program in the C# 

language.

 Chapter Summary
In this chapter we have learned about programming languages and some features that 

apply to C#. We have learned that

• A computer program is a set of instructions created by a programmer.

• A computer program is like a cooking or baking recipe.

• The computer can perform input, process, and output using the 

program.

Table 3-3. Valid and invalid class identifiers

Valid class identifier Invalid class identifier

program program Version 1

Customer 1Customer

Student %Student

author *author

@double (but don't use it) double

Bank_account Bank account

Customer_order \Customer order

Mailing-List-For-Customers Mailing List For Customers

Student~results~For~test Student results For test

Car_Insurance_Quote -Car-Insurance-Quote

Chapter 3  IntroduCtIon



51

• C# programs can be used in writing console applications, .NET 

MAUI mobile applications, ASP.NET web applications, and many 

other types.

• There is a structure to all C# programs, which includes the use of 

namespaces, classes, and methods, including the Main() method.

• The keyword using is used with a namespace to “import” another 

namespace.

• Classes contain variables (properties, fields, members) and 

methods.

• Methods always have the () after them, for example, Main().

In finishing this chapter and increasing our knowledge, we are advancing to 

our target.

 

Chapter 3  IntroduCtIon



53

CHAPTER 4

Input and Output

 Write to and Read from the Console
We learned in Chapter 3 that under the direction of a program, written in a programming 

language and converted to machine-readable code, the computer can perform the 

following tasks, as shown in Table 4-1.

Table 4-1. Input, output, and process

Input The computer can accept user input from the keyboard.

Process The computer can perform arithmetic calculations and other types of processing.

Output The computer can display a message or a result on the screen.

This chapter will concentrate on how to output to the console. We will also use 

a basic .NET method to read from the console, which is an example of input. It is 

very important to understand that what we learn by completing the examples in this 

chapter will

• Help us build more complex code examples in future chapters

• Show us commands that are used in real-world applications

• Get us started with two important aspects of any programming 

language – input and output

Looking back at Figure 3-2 from Chapter 3, we can think of the console as a black 

and white screen where input from the user is accepted and output from the computer 

program is displayed. The console colors can be changed as we can see from the lower 

part of Figure 4-1.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_4

https://doi.org/10.1007/978-1-4842-8619-7_3
https://doi.org/10.1007/978-1-4842-8619-7_3
https://doi.org/10.1007/978-1-4842-8619-7_4#DOI


54

Figure 4-1. Console in black and white and alternative color

So our console will display data, and in the C# programming language, we could 

achieve this with the line of code shown in Listing 4-1.

Listing 4-1. The WriteLine() method to display data on the console

Console.WriteLine();

Code Analysis

• Fact 1

First, we can see the keyword Console, so we might imagine this 

means something that interacts with the console, yes, the “screen,” 

where input from the user is accepted and output from the 

computer program is displayed.

• Fact 2

The second part is the full stop or period as it is also known. In 

programming languages like C#, the full stop means that we want 

to use a part or element of the object that appears to the left of the 

full stop, in this case Console. The object will generally be a class, 

and we talked a little about classes in the previous chapter, but we 

will also read a whole chapter on classes and objects. Now, let's 

look back to what we learned in the previous chapter:

As we go through the course chapters, we will be reminded of the fact that a 
class contains methods and variables. This is a key concept and will be 
relevant when programming all the code examples.

ChapTer 4  InpuT and OuTpuT



55

So, if Console is a class, it can contain methods and variables. 

When we add the full stop after the class name, we are saying we 

want to use either a method or a variable that is inside the class. 

Remember () indicates a method. It was also said in the previous 

chapter:

Likewise, we can create namespaces to hold our classes, and we can use the 
namespaces created by Microsoft in our code to get access to the Microsoft 
base classes.

Microsoft base classes will be like the classes we write; they 

contain methods and variables, which we can use without having 

to write them. Console is one such base class and it therefore 

contains methods and variables that we can use.

• Fact 3

The third part is WriteLine().

Let’s look back to what we learned in the previous chapter:

So () means a method.

We should now be able to recognize that WriteLine() is indeed 

a method, and as it has nothing between the brackets (), we 

should understand that this means the method accepts no 

value or values. We will see in Chapter 12 on methods that it is a 

parameterless method; it accepts no parameters, values.

• Fact 4

Console belongs to a namespace called System. This is not 

obvious from the line of code, but it will become obvious as 

we start to write the code in our Integrated Development 

Environment (IDE). To explain this, we can think back to what we 

learned in the previous chapter:

The lines of code at the start of the program code usually have a format that 
starts with the keyword using.

The word using refers to the fact that we wish to use classes, and ultimately the 

methods and variables in the classes, that are contained in the namespace that follows it, 

for example, using System;.

ChapTer 4  InpuT and OuTpuT

https://doi.org/10.1007/978-1-4842-8619-7_12


56

So we can see a namespace called System being used in our C# code and this 

illustrates another important concept to get used to when programming:

We will use classes that already exist to help us build our own applications 
using C# code.

Always remember the key fact that a class contains methods and variables, so 

when we tell our code to use an existing class, which exists in a namespace, we are doing 

this to get access to methods and variables that already exist and will help us in building 

our application with C# code.

When we use an Integrated Development Environment like Microsoft Visual Studio, 

we will receive assistance when we type a class name followed by the dot or period. We 

call this dot notation, and it presents us with a list of methods and variables that exist in 

the class, very handy for us as developers. Figure 4-2 shows an example of what Visual 

Studio presents developers when the dot is entered after the keyword Console. We see 

the variables, also referred to as fields, members, or properties, and the methods that 

exist in the Console class.

Figure 4-2. Dot notation showing methods and properties of the Console class

If we study the icons, this will help when we are coding our applications. There 

are three different icons representing three aspects of the class. For now, let's just get 

familiar with two of the icons that represent the variables and the methods:

ChapTer 4  InpuT and OuTpuT



57

The spanner
The spanner represents a property of the class. Let’s look back to what we learned in 

the previous chapter:

We will also see later that, instead of saying variable, we will say property 
or field or member when we talk about them in classes.

So we use the word property when we are inside a class, but we may also see it called 

a member. Clicking the spanner icon at the bottom of the pop-up window will display 

only the properties of the class, as shown on the left-hand side in Figure 4-3.

Figure 4-3. Dot notation showing properties on the left and methods on the right

The cube
The cubes, as shown on the right-hand side in Figure 4-3, represent the methods of 

the class. A method is a block of code.

The “lightning bolt” symbol
The “lightning bolt,” as shown in Figure 4-4, represents an event handler. This is 

more related to actions from controls on a form, like clicking a button. Later in the book, 

we will study events within a console application, but events for form-based applications 

are not part of our book. We will be concentrating on console applications rather than 

ChapTer 4  InpuT and OuTpuT



58

form- or web-based applications. However, as we have read previously, once we get the 

core programming skills, the fundamentals, it will be possible to apply these to form- 

and web-based applications where events like clicking a button will be commonplace. 

Such programming can also be classified as event-driven programming.

Figure 4-4. Dot notation showing event handlers only

Let’s code some C# and build our programming muscle.
Now it is time for us to do some C# coding. The C# console application we will code 

will use the Console.WriteLine() method to output data to the console window and 

then use the Console.ReadLine() method to read the keyboard input and effectively 

end the program.

 1. Open Visual Studio.

 2. At the launch screen, choose Create a new project, as in 

Figure 4-5.

ChapTer 4  InpuT and OuTpuT



59

Figure 4-5. Create a new project

 3. Choose C# as the programming language from the drop-down list, 

as shown on the left-hand side of Figure 4-6.

Figure 4-6. Select the language as C#

ChapTer 4  InpuT and OuTpuT



60

 4. Choose Console in the project type section, as shown on the right- 

hand side of Figure 4-6.

 5. Choose Console App from the listed templates that appear, as 

shown in Figure 4-7.

Figure 4-7. Console App

 6. Click the Next button.

All our code can be saved in one location called a solution. The solution is really 

a folder on our computer. Once we create the solution, we will create projects within 

it, and these projects are really folders within the solution. So now we need to create a 

solution on our computer as we create this project. The location is a matter of choice; 

we decide where to locate the solution folder and the project folder. Figure 4-8 shows an 

example.

 7. In the Project name area, type the name of the project – 

ConsoleV1.

 8. Select the storage location for the project by using the … 

browse icon.

 9. In the Solution box, leave it as Create new solution.

 10. In the Solution name text box, type the name of the solution – 

CoreCSharp.

ChapTer 4  InpuT and OuTpuT



61

Figure 4-8. Solution and project details

 11. Click the Next button.

 12. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher, as shown in Figure 4-9. Remember to switch off 

top-level statements.

Figure 4-9. Choose the framework version

ChapTer 4  InpuT and OuTpuT



62

 13. Click the Create button.

The structure of the solution will be like that shown in Figure 4-10.

Figure 4-10. Solution Explorer panel

 14. Double-click the Program.cs file in the Solution Explorer window.

 15. Amend the code as shown in Listing 4-2.

Listing 4-2. ConsoleV1 code

using System;

namespace ConsoleV1

{

   internal class Program

  {

    static void Main(string[] args)

    {

      Console.WriteLine();

      Console.WriteLine("------- Build your C# skills -------");

      Console.WriteLine("------- Learn To Code With C# -------");

      Console.WriteLine();

      Console.ReadLine();

    } // End of Main() method

  } // End of Program class

} // End of ConsoleV1 namespace

ChapTer 4  InpuT and OuTpuT



63

Sometimes we will be given a template with some code existing within it, or we 

might copy code from a source such as the Internet, and we will have using statements at 

the top. When this happens, we need to be sure we will need all the using statements.

We will see from Figure 4-11 that some of the using statements look different from 

those we typed in our code. We will see that those we did not enter in our code are 

being “flagged” by our Integrated Development Environment; the lines have gray text. 

This indicates that they are not being used in our code, and hovering over one of the 

unnecessary lines of code produces a pop-up message as shown in the Figure 4-11. 

Removing unused code is a basic principle for writing what is termed “clean code.” 

We will now look at some ways in which we could “tidy” our code by removing using 

directives that are unnecessary.

We saw in the last chapter that the code as shown in Listing 4-3 could be shortened 

using top-level statements to the code shown in Listing 4-4.

Listing 4-3. “Traditional” code sample

using System;

namespace ConsoleVersion1

{

    public class Program

    {

Figure 4-11. Unused code – unused using statements

ChapTer 4  InpuT and OuTpuT



64

        public static void Main(string[] args)

        {

            Console.ReadLine();

        } // End of Main() method

    } // End of Program class

} // End of ConsoleVersion1 namespace

Listing 4-4. Code when we use top-level statements

      Console.ReadLine();

So how can this be? Well, .NET version 6.0 and C# 10 introduced the concept of 

implicit using directives, which means the C# compiler will automatically add a set of 

using directives based on our project type. For console applications, which we will be 

using, the directives that are implicitly included are

using System;

using System.IO;

using System.Collections.Generic;

using System.Linq;

using System.Net.Http;

using System.Threading;

using System.Threading.Tasks;

Therefore, this is why we do not have to include the using System; statement at the 

top of our code.

C# 10 also introduced the concept of a global using directive, which means we do 

not have to write the same using directives in each file in our project. It is now possible 

to convert an ordinary using directive into a global using directive by adding the global 

modifier: global using System;. If we add this at the top of any file in our project, it will 

be as if we added it to all the files in the project.

Another way to manage the using directives is to use the context menu, which can be 

displayed by right-clicking in the code. There will then be an option to Remove and Sort 

Usings, as shown in Figure 4-12, and if this is selected, the unnecessary using directives 

will be removed, while all other required using directives will be sorted.

ChapTer 4  InpuT and OuTpuT



65

Figure 4-12. Context menu with the Remove and Sort Usings option

Figure 4-13. Console output in black and white

 16. Click the Debug menu.

 17. Choose Start Without Debugging.

 18. Press the Enter key to continue the code execution as the code has 

paused on the Console.ReadLine() statement waiting for a key to 

be pressed on the keyboard, as shown in Figure 4-13.

 19. Press the Enter key again to close the console window.

The console window will disappear, and the application will be terminated as there 

are no lines of code to be executed after the Console.ReadLine() line.

ChapTer 4  InpuT and OuTpuT



66

Code Analysis
Console.WriteLine()

• This means write a line to the console, and since there is no 

information between the brackets (), the line will be blank. With the 

WriteLine() command, the cursor will move to the next line as its 

final act.

Console.WriteLine("------- Build your C# skills -------");

• This means write a line to the console, and since there is information 

between the brackets (), the line displays the text exactly as shown 

between the double quotes “”. The double quotes indicate that the 

displayed text is always going to be whatever has been typed between 

the double quotes; it is a string. The text is therefore a constant; 

it will not change throughout the lifetime of the application. We 

could say it is not a variable, so it is a constant. With the WriteLine() 

command, the cursor will move to the next line as its final act.

Console.ReadLine()

This means read a line from the console. It is input.

• Fact 1

Here again, first, we can see the keyword Console and, as stated 

previously, this refers to something that interacts with the console. 

In this case we will use Console to interact with the console in 

Visual Studio, where input from the user will be accepted. 

This is different from the output from the computer program in 

Listing 4-2 when we used the Console.WriteLine() method.

• Fact 2

The second part is the dot, the full stop or period as it is also 

known. As we saw earlier, in C# code the full stop means that we 

want to use a part or element of the object that appears to the left 

of the full stop. The part or element will be a variable or a method.

ChapTer 4  InpuT and OuTpuT



67

• Fact 3

The third part is ReadLine().

We should now be able to recognize that ReadLine() is indeed 

a method; it has the brackets () at the end. As this method 

has nothing between the brackets (), we should be aware that 

this means the method takes in no value. It is empty of input 

parameters.

• Fact 4

Console belongs to a namespace called System. As stated 

previously, this is not obvious from the line of code. If we really 

wanted to make this fact obvious, we could have written the line of 

code as System.Console.ReadLine();

In our code we could

• Use the full naming convention System.Console.ReadLine(); and 

NOT have the using System at the top of the code.

• Use the shortened version Console.ReadLine(); and have the using 

System at the top of the code.

As developers it is our choice. The reality is that most developers in the technology 

world will probably use the shortened version. We will therefore see in nearly every 

commercial C# application code a lot of using statements at the top of the code, 

including using System, but we must remember that this directive is one of the 
directives that are implicitly included in a console application and it can therefore 
be omitted.

 20. Amend the code, as in Listing 4-5, to add a statement that requests 

the user to press a key on the keyboard.

Listing 4-5. WriteLine() to ask to press a keyboard key

      Console.WriteLine("------- Learn To Code With C# -------");

      Console.WriteLine();

      Console.WriteLine("Press any keyboard letter to continue");

      Console.ReadLine();

    } // End of Main() method

ChapTer 4  InpuT and OuTpuT



68

  } // End of class

} // End of namespace

 21. Amend the code, as in Listing 4-6, to display a message saying 

Goodbye to the user. Then, as we see the message, add another 

read line statement.

Listing 4-6. WriteLine() to display a message and ReadLine() to read a key

      Console.ReadLine();

      Console.WriteLine("Goodbye");

      Console.ReadLine();

    } // End of Main() method

  } // End of class

} // End of namespace

 22. Click the File menu.

 23. Choose Save All.

 24. Click the Debug menu.

 25. Choose Start Without Debugging.

The console window will appear, as shown in Figure 4-14, with the message being 

displayed. The cursor will be flashing waiting for user input.

Figure 4-14. Console waiting for a key press

ChapTer 4  InpuT and OuTpuT



69

 26. Press any key on the keyboard.

The Goodbye message will appear, as shown in Figure 4-15, and the cursor will be 

flashing waiting for user input.

Figure 4-15. Console accepts a key and displays the message

 27. Press the Enter key on the keyboard.

 28. Press the Enter key again.

Now that we have the concept of input and output and we have started using lines 

of C# programming code that industry developers use, we can progress to using other 

programming concepts in our code.

 Change Console Display Settings
When the console window is visible on the screen, we can amend the console window 

preferences, as shown in Figure 4-16.

 1. Click the Debug menu.

 2. Choose Start Without Debugging.

 3. Click the icon in the top left of the console window.

 4. Choose Properties from the drop-down list, as shown in 

Figure 4-16.

ChapTer 4  InpuT and OuTpuT



70

Figure 4-17. Console display settings – text color

Figure 4-16. Console display settings

 5. Click the Screen Text radio button, as shown in Figure 4-17.

 6. Change the values for the Red, Green, and Blue to be 0, as shown 

in Figure 4-17.

ChapTer 4  InpuT and OuTpuT



71

 7. Click the Screen Background radio button, as shown in 

Figure 4-18.

Figure 4-18. Console display settings – background color

 8. Change the background color by picking from the row of 

displayed colors or entering values for the RGB colors, as shown in 

Figure 4-18.

 9. Click the OK button.

 10. Press the Enter key.

The console window will be as shown in Figure 4-19, with the message being 

displayed. The cursor will be flashing and is waiting for user input.

ChapTer 4  InpuT and OuTpuT



72

Figure 4-19. Console display settings have changed background and text

 11. Press the Enter key.

 12. Press the Enter key.

The following points are important in understanding this C# program and will be 

applicable to many of the programs we write in the future:

• The using statements at the top of the code represent namespaces 

that contain classes that we need to help our program work.

• Classes are program code that hold properties and methods that are 

made available to the programmer.

• We are developing a C# project and the project has a Program.cs  

class.

• It is in this Program class that we have written our code. In future 

projects we can rename the Program class or add a new class and 

give it a name of our choice.

• This class has what is called an access modifier in front of the word 

class. The access modifier is the default access modifier of internal. 
Having the default take control is never a good idea or good practice. 

We could, and should, add an access modifier instead of the default 

to help make the code more readable and understandable. It is our 

program, so we need to control what is going on. If we add the word 

public in front of the word class, as in Listing 4-7, we are telling 

the class that it is accessible by other code in the project; this is a 

simplified definition but sufficient for us at the moment.

ChapTer 4  InpuT and OuTpuT



73

• If we remove the keyword internal from in front of the word class, 

then the default will be used and the code will be the same whether 

or not the word internal is present.

Listing 4-7. The public keyword in front of the class

namespace ConsoleV1

{

   public class Program

  {

    static void Main(string[] args)

    {

• The curly left brace on the line following internal class Program 

matches the closing brace on the second last line of the example, as 

in Listing 4-8, with the comment // End of class. This is because 

the whole class definition is between the open and close braces.

Listing 4-8. The opening and closing curly braces to contain the code

namespace ConsoleV1

{

  internal class Program

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of class

} // End of namespace

• The code in the class can be included within the method 

called Main().

As we read the chapters in the book, we will often see that when 

a method is referred to by name, it will also include the open and 

close parentheses, (). This technique is used to emphasize and 

ChapTer 4  InpuT and OuTpuT



74

reinforce that () means a method, a block of code. The actual 

name of the method is the name without the (), for example, Main 

rather than Main().

• The method also has what is called an access modifier in front of the 

words static void. The access modifier may not be visible because 

we did not type it, and so the default access modifier of private is 

invisibly added. We could add a different access modifier. We could 

add the word public in front of the word static, as in Listing 4-9, 

and therefore we are telling the Main() method that it is accessible 

by other code in our project. Remember the idea of default is not 

helping us fully understand the code we are reading or writing.

Listing 4-9. The public keyword in front of the Main() method

namespace ConsoleV1

{

  internal class Program

  {

    public static void Main(string[] args)

    {

    } // End of Main() method

  } // End of class

} // End of namespace

• The method signature, Main(string[] args), defines the name of 

the method, Main, which is followed by the method body, which is 

enclosed in braces.

• The words static and void will be explained later, but they are 

always used with a Main() method. The two words static and void are 

examples of C# keywords, words that have a special meaning in a C# 

program and that cannot be used for any other purpose.

ChapTer 4  InpuT and OuTpuT



75

• The other keywords in the preceding example are public and class.

• The Console.WriteLine() statement displays the text contained 

between the brackets () and inside the quotes in a console window.

• The Console.ReadLine() statement waits to read a line of text from 

the console. The line of text is determined when the Enter key has 

been pressed.

• These lines of code within the Main() method constitute C# 

statements, that is, commands to be carried out.

• Each C# statement is terminated by a semicolon ;

 Chapter Summary
In this chapter we have seen and applied the concept of input and output and we have 

started using lines of C# programming code that industry developers use. We started 

using the Integrated Development Environment, Visual Studio, to maintain a solution 

that contains our first C# project. We will be adding other projects to this solution, but 

we have made a great start in developing a solution with a project, which helps with 

the concept of separation of concern, which means each of our projects can work 

independently. Within our project we met the Program.cs class where we added our 

code. In typing our code, we met the method, represented as a cube; the property, 

represented as a spanner; and the event, represented as a lightning bolt. And we saw 

that colors within the code editor, like the symbols, helped make our code easier to 

code, read, and eventually maintain. Finally, we looked at how to change the console 

appearance from a black background to another color using the Properties option.

As we progress, we will be using other programming concepts in our code, but we 

have made great progress in learning the essentials for writing a C# application using an 

Integrated Development Environment like Visual Studio. We have used C# statements, 

and if we refer to the recipe in Table 3-1 in Chapter 3, we will see that statements are like 

the ingredients of the recipe.

ChapTer 4  InpuT and OuTpuT

https://doi.org/10.1007/978-1-4842-8619-7_3


76

In finishing this chapter and increasing our knowledge, we are advancing to 

our target.

 

ChapTer 4  InpuT and OuTpuT



77

CHAPTER 5

Commenting Code
We learned in Chapter 4 that our application code can involve input and output and 

that the input and output can be completed in the console window. The output from 

our application is the visible part for an end user and it is important they have a good 

experience when seeing the output. The user experience is often referred to as the UX 

and can involve the developer making use of colors, emphasis, layout, etc. to make the 

application readable and pleasing to look at.

This chapter will concentrate on how to create a good user experience for the 
developer rather than the end user, when they are creating, reading, and maintaining 

code. It is particularly important to understand that as developers we should be having 

a good user experience when we look at any application code, whether it is our code or 

someone else's.

As a starting point, we will state that one of the current themes in the domain of 

programming in the commercial environment is writing self-documenting code. This 

is a great idea and one that we can achieve by writing C# code statements that will be 

easily understood by other developers who will read, use, or maintain the code. In fact, 

it can even make the original writer of the code, us, understand it better when returning 

to it to make amendments. We should always keep the strategy of self-documenting code 

foremost in our thoughts. Writing self-documenting code can be easy to do and can 

involve simple steps and techniques, which will become “second nature” after a while. 

These include

• Adding astutely placed comments as explanations in our code.

• Not overusing comments. Not everything will need a comment if the 

code is written well, but comments can be a big help to the reader.

• Our variable names being such that they explain the variable 

purpose.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_5

https://doi.org/10.1007/978-1-4842-8619-7_4
https://doi.org/10.1007/978-1-4842-8619-7_5#DOI


78

• Our method names being such that they explain the method 

purpose.

• Our class names being such that they explain the purpose of 

the class.

Another strategy is to use colors in the coding statements. We should have already 

noticed that the Visual Studio Integrated Development Environment has colored parts of 

our code. Examples of code coloring are shown in Figure 5-1.

Figure 5-1. Visual Studio code coloring

This code coloring within Visual Studio is one way in which Microsoft has attempted 

to help developers who write and read code.

Note
In the code examples we will use throughout the chapters in this book, there will be 

lots of comments used to help us understand the code, but if these were commercial 

applications, we would not have as many comments.

Chapter 5  Commenting Code



79

make sure to read the code comments in the course code examples as they have 
invaluable information that adds to and supplements the text of this book. they are 
in the code to help clarify what we are doing and why we are doing certain things. 
So we should not ignore them. We should read them, but we do not necessarily 
have to type the comments into our code.

Comments can be used to give information such as

• A description indicating the purpose of the application

• Information about the developer or developers

• The date on which the program was first created

• The date when maintenance occurred, for example, when lines of 

code were amended, added, or deleted

• What a line of code or lines of code are doing

• The purpose of a method

• The purpose of a delegate that is linked to a method

• The purpose or intrinsic workings of a complicated formula

 C# Single-Line Comments
Single-line comments in C#, and many other programming languages, are preceded by 

two forward slash symbols, //. The // indicates a single-line comment, which is generally 

used for brief comments. Some developers will write the comments above the code, 

while others will use the comment on the same line as the code. Both types are shown in 

Listings 5-1, 5-2, and 5-3.

Example 1
Listing 5-1 shows an example of three single-line comments, which could be used 

at the start of a program to give the user information about the program, the developer, 

and the creation date. The comments are at the start of the program code before any C# 

statements are entered.

Chapter 5  Commenting Code



80

Listing 5-1. Single-line comments

// Program:   A simple C# program to output text and read input

// Author:    Gerry Byrne

// Date of creation: 01/06/2021

Example 2
Listing 5-2 shows a single-line comment, which gives the user information about the 

class called Program that follows it. The single-line comment appears above the code 

statement.

Listing 5-2. Single-line comment above code

// This is our only class and it will contain the Main method

class Program

Example 3
Listing 5-3 shows a single-line comment, which gives the user information about the 

line of code. In this case the single-line comment appears on the same line as the code 

statement.

Listing 5-3. Inline comment

Console.ReadLine(); // This code line waits for the user input

Projects and Solutions
Before we start writing the code for this chapter, let us think about the project we 

created in Chapter 4. When we created it, we gave the project the name ConsoleV1, 

which was perfectly fine at the time, but definitely not very descriptive. We will talk more 

about naming later. Now, when we wish to code the example for this chapter, where will 

we put our code?

Well, we can do this in

• The existing project in the solution, where we can amend the existing 

class or create a new class to hold the new code

• A new folder within the existing project

• A new project that we can create

Chapter 5  Commenting Code

https://doi.org/10.1007/978-1-4842-8619-7_4


81

For this exercise we will create a new project in the existing solution, and we will 

rename the existing project to ensure its name fits in with the way we will name all the 

projects for the chapters in the book. But what should we call the old and new projects? 

If we think about what we have just talked about, self-documenting code, we should 

question the name of the project and folders within it. When we created the project in 

Chapter 4, we called it ConsoleV1, but maybe it should have been named better, for 

example:

• ConsoleApplications

• Coursecode

• Chapter4

If we decide that a name change would be appropriate, we can rename the project, 

but will the code in the class need to be changed? No, this will not affect the code in the 

project.

Rename the ConsoleV1 project:

 1. Make sure the solution and project are open in Visual Studio.

 2. Right-click the ConsoleV1 project name.

 3. Choose Rename, as shown in Figure 5-2.

Figure 5-2. Renaming a C# project

 4. Name the project Chapter4.

 5. Press the Enter key.

Chapter 5  Commenting Code

https://doi.org/10.1007/978-1-4842-8619-7_4


82

The project within the solution is now displayed within the Solution Explorer 

panel with the new name as shown in Figure 5-3. We will not worry for now about the 

namespace name in the program code.

Figure 5-3. Renamed C# project 

Add a new project to hold the code for this chapter:

 6. Right-click the CoreCSharp solution name in the Solution 

Explorer panel.

 7. Choose Add, as shown in Figure 5-4.

 8. Choose New Project.

 9. Choose Console App from the listed templates that appear, as 

shown in Figure 5-5.

Figure 5-4. Adding a new C# project

Chapter 5  Commenting Code



83

Figure 5-5. Selecting a new C# console project

 10. Click the Next button.

 11. Name the project Chapter5, leaving it in the same location, as 

shown in Figure 5-6.

Figure 5-6. Naming a new C# console project

 12. Click the Next button.

 13. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher, as shown in Figure 5-7.

Figure 5-7. Choosing the project framework

 14. Click the Create button.

Chapter 5  Commenting Code



84

Now we should see the two projects, Chapter4 and Chapter5, within the solution 

called CoreCSharp (Figure 5-8).

Figure 5-8. Solution Explorer displaying all projects

 New .NET 6 Templates
.NET 6 introduces developers to new code templates when we choose a console 

application. The “traditional” console application code would be something like 

Listing 5-4.

Listing 5-4. A “traditional” code example

namespace TestProject

{

  internal class Program

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Program class

} // End of TestProject namespace

In .NET 6 the console application template code will be like Listing 5-5.

Listing 5-5. Code template in .NET 6

// See https://aka.ms/new-console-template for more information

Console.WriteLine("Hello, World!");

Chapter 5  Commenting Code



85

Remember we can switch off top-level statements when we create a new project, as 

in Figure 5-9.

Figure 5-9. Switching off top-level statements

This new template code reflects new C# 10 features, which allow us to simplify our 

code. The two template codes, Listings 5-4 and 5-5, are effectively the same thing and 

will work in C# 10. C# 10 therefore allows us to

Write the code for the main( ) method, leaving out the namespace, class, main( ) 
method, and using statements.

This is very nice, when you know what you are doing and have a good understanding 

of the core C# programming fundamentals. For now, and throughout the chapters in 

this book, we will overwrite the code in the new template and work with the “older” 

format, where we will code the namespace name and the class name, include the Main() 

method when required, and display all the using statements. If we switch off the top- 

level statements by ticking the checkbox once on any project creation, the option will be 

remembered for future projects. All of this will become abundantly clear when we code 

the examples. By using our format in the chapter examples, it will allow us to understand 

C# code much better and be able to read code already written in this format, and we can 

then start using the “shortcut” style for future applications.

We will now copy the code from the Chapter4 Program.cs file and paste it into the 
Chapter5 Program.cs file.

Chapter 5  Commenting Code



86

 1. Double-click the Program.cs file in the Chapter5 folder.

 2. Delete the two lines of code in the Program.cs file.

 3. Double-click the Program.cs file in the Chapter4 project.

 4. Highlight all of the code.

 5. Choose Copy from the Edit menu.

 6. Double-click the Program.cs file in the Chapter 5 folder.

 7. Paste the code copied from the Chapter 4 file.

 8. Amend the code to change the namespace to Chapter5, as in 

Listing 5-6.

Listing 5-6. Namespace changed

namespace Chapter5

{

  public class Program

  {

    public static void Main(string[] args)

    {

      Console.WriteLine();

      Console.WriteLine("------- Build your C# skills -------");

      Console.WriteLine("------- Learn To Code With C# -------");

      Console.WriteLine();

      Console.WriteLine("Press any keyboard letter to continue");

      Console.ReadLine();

      Console.WriteLine("Goodbye");

      Console.ReadLine();

    } // End of Main() method

  } // End of Program class

} // End of Chapter5 namespace

We will now amend the code to include comments to 
demonstrate the use of single-line comments before a line of 
code and at the end of a code line.

Chapter 5  Commenting Code

https://doi.org/10.1007/978-1-4842-8619-7_5
https://doi.org/10.1007/978-1-4842-8619-7_4


87

 9. Add comments to the program code, as in Listing 5-7.

Listing 5-7. Single-line comments

// Program:    A simple C# program to output text and read input

// Author:    Gerry Byrne

// Date of creation:    01/06/2021

namespace Chapter5

{

  // This is our only class and it will contain the Main method

  public class Program

  {

    public static void Main(string[] args)

    {

      Console.WriteLine();

      Console.WriteLine("------- Build your C# skills -------");

      Console.WriteLine("------- Learn To Code With C# -------");

      Console.WriteLine();

      Console.WriteLine("Press any keyboard letter to continue");

      Console.ReadLine();// This line waits for the user to input

      Console.WriteLine("Goodbye");

      Console.ReadLine();

    } // End of Main() method

  } // End of Program class

} // End of Chapter5 namespace

 10. Right-click the Chapter5 project in the Solution Explorer panel.

 11. Choose Set as Startup Project.

 12. Click the File menu.

 13. Choose Save All.

 14. Click the Debug menu.

 15. Choose Start Without Debugging.

Chapter 5  Commenting Code



88

The console window will appear as shown in Figure 5-10 and ask us to press any 

letter on the keyboard.

Figure 5-10. Console output – waiting on keyboard input

 16. Press any letter on the keyboard to continue, for example, a.

 17. Press the Enter key.

The Goodbye message is displayed as shown in Figure 5-11.

Figure 5-11. Console output

 18. Press the Enter key.

 19. Press the Enter key.

The code has produced an application that performs exactly as it did before we 

added the comment lines. So comments are for a reader of the code and do not change 

what the application does. The comments are ignored in the process of building and 
compiling the program from the source code we have written.

Chapter 5  Commenting Code



89

 C# Multiple-Line Comments
Multiple-line comments, also called comment blocks, are enclosed between the 

symbols /* and */ and are used for longer comments. The /* is the start and the */ is the 

end of the block comment, as in Listing 5-8. We can also enclose a single-line comment 

between /* and */ symbols and it is still a valid comment.

Listing 5-8. Multiple-line comment

/*

Longer comments in a C# program can easily extend over several lines so 

long as they start with the proper characters. This is an example of 

multiple line comments

*/

We will now add a multiple-line comment that will help explain what a C# 

namespace is used for and another to say a little about the Main() method. As stated 

earlier, throughout the chapters we will use comments, and it is important to read them 

as they act as reinforcement of our knowledge or as an explanation.

 1. Add the multiple-line comments, as in Listing 5-9, to our 

program code.

Listing 5-9. Multiple-line comments

// Program: A simple C# program to output text and read input

// Author:  Gerry Byrne

// Date of creation: 01/06/2021

/*

C# programming namespaces are commonly used in two ways:

1. C#, or more precisely .NET, uses namespaces to organise the

many classes it contains (remember classes contain methods and

variables)

2. C# allows us as developers to create our own namespaces.

We can use the namespace keyword to declare a namespace

e.g. namespace Chapter5

Chapter 5  Commenting Code



90

A namespace can have the same name as the project but it can

also be any name we wish. The name is independent of the

Project name

*/

namespace Chapter5

{

  // This is our only class and it will contain the Main method

  public class Program

  {

    /*

    We now have our main method which will contain all our code.

    As we become a better developer, we will not have all our

    code contained within the main method.

    This would be seen as poor code and not fitting in with the

    design principle of modular code.

    */

    public static void Main(string[] args)

    {

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Debugging.

The console window will appear and ask us to press any letter on 

the keyboard.

 6. Press any letter on the keyboard to continue, for example, a.

 7. Press the Enter key.

The Goodbye message is displayed as shown in Figure 5-12.

Chapter 5  Commenting Code



91

Figure 5-12. Console output

 8. Press the Enter key.

 9. Press the Enter key.

 Chapter Summary
In this chapter we have added comments to our code to help us understand what the 

code is doing and to reinforce certain aspects of the C# programming language. We 

have used comments to give information about namespaces and the Main() method. 

Remember the golden rule: only use comments when they are required and the code 
itself is not self-documenting.

The code for the names of

• The namespace

• The project

• The class

• The variables

• The constants

should be self-documenting, which means that no comments should be necessary for 

them. Some people would say

If we cannot write legible code, then it is unlikely we will be able to write 
legible comments.

Harsh? Maybe, but it reinforces the point that comments should not be a 

replacement for self-documenting code.

Chapter 5  Commenting Code



92

In finishing this chapter and increasing our knowledge, we are advancing to our 

target and making good progress.

 

Chapter 5  Commenting Code



93

CHAPTER 6

Data Types

 Data Types, Variables, and Conversion
We learned in Chapter 5 that while we can use single- and multiple-line comments, they 

should not be a replacement for self-documenting code. Comments are added to help 

the reader of the code, but when the code is written expressively with proper namespace 

names, class names, variable names, etc., there is a limited need for comments. We 

should set an objective of zero need for comments.

In this chapter we will use code that is well documented for the purposes of helping 

us understand and read the code. It is not how we would do it in a real application, and if 

it was commercial code, we would be breaking the objective of zero need for comments.

We will learn from this chapter about the very important concepts of data types and 
variables. We will use data types and variables in all the C# programs in this book. That 

is how crucial they are to C# programming. We should also be aware that data types and 

variables exist in all programming languages and are a core building block for the code 

we will write.

 Data Types
There are different data types in C#, and we will use value types and reference types. 

In C#, value types contain data, and we will use value types such as those shown in 

Table 6-1.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_6

https://doi.org/10.1007/978-1-4842-8619-7_5
https://doi.org/10.1007/978-1-4842-8619-7_6#DOI


94

Table 6-1. Value types in C#

Bool byte char decimal

float double int long

short uint ushort

When we declare a data type, we are reserving memory to store a value. Each data 

type will have a particular size of memory that needs to be set aside. In C#, and indeed in 

other languages, these value types are referred to as primitive types. The primitive types 

are therefore predefined by the C# language and their names are reserved keywords.

When we use C# as our programming language, we will inherently be using 

.NET. .NET also allows us to use other programming languages such as Visual Basic .NET 

and F#, each of which has its own data types. This might seem strange that we can have 

an int data type in C#, an int data type in F#, and an int data type in Visual Basic .NET. So 

how do we ensure that the data types for each .NET programming language have the 

same meaning? Well, this is where the Common Type System (CTS) comes into play. 

The Common Type System has the overarching data types that all language data types 

are tied to. The concept is called interoperability, the ability to exchange and make use 

of information.

Data types in C# and Visual Basic (VB) are shown in Table 6-2, along with the 

equivalent data type in .NET. For now, do not get too distracted by all this theory. All 

will become clear as we code our examples. However, it is easy to see the connection 

between the language types and the .NET types.

Chapter 6  Data types



95

Table 6-2. C# and VB data types and correlation with the .NET framework types

C# type VB type .NET type Bytes Description

bool Boolean Boolean 1 Contains either true or false

char Char Char 2 Contains any single Unicode character enclosed in 

single quotation marks such as 'c'

Integral types

byte Byte Byte 1 May contain integers from 0 to 255

sbyte SByte SByte 1 signed byte from –128 to 127

short short Int16 2 ranges from –32,768 to 32,767

ushort UShort UInt16 2 Unsigned, ranges from 0 to 65,535

int Integer Int32 4 ranges from –2,147,483,648 to 2,147,483,647

uint UInteger UInt32 4 Unsigned, ranges from 0 to 4,294,967,295

long Long Int64 8 ranges from –9,223,372,036,854,775,808 to 

9,223,372,036,854,775,807

ulong ULong UInt64 8 Unsigned, ranges from 0 to 

18,446,744,073,709,551,615

Floating-point types

float Single Single 4 ranges from ±1.5 × 10-45 to ±3.4 × 1038 with 7 

digits of precision

requires the suffix “f” or “F”

double Double Double 8 ranges from ±5.0 × 10-324 to ±1.7 × 10308 with 

15–16 digits of precision

decimal Decimal Decimal 12
16 in VB

ranges from 1.0 × 10-28 to 7.9 × 1028 with 28–29 

digits of precision. requires the suffix “m” or “M”

Chapter 6  Data types



96

Note

• Data types are represented in the C# language using keywords, 

so each of the preceding data types – float, double, etc. – is a 

keyword in C#.

• Keywords are defined by the language and cannot be used as 

identifiers.

• string is also an acceptable data type in C#, so string is also a 

keyword, but string is not a value type – it is a reference type. Unlike 

value types, a reference type does not store its value directly; rather, 

it stores the address where the value is being stored. Reference types 

therefore contain a pointer to a memory location where the data 

is held.

 Conversion from One Data Type to Another
Sometimes when we code, we will receive a message to the effect that data cannot be 

converted from one data type to another data type. This will become clearer as we go 

through the course chapters, but what we will learn is that when we want to convert from 

one data type to another data type, this can happen in one of two ways using either

• Implicit conversion

This means that in our code we do not need to do anything, as the 

conversion is automatically handled by the compiler.

• Explicit conversion

This means that we will need to code the data type conversion 

as the conversion cannot be done automatically. The compiler 

will complain, through an error message, if it cannot handle the 

conversion.

Figure 6-1 shows implicit and explicit conversion possibilities.

Chapter 6  Data types



97

Figure 6-1. Implicit and explicit or widening and narrowing conversions

 Converting

We will be able to perform data type conversions using methods from the System.

Convert class. The class methods allow us to perform

• Widening conversions

Widening occurs when a small primitive data type value is 

automatically accommodated in a bigger, wider, primitive 

data type.

If we convert from an int to a decimal, this is an example of a 

widening conversion.

Widening conversions that are acceptable include

• byte – Which is convertible to short, int, long, float, or double

• short – Which is convertible to int, long, float, or double

• int – Which is convertible to long, float, or double

• long – Which is convertible to float or double

• float – Which is convertible to double

Chapter 6  Data types



98

Automatic conversion will take place if the two data types are 

compatible and the destination data type is larger than the 

data type being converted. Automatic conversion is therefore 
essentially a widening conversion.

• Narrowing conversions

Narrowing occurs when a larger primitive data type value is 

accommodated in a smaller, narrower, primitive data type.

If we convert from a value that includes a fraction, decimal, float, 

etc. to an integer data type, the fractional part will be lost, and 

narrowing will occur.

Narrowing conversions that are acceptable include

• short – Is convertible to byte or char

• int – Is convertible to byte or short

• long – Is convertible to byte or short

• float – Is convertible to byte, short, int, or long

• double – Is convertible to byte, short, int, long, or float

When we use narrowing conversions in our code, we will see that we must explicitly 

do the conversion by placing the new data type in parentheses (), like the () we use in 

methods. The data type we are converting to sits in front of the object to be converted 

and within the parentheses (). We will see plenty of this as we code the examples in the 

book. Listing 6-1 shows an example of code that uses the conversions we have just talked 

about. We will not type this code.

Listing 6-1. Conversion using (byte)

class Program

{

  public static void Main(string[] args)

  {

    byte commissionFactor;

    byte commissionPremium;

    int commissionValue = 257;

Chapter 6  Data types



99

    double monthlyInsurancePremium = 296.99;

    Console.WriteLine("Narrowing conversion from int to byte.");

    //(byte) means we wish to convert to byte the commissionvalue

    commissionFactor = (byte)commissionValue;

    Console.WriteLine("\nThe car commission value is: " +

    commissionValue + "\nbut when converted to a byte the car " +

    "commission factor is: " + commissionFactor);

   Console.WriteLine("\nConversion of double to byte.");

  /*

  (byte) means we wish to convert monthlyinsurancepremium to byte

   So, we will now have 296.99 minus 256 which is 40

  (forgetting the decimal places)

  */

    commissionPremium = (byte)monthlyInsurancePremium;

    Console.WriteLine("\nThe monthly insurance premium is: " +

      monthlyInsurancePremium + "\nand the car commission " +

      "premium is: " + commissionPremium );

  } // End of Main() method

} // End of Program

Now we will look at creating code to build an application that will simulate a 

car insurance quotation application. Firstly, we will create a string variable called 

vehicleManufacturer that will hold the value input by a user. Remember to read the 

comments carefully as they fully explain what we are doing.

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project, as shown in Figure 6-2.

Chapter 6  Data types



100

Figure 6-2. Add a new project

 4. Choose Console App from the listed templates that appear, as 

shown in Figure 6-3.

Figure 6-3. Console App for .NET

 5. Click the Next button.

 6. Name the project Chapter6 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher, as shown in Figure 6-4.

Chapter 6  Data types



101

Figure 6-4. Choosing the project framework

 9. Click the Create button.

Now we should see the Chapter6 project within the solution called 

CoreCSharp, as shown in Figure 6-5.

Figure 6-5. Solution folder with project folders

Figure 6-5 shows that Chapter5 is in bold text and Chapter6 is not. 

But what does this mean? Well, it means that Chapter5 is the 

active project, the startup project.

 10. Right-click the project Chapter6 in the Solution Explorer panel.

 11. Click the Set as Startup Project option, as shown in Figure 6-6.

Chapter 6  Data types



102

Figure 6-6. Setting the startup project in the Solution Explorer panel

Copy the code from the Program.cs file in Chapter5 to the 
Program.cs file in Chapter6.

 12. Double-click the Program.cs file in the Chapter5 project.

 13. Highlight ALL the code within the program, yes, including the 

namespace and Main() method.

 14. Choose Copy.

 15. Double-click the Program.cs file in the Chapter6 folder.

 16. Highlight the existing code and delete it.

 17. Right-click inside the blank editor window where we have just 

removed the code.

 18. Choose Paste.

Now, the namespace is called Chapter5 so we will rename it to 

Chapter6. We have a choice in how to rename the namespace to 

Chapter6, so select one of the following approaches to rename the 

namespace.

We could

Chapter 6  Data types



103

 19. Right-click the word Chapter5.

 20. Choose Quick Actions and Refactorings, as shown in Figure 6-7.

Figure 6-7. Refactoring using Quick Actions and Refactorings

 21. Click the Change namespace to match folder structure, as shown 

in Figure 6-8.

Figure 6-8. Choosing a possible refactoring option

 22. Press the Enter key.

The namespace will be renamed as Chapter6.

Or we could

• Right-click the word Chapter5.

• Choose Change namespace to Chapter6, as shown in Figure 6-9.

Figure 6-9. Using rename to refactor

Chapter 6  Data types



104

• Type Chapter6, overwriting the word Chapter5.

• Press the Enter key.

The namespace will be renamed as Chapter6.

Amend the C# code by replacing the existing code inside the Main method.

 23. Highlight the code inside the Main() method and delete the 

existing code.

 24. Amend the existing code by adding the String variable called 

vehicleManufacturer, as in Listing 6-2.

Listing 6-2. Adding a String variable for the vehicle manufacturer

public static void Main(string[] args)

{

  /*

  In this section we will add the variables we will use

  throughout the program code. These are variables that are

  going to be of a specific data type. Once we declare a

  variable and have said what its data type is, we cannot

  change the variable's data type.

  The data type is immutable, it cannot be changed over time.

  First we will add a variable called vehicleManufacturer of

  data type string.

  */

  String vehicleManufacturer;

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 25. Amend the existing code, as in Listing 6-3, to display a different 

heading and message.

Chapter 6  Data types



105

Listing 6-3. Displaying a heading and message for the user

      The data type is immutable, it cannot be changed over time.

      First we will add a variable called vehicleManufacturer of

      data type string.

      */

      String vehicleManufacturer;

      Console.WriteLine();

      Console.WriteLine("---- Car Quotation Application ----");

      Console.WriteLine();

      Console.WriteLine("Type the vehicle manufacturer");

      Console.WriteLine("and press the Enter key");

      Console.WriteLine();

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

Read the vehicle manufacturer.

 26. Amend the existing code, as in Listing 6-4, to read the user input 

and assign it to the vehicleManufacturer variable.

Listing 6-4. Reading user input and assigning it to a variable

      Console.WriteLine("Type the vehicle manufacturer");

      Console.WriteLine("and press the Enter key");

      Console.WriteLine();

      /*

      The next line of code tells the program to wait for the

      user to input something. When the user presses the Enter

      key this will indicate that the input has been completed.

      We have also said that we want the data entered at the

      console to be assigned to the variable vehicleManufacturer

      which we set up earlier with a data type of String.

Chapter 6  Data types



106

      We can now see that the data entered through the console

      is going to be held in the program as data type string.

      */

      vehicleManufacturer = Console.ReadLine();

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 27. Amend the existing code, as in Listing 6-5, to display a blank line.

Listing 6-5. Displaying a blank line

      vehicleManufacturer = Console.ReadLine();

      Console.WriteLine();

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

We will now ask the user to press any key on the keyboard and 

then display a Goodbye message, and we will add a ReadLine() 

statement, so the console doesn't disappear, and we can see the 

Goodbye message. We will finally have to press any key to end the 

program and have the console window disappear.

 28. Amend the existing code, as in Listing 6-6.

Listing 6-6. Displaying a message for the user

      vehicleManufacturer = Console.ReadLine();

      Console.WriteLine();

      Console.WriteLine("Press any letter on the keyboard ");

      // This code waits for the user to input form the keyboard

      Console.ReadKey();

      Console.WriteLine("Goodbye");

      Console.ReadLine();

Chapter 6  Data types



107

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 29. Click the File menu.

 30. Choose Save All.

 31. Click the Debug menu.

 32. Choose Start Debugging.

The console window will appear and display the message asking the user to enter the 

vehicle manufacturer. The cursor will be flashing, waiting for user input.

 33. Click in the console window.

 34. Type Ford as the manufacturer name.

 35. Press the Enter key on the keyboard.

The cursor moves to the next line and displays the message asking the user to press 

any letter on the keyboard.

 36. Press any key on the keyboard.

The Goodbye message appears, and the cursor will be flashing waiting for user input, 

as shown in Figure 6-10.

Figure 6-10. Console output and user input

Chapter 6  Data types



108

 37. Press the Enter key on the keyboard.

 38. Press the Enter key again.

Display the vehicle manufacturer.
In the code we have read the string that the user input, Ford, using the ReadLine() 

method of the Console class and have assigned this string of data to the variable 

vehicleManufacturer, which we set up. This is great, but surely we want to use the value 

once we have it! We will now use the stored value containing the string Ford and print it 

to the console using the WriteLine() method.

 39. Amend the code, as in Listing 6-7, to display the 

vehicleManufacturer value, which has been read from the console.

Listing 6-7. Displaying the vehicle manufacturer

      vehicleManufacturer = Console.ReadLine();

      Console.WriteLine();

      /*

      The next line of code tells the program to display the text

      between the double quotes "" and to add on to this text

      (indicated by the +) the value of the variable called

      vehicleManufacturer which has been assigned the value

      typed in by the user at the console (Ford). The + means to

      concatenate the text and the variable, in other words

      join them

      */

      Console.WriteLine("Your car manufacturer is recorded as "

        + vehicleManufacturer);

      Console.WriteLine();

      Console.WriteLine("Press any letter on the keyboard");

      // This code waits for the user to input form the keyboard

      Console.ReadKey();

      Console.WriteLine("Goodbye");

      Console.ReadLine();

    } // End of Main() method

Chapter 6  Data types



109

 40. Click the File menu.

 41. Choose Save All.

 42. Click the Debug menu.

 43. Choose Start Debugging.

 44. Type Ford as the manufacturer name.

 45. Press the Enter key on the keyboard.

 46. Press the Enter key on the keyboard.

The message will appear showing us that the vehicle manufacturer is what we typed 

at the console, the Goodbye message appears, and the cursor will be flashing waiting for 

user input, as shown in Figure 6-11.

Figure 6-11. Console output and user input

 47. Press the Enter key on the keyboard twice.

Using the \t escape sequence to tab items.
Now we will display an additional line for a “header.” The C# code for this line will 

use the escape sequence \t to tab the text on the line. The \t is an escape sequence that 

we might use to tab the output – in other words, leave a fixed amount of space, usually 

eight spaces at this position in the text.

Chapter 6  Data types



110

 48. Amend the code, as in Listing 6-8, to add the additional 

“header” line.

Listing 6-8. Using escape sequences when displaying to the console

      String vehicleManufacturer;

      Console.WriteLine();

      Console.WriteLine("---- Car Quotation Application ----");

      Console.WriteLine("\tCar\tInsurance\tApplication\n");

      Console.WriteLine();

 49. Click the File menu.

 50. Choose Save All.

 51. Click the Debug menu.

 52. Choose Start Debugging.

 53. Type Ford as the manufacturer name.

 54. Press the Enter key on the keyboard.

 55. Press the Enter key again.

The Goodbye message appears, as shown in Figure 6-12, and the cursor will be 

flashing, waiting for user input.

 56. Press the Enter key on the keyboard.

 57. Press the Enter key again.

Chapter 6  Data types



111

Figure 6-12. Tab indentation and new line using escape sequences

Figure 6-12 shows the tabbed space before the word Car and between the words Car 

and Insurance. Note how the space before the word Car is eight characters, and this is 

the space each tab takes up. We can then see that Car and five spaces take up the next 

eight tab spaces. As the word Insurance is nine characters, it uses the full eight spaces of 

a tab slot, and then it takes up one space in the next tab, so there are now seven spaces 

before the A of application.

Using the \n escape sequence to move to a new line.
In the Console.WriteLine("\tCar\tInsurance\tApplication\n"); statement, 

which displays what is between the double quotes "", we have used another “strange” 

ending, \n. This is another escape sequence, and it means add a new line. So \n has 

a similar action to Console.WriteLine(), which also moves to a new line after writing 

its text.

Code Analysis
As we can see, the code includes extensive comments, which are aimed at explaining 

the code being used. For the code that we have just added, the following points are 

important:

• We have added a section within the Main() method where we declare 

the variables to be used in this Main() method of the program.

• In this section we have declared a variable called 

vehicleManufacturer, which will hold data of type string.

Chapter 6  Data types



112

Read this line string vehicleManufacturer; as

a variable called vehicleManufacturer of data type string.

All variables could be read in a similar way to that shown in Figure 6-13, but we 

should actually be saying, “an object called vehicleManufacturer of type string,” since in 

C# everything is an object. When we talk about an object in Chapter 13, we will read the 

statement in a similar way, saying object.

• The vehicleManufacturer variable has been declared in the Main() 

method and will only be visible to code that is inside the open and 

close curly braces of the Main() method. This means that the scope 
of the variable is the Main() method, between the curly braces, as 

shown in Listing 6-9.

Listing 6-9. Variable scope

    static void Main(string[] args)

    {

      // The scope of the variable is the Main method,

      // between the curly braces

      String vehicleManufacturer;

    }

Figure 6-13. Reading a type declaration

Chapter 6  Data types

https://doi.org/10.1007/978-1-4842-8619-7_13


113

• We have entered the statement Console.ReadLine() and it is included 

as part of the line vehicleManufacturer = Console.ReadLine();, 

which says that we want the variable vehicleManufacturer to be made 

equal to Console.ReadLine(). This is known as an assignment, where 

we assign a value to a variable. The variable is vehicleManufacturer 

and the value is whatever the user inputs at the console.

Read the line vehicleManufacturer = Console.ReadLine(); like this:

The variable called vehicleManufacturer is assigned

the value from Console.ReadLine().

• In the code we entered this statement:

Console.WriteLine("Your car manufacturer is recorded  

as " + vehicleManufacturer);

This is an interesting line of code with three parts within the brackets ():

• The first part is what we have used before; it is simply text, a string 
between double quotes “”, and as we know this tells the program to 

display this exact text in the console.

• The second part is a plus sign (+) and we might be thinking this 

means add. Well, we are indeed correct, as the plus sign is being 

used here to say we want to add whatever comes after the plus sign 

to the text we have just written. This is called concatenation and we 

mentioned it earlier.

• The third part is the name of the variable, so the value that is entered 

at the console by the user, for example, Ford, is added to the end of 

the text "Your car manufacturer is recorded as "

This line means that the console will display Your car manufacturer is recorded as 

Ford, as shown in Figure 6-14.

Chapter 6  Data types



114

Figure 6-14. Example of string concatenation

The plus sign (+) or plus symbol is used to add string parts together. We can also 

use the more widely used term concatenate to refer to what the plus sign (+) does in 

this context. As we progress through the chapters, we will see that concatenation can be 

replaced with a more modern approach called string interpolation, and we will also see 

the plus sign (+) used as the mathematical plus where it will add two numerical values.

Amazing, we are now able to

• Write to the console.

• Read from the console.

• Set up a variable.

• Assign a value that has been read in from the console to a variable.

• Display text to the console, which is a concatenation of text and 

variables.

We will now amend the code to ask the user to input other details about the vehicle 

being insured. In this case it will be the model of the vehicle. This is the same process as 

we have already completed, and coding this will help reinforce our learning.

The steps are as follows:

• Set up a variable that will hold the data requested from the user. The 

variable will be of a particular data type, in this case string.

• Display a message to ask the user to input some data.

• Use the Console.ReadLine() method to get the data entered.

Chapter 6  Data types



115

Note
In the preceding first bullet point, we have said that the data type will be string, 

but the data type for the vehicleManufacturer was String with a capital S, so what is the 

difference?

Well, String stands for System.String, and this type belongs to the .NET framework, 

which is the overarching framework for Microsoft languages such as C#, Visual Basic 

.NET, and F#. On the other hand, string is an alias in the C# language for System.String. 

This means that both String and string will work because they are compiled to System.
String. As developers we can choose which of the two options to use and we can mix and 

match throughout our code. BUT this would not be a good example of clean code, so we 

should simply use the C# type, which is string rather than the .NET type, which is String.

 58. Amend the code, as in Listing 6-10, by changing the 

vehicleManufacturer data type from String to string.

Listing 6-10. Using String or string

      string vehicleManufacturer;

      Console.WriteLine();

      Console.WriteLine("---- Car Quotation Application ----");

      Console.WriteLine("\tCar\tInsurance\tApplication\n");

Read and write the vehicle model.

 59. Amend the code, as in Listing 6-11, by adding the string variable 

called vehicleModel.

Listing 6-11. Variable of data type string for the vehicle model

      string vehicleManufacturer;

      string vehicleModel;

      Console.WriteLine();

      Console.WriteLine("---- Car Quotation Application ----");

      Console.WriteLine("\tCar\tInsurance\tApplication\n")

Chapter 6  Data types



116

 60. Amend the code, as in Listing 6-12, to ask for user input, read the 

user input, and assign it to the vehicleModel variable.

Listing 6-12. Read console input and assign it to a variable

      Console.WriteLine("Your car manufacturer is recorded as "

        + vehicleManufacturer);

      /*

      In the next three lines we display a question for the user,

      read whatever data the user inputs at the console, assign

      this data to the variable called vehicleModel and write

      out the concatenated text

      */

      Console.WriteLine("What is the model of the vehicle?\n");

      vehicleModel = Console.ReadLine();

      Console.WriteLine("Press any letter on the keyboard ");

      //  This code waits for the user to input form the keyboard

      Console.ReadLine();

 61. Amend the code, as in Listing 6-13, to display the vehicleModel, 

which has been read from the console.

Listing 6-13. Displaying the vehicle model

      vehicleModel = Console.ReadLine();

      Console.WriteLine("You have told us that the vehicle " +

        "model is " + vehicleModel);

      Console.WriteLine("Press any letter on the keyboard ");

      //  This code waits for the user to input form the keyboard

      Console.ReadKey();

      Console.WriteLine("Goodbye");

Chapter 6  Data types



117

 62. Click the File menu.

 63. Choose Save All.

 64. Click the Debug menu.

 65. Choose Start Without Debugging.

 66. Type Ford as the manufacturer name.

 67. Press the Enter key on the keyboard.

 68. Type Fiesta as the model name.

 69. Press the Enter key on the keyboard.

 70. Press the Enter key on the keyboard.

 71. Press the Enter key on the keyboard.

We will see that the console window now displays the concatenated text for the 

model, as shown in Figure 6-15.

Figure 6-15. Example of string concatenation

Note
When we are running the program, we should notice that after pressing the Enter 

key, when Goodbye appears, we are automatically being prompted to Press any key to 

close this window ..., as shown in Figure 6-16.

Figure 6-16. Automatic waiting for a key press in debugging mode

Chapter 6  Data types



118

This is great, because in our code we now do not need to put the last line that is used 

to stop the console closing when we run the program. In the next programs, we will 

remove the additional line.

Read and write the vehicle color.
We will now amend the code to ask the user to input other details about the vehicle 

being insured. In this case it will be the color of the vehicle. Once again this is the same 

process as we have already completed, and coding this should help reinforce our learning.

The steps are as follows:

• Set up a variable that will hold the data requested from the user. The 

variable will be of a particular data type, in this case string.

• Display a message asking the user to input some data.

• Use the Console.ReadLine() method to get the data entered.

 72. Amend the code, as in Listing 6-14, by adding the string variable 

called vehicleColour.

Listing 6-14. Variable of data type string for the vehicle color

      string vehicleManufacturer;

      string vehicleModel;

      string vehicleColour;

      Console.WriteLine();

      Console.WriteLine("---- Car Quotation Application ----");

 73. Amend the code, as in Listing 6-15, to ask for user input, read the 

user input, and assign it to the vehicleColour variable.

Listing 6-15. Read console input and assign it to a variable

      Console.WriteLine("You have told us that the vehicle " +

        "model is " + vehicleModel);

      Console.WriteLine("What is the colour of the vehicle?\n");

      vehicleColour = Console.ReadLine();

      Console.WriteLine("Press any letter on the keyboard ");

Chapter 6  Data types



119

 74. Amend the code, as in Listing 6-16, to display the vehicleColour 

value, which has been read from the console.

Listing 6-16. Displaying the vehicle color

      Console.WriteLine("What is the colour of the vehicle?\n");

      vehicleColour = Console.ReadLine();

      Console.WriteLine("You have told us that the vehicle " +

        "colour is " + vehicleColour);

      Console.WriteLine("Press any letter on the keyboard ");

Now we will remove the last lines of code that display the 

Goodbye message and the read line statement. This means that 

after the vehicle color message, there are no lines of code, just the 

end braces for the Main method, class, and namespace.

 75. Amend the code, as in Listing 6-17, to remove the code lines.

Listing 6-17. Console.ReadLine() removed

      Console.WriteLine("What is the colour of the vehicle?\n");

      vehicleColour = Console.ReadLine();

      Console.WriteLine("You have told us that the vehicle " +

        "colour is " + vehicleColour);

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 76. Click the File menu.

 77. Choose Save All.

 78. Click the Debug menu.

 79. Choose Start Without Debugging.

 80. Type Ford as the manufacturer name.

 81. Press the Enter key on the keyboard.

Chapter 6  Data types



120

 82. Type Fiesta as the model name.

 83. Press the Enter key on the keyboard.

 84. Type Blue as the vehicle color.

 85. Press the Enter key on the keyboard.

Figure 6-17 shows the console window displaying the concatenated text for the color 

and the message to press any key to close this window.

Figure 6-17. Example of string concatenation and waiting for a key press

 86. Press the Enter key again to close the console window.

 Something a Little Different with Our Variables

We will now amend the code to ask the user to input details about the age, in years, of the 

vehicle. We might use the age of the vehicle in a mathematical formula that will calculate 

the insurance premium to be charged. Once again this is the same process as we have 

already completed, with one difference: the variable is not of data type string – it will be 

of data type int.

So the steps are as follows:

• Set up a variable that will hold the data requested from the user. The 

variable will be of a particular data type – in this case it will be an int.

• Display a message asking the user to input some data.

• Use the Console.ReadLine() method to get the data entered.

Chapter 6  Data types



121

This will be interesting as we will be accepting input from the console, and we have 

seen from the previous examples that console input is accepted as a string or String. So how 

can we now assign the string that the user enters for the age of the vehicle to the variable of 

data type int that we create to hold the data? We will see how to handle this shortly.

Read and write the vehicle age.

 1. Amend the code, as in Listing 6-18, to add the variable we require.

Listing 6-18. Variable of data type int for the vehicle age

      string vehicleManufacturer;

      string vehicleModel;

      string vehicleColour;

      int vehicleAgeInYears;

 2. Amend the code, as in Listing 6-19, to ask for user input, read the 

user input, and assign it to the vehicleAgeInYears variable.

Listing 6-19. Read console input and assign it to a variable

    Console.WriteLine("You have told us that the vehicle " +

        "colour is " + vehicleColour);

      Console.WriteLine("What is the age, in full years, of " +

        "the vehicle? \n");

      vehicleAgeInYears = Console.ReadLine();

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 3. Click the File menu.

 4. Choose Save All.

All is not well in our code, as we can see from the red line under the Console.

ReadLine. The red line indicates an error. The compiler is complaining.

 5. Move the mouse over the red line and a pop-up message box 

appears, as shown in Figure 6-18.

Chapter 6  Data types



122

Figure 6-18. Compiler error due to incorrect assignment

The pop-up message box tries to tell us what the error is, so read the message 

carefully.

There is also an Error List window where we can see the error being displayed and 

this window can be viewed in different ways as shown in Figure 6-19. The Error List is a 

great way for us to see any errors in our code, and it offers us “tools” like the Filter icon 

or the drop-down list where we can choose if we want to display errors from the entire 

solution, the project, etc. It is really our choice as to how we wish to display the errors or 

the Error List, or we can hover over the underlined code.

Figure 6-19. Error List window

Chapter 6  Data types



123

As we program, we will make mistakes and the compiler will help us as much as 

it can to correct them. We will get used to the error messages and become familiar 

with their meaning and how to resolve the issues in our code. In this case the error 

message says

Cannot implicitly convert type ‘string’ to ‘int’
Before we wrote the code for the vehicle age, we read the following:

So how can we now assign the string that the user enters for the age of the 
vehicle to the variable of data type int that we create to hold the data?

Now, that is exactly what the error message is saying to us. We now need to do 

something to the string we have read from the console and convert it to data type int. 

The compiler is telling us that it cannot do this conversion for us; it is not implicit. We 

must tell the compiler how to do it; we must be explicit.

Remember, we read earlier that when we want to convert from one data type to 

another data type, this can happen in one of two ways:

• Implicit conversion

This means that we do not need to do anything as the conversion 

is automatically handled by our code. The compiler handles the 

conversion.

• Explicit conversion

This means that we will need to code the data type conversion. It 

is not an automatic thing. The compiler will complain, through an 

error message, that it cannot handle the conversion.

Well, we have just seen an example in our code where an implicit conversion cannot 

happen; we will have to code the explicit conversion. This is a very straightforward 

process in C#, and we will use this type of conversion regularly. This is not a conversion 
from one numeric data type to another numeric data type as discussed earlier with 

narrowing and widening. It is a conversion from a string to a numeric data type. It 

is like a parse, where parse means to extract the data, so if the string was "10" then the 

parsed data would be 10.

 6. Amend the code, as in Listing 6-20, to perform the variable 

conversion from data type string to data type int using the 

ToInt32() method.

Chapter 6  Data types



124

Listing 6-20. Convert string input to an int using the Int32() method

    Console.WriteLine("What is the age, in full years, of " +

        "the vehicle? \n");

      vehicleAgeInYears = Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

Do we see any error message? No, we should not see an error.

Code Analysis

• We have just used another method, as we can see from the () in 

the code.

• The method is called ToInt32.

• As it is a method, it is written as ToInt32().

• The ToInt32() method has the keyword Convert in front of it followed 

by a full stop. As we have already learned, the full stop is dot notation 

in C# code and means that we want to use a variable or method of 

the object that appears to the left of the full stop, in our case the 

Convert object. We also know that Convert must be a class, which has 

variables and methods that we have access to.

• The Convert class methods will do conversions from one data type to 

another data type for us. We do not need to write our own code to do 

the conversions. This is a great example of reusable code, where code 

is written once and can be reused as often as required. Some of the 

methods that are accessible to us from the Convert class are shown in 

Figure 6-20.

Chapter 6  Data types



125

Figure 6-20. Methods that are part of the Convert class

• The ToInt32() method is used to convert from one data type to 

another data type, in our example from string to int, but we have to 

tell the method what is to be converted. We can clearly see this when, 

after typing the full stop, we click ToInt32 in the pop-up window, as 

shown in Figure 6-21.

Figure 6-21. ToInt32() method of the Convert class takes in a value

• In Figure 6-21 we can see that between the brackets () it says string? 

Value. Later in this chapter we will see the meaning of the ?.

• The method ToInt32() needs to be given a value. In other words the 

method accepts a value, an object, so it is a parameter method.

• The value given to the ToInt32() method is whatever line is read 

from the console. Hence, we have Console.ReadLine() between the 

brackets in the code ToInt32(Console.ReadLine());.

• Whatever is between the brackets of the ToInt32() method is 

converted to an integer, a 32-bit integer.

Chapter 6  Data types



126

Great, we can now see that the method ToInt32() does the conversion for us. How? 

We do not need to know; we simply accept that this method, which is part of the C# 

language, has been written, is thoroughly tested, and is used by all developers when they 

wish to do a similar conversion. Remember, we did talk about this when we read about 

what the .NET is and what it offers us as developers. This is the power of using existing 

code, and as developers we have access to many pieces of existing code. Using existing 

code methods from .NET, the C# language, other developers in our organization, or 

other developers elsewhere forms an integral part of modern-day programming.

Note
As this Convert is a parse, we could also use another method to do the same thing as 

the Int32() method. The method is the Int32.Parse() method. The difference between 

the two methods is as follows:

• Using the .Parse() method for any data type will throw a null 

exception, error, if the string value to be parsed is null.

• Using the Convert. will not cause an exception for a null value.

• The ToInt32() method is slower than the Parse() method.

Using the Parse() method, the code would look like this:

vehicleAgeInYears = Int32.Parse(Console.ReadLine());

 C# 8 Nullable Reference Types
• From the introduction of C# 8, every reference type is by default 

nullable in code that has opted into a nullable aware context. The 

nullable aware context has to be set up within the project.

• Within a nullable aware context, any reference type variable of type 

Type must be initialized with a non-null value. Type is just a generic 

name for any data type. Listing 6-21 and Figure 6-22 show the code 

and error.

Chapter 6  Data types



127

Listing 6-21. Nullable reference type will cause a warning

  /*

  This will cause a warning as all reference types are

  non-nullable by default. The warning will be similar to:

  Converting null literal or possible null value to

  non-nullable reference type.

  */

 string policyId = null;

• Any reference type variable of type Type cannot be assigned a value 

that may be null.

• If we make the reference type of type Type?, then the variable can be 

initialized with a null value, or it can be assigned a null value.

The example shown in Listing 6-22 will be fine because we have 

used the question mark, ?, which is the C# nullable allowed symbol.

Listing 6-22. Using the ?, C# nullable allowed, on a reference type 

  /*

  This will cause a warning as all reference types are

  non-nullable by default. The warning will be similar to:

Figure 6-22. Non-nullable type

Chapter 6  Data types



128

  Converting null literal or possible null value to

  non-nullable reference type.

  */

  string? policyId = null;

Earlier in Listing 6-4, we had the line of code vehicleManufacturer = Console.

ReadLine(); and it was underlined indicating a warning in the non-aware context. We 

will see more of nullable reference types in Chapter 19.

Continuing from where we left off in Listing 6-20, we have corrected the code and the 

red underline has disappeared, so we just need to display a message to tell the user what 

has been read in. This will be interesting as we are reading a string from the console and 

then converting it to an int data type. So will we be able to use an int in our WriteLine() 

method, or will it need to be converted back to a string?

 1. Amend the code, as in Listing 6-23, to display the age of vehicle 

message.

Listing 6-23. Displaying the vehicle age

    Console.WriteLine("What is the age, in full years, of " +

        "the vehicle? \n");

      vehicleAgeInYears = Convert.ToInt32(Console.ReadLine());

      Console.WriteLine("You have told us that the vehicle " +

        "age is " + vehicleAgeInYears);

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

Do we see any error message? No, we should not see an error.

 2. Click the File menu.

 3. Choose Save All.

 4. Hover over the vehicleAgeInYears in the WriteLine() method and 

look at the message in the pop-up telling us it is an int, as shown 

in Figure 6-23.

Chapter 6  Data types

https://doi.org/10.1007/978-1-4842-8619-7_19


129

Figure 6-23. ToInt32()-converted input assigned to an int variable

 5. Click the File menu.

 6. Choose Save All.

 7. Click the Debug menu.

 8. Choose Start Without Debugging.

 9. Type Ford as the manufacturer name.

 10. Press the Enter key on the keyboard.

 11. Type Fiesta as the model name.

 12. Press the Enter key on the keyboard.

 13. Type Blue as the vehicle color.

 14. Press the Enter key on the keyboard.

 15. Type 5 as the vehicle age.

 16. Press the Enter key on the keyboard.

Figure 6-24 shows the console with the concatenated text for the vehicle age.

Figure 6-24. Implicit conversion in the Console.WriteLine()

Chapter 6  Data types



130

 17. Press the Enter key again.

Code Analysis

• We have just concatenated a string data type and an int data type 

using the + concatenator.

• This works because the compiler does the conversion of the int data 

type to a string data type for us.

Amazing, we are now able to convert from one data type to another data type 

using the Convert class. We are able to use the ToInt32() method to convert a string to 

an int, and we should now be able to use the same concept for converting a string to 

another data type. We are also more familiar with the meaning of implicit and explicit 

conversions.

We will now amend the code to ask the user to input details about the value of the 

vehicle. This is the same process as we have already completed, so we will follow the 

same steps as before. Our main decision in this process will be what data type to use for 

the value of the vehicle that is input by the user. Three options could be considered:

• float

The float data type is a single-precision 32-bit floating point.  

A float should not be used for precise values, such as currency.  

It would probably be more applicable to use the decimal data type. 

To initialize a float variable, we must use the suffix f or F, for example:

float interest = 3.5F;

If the suffix F or f is not declared, then the value will be treated as a 

double and the data type float will need to be changed to double.

• double

The double data type is a single-precision 64-bit floating point.  

A double should not be used for precise values, such as currency. 

It would probably be more applicable to use the decimal data type. To 

initialize a double variable, we can use the suffix d or D, for example:

double interest = 3.5d;

Chapter 6  Data types



131

If the suffix D or d is not declared, then the value will be treated as 

a double. So double does not require the suffix “d” or “D” but they 

can be used.

• decimal

The decimal type is a 128-bit data type. The decimal data type 
is suitable for precise values such as currency. To initialize a 

decimal variable, we must use the suffix m or M, for example:

decimal interest = 3.5m;

If the suffix m or M is not declared, then the value will be treated 

as a double and the data type decimal will need to be changed 

to double.

This can be summarized to say that, when choosing a data type for the value of the 

vehicle, it is our choice and depends on the accuracy we need for the value. Float is the 

least accurate, double is the next most accurate, and decimal is the most accurate. Here 

we can use any of the three, but for this example we will use decimal.

Read and write the vehicle estimated price.

 18. Amend the code, as in Listing 6-24, by adding the variable called 

vehicleEstimatedCurrentPrice, which is of data type decimal.

Listing 6-24. Variable of data type decimal for the vehicle value

    string vehicleColour;

    int vehicleAgeInYears;

    decimal vehicleEstimatedCurrentPrice;

 19. Amend the code, as in Listing 6-25, to ask for user input, read 

the user input, and assign it to the vehicleEstimatedCurrentPrice 

variable.

Chapter 6  Data types



132

Listing 6-25. Read console input and assign it to a variable

    Console.WriteLine("You have told us that the vehicle " +

        "age is " + vehicleAgeInYears);

      Console.WriteLine("What is the estimated current value " +

        "of the vehicle?\n");

      vehicleEstimatedCurrentPrice =

        Convert.ToDecimal(Console.ReadLine());

    } // End of Main() method

 20. Amend the code, as in Listing 6-26, to display the 

vehicleEstimatedCurrentPrice value, which is read from the 

console.

Listing 6-26. Displaying the vehicle price

    Console.WriteLine("What is the estimated current value " +

        "of the vehicle?\n");

      vehicleEstimatedCurrentPrice =

        Convert.ToDecimal(Console.ReadLine());

      Console.WriteLine("You have told us that the estimated " +

        "vehicle price is £ " + vehicleEstimatedCurrentPrice);

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 21. Click the File menu.

 22. Choose Save All.

 23. Click the Debug menu.

 24. Choose Start Without Debugging.

 25. Type Ford as the manufacturer name.

 26. Press the Enter key on the keyboard.

 27. Type Fiesta as the model name.

Chapter 6  Data types



133

 28. Press the Enter key on the keyboard.

 29. Type Blue as the vehicle color.

 30. Press the Enter key on the keyboard.

 31. Type 5 as the vehicle age.

 32. Press the Enter key on the keyboard.

 33. Type 6999.99 as the estimated vehicle value.

 34. Press the Enter key on the keyboard.

Figure 6-25 shows the console with the output string, and the decimal value has been 

concatenated even though it is a decimal – this is an implicit conversion.

Figure 6-25. Implicit conversion in the Console.WriteLine()

 35. Press the Enter key again.

Read and write the vehicle mileage.
We will now amend the code to ask the user to input details about the number of 

kilometers recorded on the odometer of the vehicle.

 36. Amend the code, as in Listing 6-27, to add the variable to hold the 

mileage.

Listing 6-27. Variable of data type int for the vehicle mileage (km)

      string vehicleColour;

      int vehicleAgeInYears;

      decimal vehicleEstimatedCurrentPrice;

      int vehicleCurrentMileage;

Chapter 6  Data types



134

 37. Amend the code, as in Listing 6-28, to read the 

vehicleCurrentMileage value, which has been entered in the 

console.

Listing 6-28. Read console input and assign it to a variable

    Console.WriteLine("You have told us that the estimated " +

        "vehicle price is £ " + vehicleEstimatedCurrentPrice);

      Console.WriteLine("What is the current mileage (in km) " +

        "of the vehicle?\n");

      vehicleCurrentMileage =Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 38. Amend the code, as in Listing 6-29, to display the 

vehicleCurrentMileage value, which has been read in.

Listing 6-29. Displaying the vehicle mileage

      Console.WriteLine("What is the current mileage (in km) " +

        "of the vehicle?\n");

      vehicleCurrentMileage =Convert.ToInt32(Console.ReadLine());

      Console.WriteLine("You have told us that the vehicle " +

        "mileage is " + vehicleCurrentMileage + " km");

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

Read and write the driver date of birth as a string.
We will now amend the code to ask the user to input the date of birth of the main 

driver of the vehicle, but we should be aware that dates are tricky to handle. Initially 

when we read the input it is a string, and we then convert it to a date. We use a data type 

of DateTime for the variable.

Chapter 6  Data types



135

 39. Amend the existing code, as in Listing 6-30, by adding the 

DateTime variable called dateOfBirthOfMainDriver, which is of 

type DateTime.

Listing 6-30. Variable of data type DateTime for the driver date of birth

      int vehicleAgeInYears;

      decimal vehicleEstimatedCurrentPrice;

      int vehicleCurrentMileage;

      DateTime dateOfBirthOfMainDriver;

On hovering over the DateTime type, as shown in Figure 6-26, we can see what it 

represents, an instant in time, typically a date and time of the day.

Figure 6-26. DateTime type

 40. Amend the code, as in Listing 6-31, to ask the user to 

input the date, read the user input, and assign it to the 

dateOfBirthOfMainDriver variable.

Listing 6-31. Read console input and assign it to a variable

     Console.WriteLine("You have told us that the vehicle " +

        "mileage is " + vehicleCurrentMileage + " km");

      Console.WriteLine("What is the date of birth " +

  "(yyyy-MM-dd) of the main driver of the vehicle?\n");

      dateOfBirthOfMainDriver =

        DateTime.Parse(Console.ReadLine());

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

Chapter 6  Data types



136

Notice the use of the DateTime class and its associated Parse() method, which 

converts the string representation of a date and time to its DateTime equivalent.

 41. Amend the code, as in Listing 6-32, to display the main driver date 

of birth, which has been read in.

Listing 6-32. Displaying the driver date of birth as type DateTime

    dateOfBirthOfMainDriver =

        DateTime.Parse(Console.ReadLine());

      Console.WriteLine("You have told us that the main " +

        "driver was born on " + dateOfBirthOfMainDriver);

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 42. Click the File menu.

 43. Choose Save All.

 44. Click the Debug menu.

 45. Choose Start Debugging.

 46. Type Ford as the manufacturer name.

 47. Press the Enter key on the keyboard.

 48. Type Fiesta as the model name.

 49. Press the Enter key on the keyboard.

 50. Type Blue as the vehicle color.

 51. Press the Enter key on the keyboard.

 52. Type 5 as the vehicle age.

 53. Press the Enter key on the keyboard.

 54. Type 6999.99 as the estimated vehicle value.

 55. Press the Enter key on the keyboard.

Chapter 6  Data types



137

 56. Type 50000 as the number of kilometers on the odometer of the 

vehicle.

 57. Press the Enter key on the keyboard.

 58. Type 1998-01-01 as the date of birth for the main driver of the 

vehicle.

 59. Press the Enter key on the keyboard.

Figure 6-27 shows the console with the output string, and the date value has been 

concatenated even though it is a date – this is an implicit conversion.

Figure 6-27. DateTime type converted from type string

 60. Press the Enter key again.

Code Analysis

• We have used the data types int, decimal, and string, but now we 

have just used the data type of DateTime. This represents an instant 

in time, typically expressed as a date and time of day.

• When we read the console input, we have used the Convert class and 

selected the ToDateTime() method to perform the conversion.

• This works exactly the same way as our other explicit conversions.

• We have displayed the DateTime entered but it includes the time.

• If we do not want the time and simply want to display the date, then 

this will be possible since there is a method to do this.

• The method used to perform this “shortening” is 

ToShortDateString().

• This method belongs to the object called DateTime.

Chapter 6  Data types



138

As we know, the variable dateOfBirthOfMainDriver is a DateTime variable; it is an 

object. If we add the full stop after the variable name in the WriteLine() method, we will 

see the variables and methods belonging to the DateTime object. Figure 6-28 shows this 

in action.

Figure 6-28. Methods of the DateTime type struct

• We can see that there are a number of methods available to us when 

we use the DateTime object. We can also see that there are a number 

of variables, the spanners, that are also available to us, for example, 

Minute, Month, and Ticks, as shown in Figure 6-29.

Figure 6-29. Properties of the DateTime type struct

Chapter 6  Data types



139

We could be forgiven for thinking that DateTime is a class, as it has properties and 

methods. However, it is not a class; it is a struct, a structure. But let's forget about this for 

now and treat DateTime like a class with properties and methods, which we have access 

to. We will look at structs in a later chapter.

 61. Amend the code, as in Listing 6-33, to display the short date 

of birth.

Listing 6-33. Displaying the driver date of birth as a short date

    Console.WriteLine("You have told us that the main " +

        "driver was born on " + dateOfBirthOfMainDriver);

      Console.WriteLine("You have told us that the main " +

        "driver was born on "

        + dateOfBirthOfMainDriver.ToShortDateString());

    } // End of Main() method

  } // End of Program class

} // End of Chapter6 namespace

 62. Click the File menu.

 63. Choose Save All.

 64. Click the Debug menu.

 65. Choose Start Without Debugging.

 66. Type Ford as the manufacturer name.

 67. Press the Enter key on the keyboard.

 68. Type Fiesta as the model name.

 69. Press the Enter key on the keyboard.

 70. Type Blue as the vehicle color.

 71. Press the Enter key on the keyboard.

 72. Type 5 as the vehicle age.

 73. Press the Enter key on the keyboard.

 74. Type 6999.99 as the estimated vehicle value.

Chapter 6  Data types



140

 75. Press the Enter key on the keyboard.

 76. Type 50000 as the number of kilometers on the odometer of the 

vehicle.

 77. Press the Enter key on the keyboard.

 78. Type 1998-01-01 as the date of birth for the main driver of the 

vehicle.

 79. Press the Enter key on the keyboard.

Figure 6-30 shows the console output with the short date format.

Figure 6-30. DateTime type in short format converted from type string

 80. Press the Enter key again.

 Chapter Summary
In this chapter we have learned about the very important programming concepts of data 
types, variables, and conversions. We have learned that

• There are value types in C# that include bool, byte, char, decimal, 
double, float, int, long, short, uint, and ushort.

• The value types in C# are referred to as primitive types. They are part 

of the language, they are built into the language, and we do not need 

to create them.

• C# is a programming language that is part of .NET, which also has 

other programming languages like F# and Visual Basic.

Chapter 6  Data types



141

• There is a Common Type System (CTS) that exists in .NET and 

this means that we can use the programming language data types 

or those data types that belong to the Common Type System. We 

learned that string and String are the same as are double and Double 

and so on.

• Sometimes variables need to be converted from one data type to 

another data type and this is either done explicitly or implicitly.

• There are conversions called widening conversions where the 

converted data changes from a smaller data type to a larger data type.

• There are conversions called narrowing conversions where the 

converted data changes from a larger data type to a smaller data type 

and data can be lost.

• The Convert class has methods such as ToInt32() to help us convert 

between data types.

• Using a dot, a period, after a class name will display the accessible 

variables and methods that exist in the class.

• Variables in our code have a scope.

• Use of comments is important.

• Escape sequences such as \n and \t are useful for presentation of 

data in the console.

• Data can be read from and written to the console.

• There is a C# DateTime data type, object, that allows us to do things 

like using a method such as ToShortDateString() to convert a 

DateTime to a shortened version of the date, where only the date part 

is displayed and no time is shown.

We should also be aware that C# has other data types and we will use them as 

required by our code.

Chapter 6  Data types



142

We have made great progress in such a short period of study, and in finishing this 

chapter and increasing our knowledge, we are advancing to our target.

 

Chapter 6  Data types



143

CHAPTER 7

Casting and Parsing

 Data Types, Casting, and Parsing
We learned in Chapter 6 that we can declare variables with a data type and then assign 

values to them in our code. We learned that we can accept user input and assign the 

input value to a variable, and we saw that there are times when we will need to convert a 

variable from one data type to another. In this context we learned about narrowing and 

widening conversions, and we used a conversion from an int to a byte, which involved 

casting, for example, (byte).

In C#, casting is a method used to convert one data type to another. Casting is used 

as an explicit conversion and tells the compiler what to do, but we need to be aware that 

there may be a loss of data. So we use casting to achieve a numeric conversion where the 

destination data type we are assigning the value to is of a lesser precision. Casting is a 
conversion from one numeric data type to another numeric data type as discussed 

earlier with narrowing and widening.

If we think back to what we have read about the numeric data types, we will see that 

we start with a less precise data type, sbyte, and we move up to the most precise ulong 

data type as shown in Table 7-1.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_7

https://doi.org/10.1007/978-1-4842-8619-7_6
https://doi.org/10.1007/978-1-4842-8619-7_7#DOI


144

Table 7-1. Integral types

Integral types

byte Byte 1 May contain integers from 0 to 255

sbyte SByte 1 Signed byte from –128 to 127

short Int16 2 Ranges from –32,768 to 32,767

ushort UInt16 2 Unsigned, ranges from 0 to 65,535

int Int32 4 Ranges from –2,147,483,648 to 2,147,483,647

uint UInt32 4 Unsigned, ranges from 0 to 4,294,967,295

long Int64 8 Ranges from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ulong UInt64 8 Unsigned, ranges from 0 to 18,446,744,073,709,551,615

So taking a data type in Table 7-1 and trying to assign it to a variable with a data type 

above it in the table means we are moving to a less precise format and therefore we must 

use a cast, casting. Now we will code an example of int to short.

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project, as shown in Figure 7-1.

Figure 7-1. Adding a new C# project

ChapteR 7  CaStIng and paRSIng



145

 4. Choose Console App from the listed templates as shown in 

Figure 7-2.

Figure 7-2. Selecting a new C# console project

 5. Click the Next button.

 6. Name the project Chapter7, leaving it in the same location, as 

shown in Figure 7-3.

Figure 7-3. Naming a new C# console project

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher, as shown in Figure 7-4.

ChapteR 7  CaStIng and paRSIng



146

Figure 7-4. Choosing the project framework

 9. Click the Create button.

The Chapter7 project will appear in the solution, as shown in Figure 7-5.

Figure 7-5. Solution Explorer displaying all projects

 10. Right-click the Chapter7 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Figure 7-6 shows that the Chapter7 project name has been made to have bold text, 

indicating that it is the new startup project and that it is the Program.cs file within it that 

will be executed when we run the debugging.

ChapteR 7  CaStIng and paRSIng



147

Figure 7-6. Solution Explorer displaying the startup project

We will now copy the code from the Program.cs file in Chapter6 to the Program.
cs file in Chapter7.

 1. Double-click the Program.cs file in the Chapter6 project.

 2. Highlight ALL the code within the program, yes, including the 

namespace and Main method.

 3. Choose Copy.

 4. Double-click the Program.cs file in the Chapter7 folder.

 5. Highlight the existing code and delete it.

 6. Right-click inside the blank editor window.

 7. Choose Paste.

Now, the namespace is called Chapter6 so we will rename it as Chapter7. We have a 

choice of ways to rename the namespace to Chapter7, but we will select the same one as 

we did in the last chapter.

 1. Right-click the word Chapter6, as shown in Figure 7-7.

 2. Choose Quick Actions and Refactorings, as shown in Figure 7-7.

Figure 7-7. Renaming the namespace using Quick Actions and Refactorings

ChapteR 7  CaStIng and paRSIng



148

 3. Click the Change namespace to Chapter7 option, as shown in 

Figure 7-8.

 4. Press the Enter key.

The namespace will now have been renamed to Chapter7.

We will amend the code by adding two new variables, one of data type int and 

called maximumAmountForRepairCosts and the other of data type short and called 

maximumAmountForCarHire.

 1. Amend the code to add the two variables, as in Listing 7-1.

Listing 7-1. Two variables of types int and short with initial values

    int vehicleCurrentMileage;

    DateTime dateOfBirthOfMainDriver;

    // max value of int is 2,147,483,647

    int maximumAmountForRepairCosts = 32767;

    // max value of short is 32,767

    short maximumAmountForCarHire = 0;

 2. Click the File menu.

 3. Choose Save All.

We will now assign the value of the maximumAmountForRepairCosts  

variable to the variable called maximumAmountForCarHire.

Figure 7-8. Renaming the namespace to match the project name

ChapteR 7  CaStIng and paRSIng



149

 4. Amend the code, as in Listing 7-2.

Listing 7-2. Assign one variable value to another variable

      Console.WriteLine("You have told us that the main " +

        "driver was born on "

        + dateOfBirthOfMainDriver.ToShortDateString());

      /*

      Now we are trying to put the int variable

      maximumAmountForRepairCosts into the short variable

      maximumAmountForCarHire but this is not possible without

      something being changed.

      This is where the cast comes into play.

      */

      maximumAmountForCarHire = maximumAmountForRepairCosts;

    } // End of Main() method

  } // End of Program class

} // End of Chapter7 namespace

 5. Amend the code, as in Listing 7-3, to display the 

values of maximumAmountForRepairCosts and 

maximumAmountForCarHire.

Listing 7-3. Display messages including the variables

    maximumAmountForCarHire = maximumAmountForRepairCosts;

      Console.WriteLine("The int variable " +

        "maximumAmountForRepairCosts has a value of "

        + maximumAmountForRepairCosts);

      Console.WriteLine();

      Console.WriteLine("The short variable " +

        "maximumAmountForCarHire has a value of "

        + maximumAmountForCarHire);

    } // End of Main() method

ChapteR 7  CaStIng and paRSIng



150

  } // End of Program class

} // End of Chapter7 namespace

As we see in Figure 7-9, the variable called maximumAmountForRepairCosts within 

the assignment statement is underlined with red. So we need to fix this issue, once we 

understand what is causing the error.

 6. Hover over the red underline and read the pop-up message, as in 

Figure 7-9.

Figure 7-9. Hovering over the error to see the help message

In the error message, we are being told that maximumAmountForRepairCosts 

cannot be implicitly converted from an int data type to a short data type. Even though 

the error message does not specifically say it, the cause of the error is that we are 

trying to perform a narrowing conversion, and this cannot be done implicitly. We 

must perform the conversion with an explicit conversion, a cast in this case. If we look 

carefully, we will see that we are asked the question: "are you missing a cast?" This 

means that we can perform the conversion using a cast and we will be casting the 

maximumAmountForRepairCosts variable, which is of data type int, so it fits into a data 

type short.

 7. Amend the code, as in Listing 7-4, to perform the casting.

Listing 7-4. Cast int type to short type

    maximumAmountForCarHire = (short)maximumAmountForRepairCosts;

    Console.WriteLine("The int variable " +

      "maximumAmountForRepairCosts has a value of "

      + maximumAmountForRepairCosts);

ChapteR 7  CaStIng and paRSIng



151

Now we should see that the red underline error has disappeared. We have fixed the 

conversion issue by using a cast to make the value of the variable of data type int into a 

short value.

Now, running this application with the int variable being set to have its maximum 

value of 32767 will be fine. This means the casting will take place without loss of 
accuracy, on this occasion.

 8. Click the File menu.

 9. Choose Save All.

 10. Click the Debug menu.

 11. Choose Start Without Debugging.

 12. Type Ford as the manufacturer name.

 13. Press the Enter key on the keyboard.

 14. Type Fiesta as the model name.

 15. Press the Enter key on the keyboard.

 16. Type Blue as the vehicle color.

 17. Press the Enter key on the keyboard.

 18. Type 5 as the vehicle age.

 19. Press the Enter key on the keyboard.

 20. Type 6999.99 as the estimated vehicle value.

 21. Press the Enter key on the keyboard.

 22. Type 50000 as the number of kilometers on the odometer of the 

vehicle.

 23. Press the Enter key on the keyboard.

 24. Type 1998-01-01 as the date of birth for the main driver of the 

vehicle.

 25. Press the Enter key on the keyboard.

Figure 7-10 shows the console window and we can see that the casting has worked.

ChapteR 7  CaStIng and paRSIng



152

Figure 7-10. Casting int type to short type

 26. Press the Enter key to close the console window.

If we amend the code so that the int variable is set to have a value that is one more 

than the maximum value of the short data type, 32768, there will be an issue. This means 

the casting will take place with loss of accuracy.

We will now change the value of the int variable so that it is one more than the 

maximum value of a short data type. This will mean that when we cast the int variable, it 

will be too large for the variable maximumAmountForCarHire, data type short, to hold.

 27. Amend the code as in Listing 7-5.

Listing 7-5. Assign a value of 32768 to a short – this is outside the type range

    DateTime dateOfBirthOfMainDriver;

    // max value of int is 2,147,483,647

    int maximumAmountForRepairCosts = 32768;

    // max value of short is 32,767

    short maximumAmountForCarHire = 0;

 28. Click the File menu.

 29. Choose Save All.

 30. Click the Debug menu.

 31. Choose Start Without Debugging.

 32. Click in the console window.

 33. Type Ford as the manufacturer name.

 34. Press the Enter key on the keyboard.

 35. Type Fiesta as the model name.

ChapteR 7  CaStIng and paRSIng



153

 36. Press the Enter key on the keyboard.

 37. Type Blue as the vehicle color.

 38. Press the Enter key on the keyboard.

 39. Type 5 as the vehicle age.

 40. Press the Enter key on the keyboard.

 41. Type 6999.99 as the estimated vehicle value.

 42. Press the Enter key on the keyboard.

 43. Type 50000 as the number of kilometers on the odometer of the 

vehicle.

 44. Press the Enter key on the keyboard.

 45. Type 1998-01-01 as the date of birth for the main driver of the 

vehicle.

 46. Press the Enter key on the keyboard.

We can now see that there is an output, as shown in Figure 7-11. There has not been 

a compile error, but the result is not correct.

Figure 7-11. Casting appears to have worked successfully

 47. Change the value back to 32767 from 32768.

Amend the code to use a Boolean data type and use parsing for the conversion.
We will now amend the code to ask the user to input True or False at the console. 

Remember that the console input will be a string. We will then assign the console input 

to a variable of data type bool.

 1. Amend the code, as in Listing 7-6, to add two new variables, one 

of data type string and the other of data type bool (Boolean).

ChapteR 7  CaStIng and paRSIng



154

Listing 7-6. Add variables of types string and bool

    // max value of short is 32,767

    short maximumAmountForCarHire = 0;

    bool fullyComprehensiveRequirement = true;

 2. Amend the code, as in Listing 7-7, to ask the user for input.

Listing 7-7. Ask for user input

      Console.WriteLine("You have told us that the main " +

        "driver was born on " + dateOfBirthOfMainDriver);

      Console.WriteLine("You have told us that the main " +

        "driver was born on "

        + dateOfBirthOfMainDriver.ToShortDateString());

      Console.WriteLine("Do we require fully comprehensive" +

        " insurance (enter the word True or False)?\n");

 3. Amend the code, as in Listing 7-8, to assign the value entered at 

the console to the variable fullyComprehensiveRequirement.

Listing 7-8. Read the string input and assign it to a variable

      Console.WriteLine("You have told us that the main " +

        "driver was born on "

        + dateOfBirthOfMainDriver.ToShortDateString());

      Console.WriteLine("Do we require fully comprehensive" +

        " insurance (enter the word True or False)?\n");

      fullyComprehensiveRequirement = Console.ReadLine();

 4. Amend the code, as in Listing 7-9, to display the value of the 

variable fullyComprehensiveRequirement, which is of data 

type bool.

ChapteR 7  CaStIng and paRSIng



155

Listing 7-9. Display the bool value 

      Console.WriteLine("Do we require fully comprehensive" +

        " insurance (enter the word True or False)?\n");

      fullyComprehensiveRequirement = Console.ReadLine();

      Console.WriteLine("It is " + fullyComprehensiveRequirement

        + " that we require fully comprehensive insurance");

As shown in Figure 7-12, there is a red underline under the statement Console.

ReadLine(). So we need to fix the issue once we understand what is causing the error.

Figure 7-12. Hovering over the error to see the help message

Hovering over the word Console, we will be presented with an error message. We 

could also hover over the ReadLine() part of the statement and we will get a similar 

message. We are being told that fullyComprehensiveRequirement cannot be implicitly 

converted from a string data type to a bool data type. We need to fix the issue by 

performing a conversion as the message says. There is no talking about a cast as we saw 

in the previous example because this is not a conversion from one numeric data type to 

another numeric data type.

We can use the Parse() method, as discussed earlier. The Parse() method will be 

the Boolean.Parse() method, which accepts a string value and “converts,” parses, it to a 

Boolean.

 5. Amend the code, as in Listing 7-10, to perform the parsing.

Listing 7-10. Parse the string input to a bool

      Console.WriteLine("Do we require fully comprehensive" +

        " insurance (enter the word True or False)?\n");

      fullyComprehensiveRequirement =

        Boolean.Parse(Console.ReadLine());

ChapteR 7  CaStIng and paRSIng



156

      Console.WriteLine("It is " + fullyComprehensiveRequirement

        + " that we require fully comprehensive insurance");

Now we should see that the red underline error has disappeared as we fixed the 

conversion issue.

 6. Click the File menu.

 7. Choose Save All.

 8. Click the Debug menu.

 9. Choose Start Without Debugging.

 10. Click in the console window.

 11. Type Ford as the manufacturer name.

 12. Press the Enter key on the keyboard.

 13. Type Fiesta as the model name.

 14. Press the Enter key on the keyboard.

 15. Type Blue as the vehicle color.

 16. Press the Enter key on the keyboard.

 17. Type 5 as the vehicle age.

 18. Press the Enter key on the keyboard.

 19. Type 6999.99 as the estimated vehicle value.

 20. Press the Enter key on the keyboard.

 21. Type 50000 as the number of kilometers on the odometer of the 

vehicle.

 22. Press the Enter key on the keyboard.

 23. Type 1998-01-01 as the date of birth for the main driver of the 

vehicle.

 24. Press the Enter key on the keyboard.

 25. Type True for the answer to the question. It is true that we require 

fully comprehensive insurance.

ChapteR 7  CaStIng and paRSIng



157

The output will be as shown in Figure 7-13.

Figure 7-13. Boolean type as input

We might also think of a Convert.ToBoolean() method to do the conversion, as in 

Listing 7-11. Yes, that would work.

Listing 7-11. Using the Convert class ToBoolean() method to parse

      fullyComprehensiveRequirement =

        Boolean.Parse(Console.ReadLine());

      fullyComprehensiveRequirement =

        Convert.ToBoolean(Console.ReadLine());

      Console.WriteLine("It is " + fullyComprehensiveRequirement

        + " that you require fully comprehensive insurance");

We can therefore use

      fullyComprehensiveRequirement =

        Boolean.Parse(Console.ReadLine());

or

      fullyComprehensiveRequirement =

        Convert.ToBoolean(Console.ReadLine());

 Chapter Summary
In this chapter we have learned about the particularly important programming concepts 

of parsing and casting and have seen the “subtle” difference between them. We have 

seen that in parsing we use the wrapper class that represents the data type, for example, 

Boolean, and we noted that this class, like all classes, starts with a capital letter. Each 

wrapper class has methods that will perform the parsing, for example, Parse(), and the 

method will be passed the name of the variable to be parsed, converted.

ChapteR 7  CaStIng and paRSIng



158

We are making really great progress, and we should keep it foremost in our 

programming thoughts that data types, casting, parsing, and conversions are a core 

programming concept and will be used throughout the chapters in this book, but more 

importantly, they are widely used in commercial applications.

We are making great progress in our programming of C# applications, and in 

finishing this chapter and increasing our knowledge, we are advancing to our target.

 

ChapteR 7  CaStIng and paRSIng



159

CHAPTER 8

Arithmetic

 Arithmetic Operations
We learned in Chapter 7 that variables can be “converted” from one numeric data type 

to another, which is referred to as casting, or from a string value to a numeric value, 

which is called parsing. Parsing uses methods from a wrapper class to convert the 

string data to a numeric data type value. These are important concepts and widely used 

in all programming languages by professional developers. As we develop our C# skills 

throughout the chapters, we will use these concepts, so it is worthwhile constantly 

reminding ourselves of the differences between casting and parsing and how they are 

used within C# code.

Arithmetic in Our Business Logic
The code, or business logic as it is often called, of many applications will have some 

degree of computation or calculation. In C# it is possible to perform operations on 

integers and other numerical data types, in the same way we can perform operations in 

normal mathematics.

We will probably be aware from our mathematics lessons at school that 

mathematical operations are performed in a specific order, and therefore we need to 

ensure that formulae are written in such a way that the mathematical operators work 

in the correct order. Based on this knowledge, we should recognize that calculations 

that involve combinations of mathematical operators such as add (+), subtract (–), 

multiply (*), and divide (/) can return a different value when the order is changed. The 

normal algebraic rules of precedence or priority apply in any programming language, 

including C#, and need to be thoroughly understood and applied. The precedence can 

be understood using the acronym BODMAS, which means

• Brackets

• pOwers

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_8

https://doi.org/10.1007/978-1-4842-8619-7_7
https://doi.org/10.1007/978-1-4842-8619-7_8#DOI


160

• Division (division and multiplication have the same priority)

• Multiplication

• Addition (addition and subtraction have the same priority)

• Subtraction

Another widely used acronym instead of BODMAS is PEMDAS, which means

• Parentheses

• Exponents

• Multiplication

• Division (division and multiplication have the same priority)

• Addition (addition and subtraction have the same priority)

• Subtraction

To try and remember this acronym, people will use the mnemonic Please Excuse My 

Dear Aunt Sally, or another favorite is Please End My Day At School. Either acronym can 

be used and they mean the same thing.

As stated earlier it is vitally important that we get the correct answers when we 

execute calculations in our code. Therefore, we need to ensure that mathematical 

formulae are written correctly in our code. Big problems can be caused by, and for, 

developers when they code their formulae incorrectly. Often the coding errors in 

mathematical formulae are caused because developers misuse or do not use brackets ( ) 

to group expressions within their formulae. 

Example 1

6 * 5 – 3

We could take this to mean (which is the correct interpretation 

based on the rules)

6 * 5 – This part is equal to 30.

30 – 3 – This part is equal to 27.

If this was the intention, it should be written in a more clearly 

readable form as

(6 * 5) – 3

Chapter 8  arithmetiC



161

Now the brackets make it clear that 6 is multiplied by 5 and the 

answer will have 3 subtracted from it to give an answer of 27.

Alternatively, we could take it to mean

5 – 3 – This part is equal to 2.

6 * 2 – This part is equal to 12.

If this was the intention, it should be written in a more clearly 

readable form as

6 * (5 – 3)

Now the brackets make it clear that 3 is subtracted from 5 and the 

answer is multiplied by 6 to give an answer of 12.

Example 2

2 + 4 × 3 – 1 Multiply 4 by 3.

2 + 12 – 1 Add 2 and 12.

14 – 1 Subtract 1 from 14.

13

If we use brackets, it can make the visualization of the actual order 

much easier:

2 + 4 × 3 – 1 can be written as 2 + (4 x 3) – 1.

Without brackets it can be harder to see what needs to be done in the formula. By 

using brackets ( ) to group expressions within the formula, we can make it much easier 

to understand. This idea of making code easier to read forms part of the concept of clean 
code. When we have clean code, we are more likely to have code that is easier to read 

and maintain.

 Common Arithmetic Operators
Within C# we have access to a number of arithmetic operators, including those shown in 

the following, which we will use in this chapter and in many programs that we write:

Add +

Chapter 8  arithmetiC



162

Subtract -

Multiply *

Divide /

Modulus % the remainder

 Integer Division
Integer division in any programming language, just as in mathematics, is an interesting 

operation in that we get an answer with a remainder, even if the remainder is 0. In 

programming, when two integer values are divided using the / operator, the result will be 

the whole part of the division and the remainder is not considered.

Example

19/5 will give an answer of 3.

As we can see this is the whole number part and there is no indication of the 

remainder. Where has the remainder of 4 gone? It has effectively been lost as we have 

not used the division operator in its full format. We need to use the division operator 

alongside the modulus operator (%). The modulus operator % gives the remainder after 

the division has been performed.

Example

19%5 will give an answer of 4.

Listing 8-1. Example code for division and modulus

Console.WriteLine("19 / 5 will give an answer of " + (19 / 5));

Console.WriteLine("19 % 5 will give an answer of " + (19 % 5));

Console.WriteLine("19 divided by 5 will give an answer of "

        + (19 / 5) + " remainder " + (19 % 5));

Therefore, to do a division properly, we need to combine the division and the 

modulus parts as shown in the last WriteLine() statement in Listing 8-1.

Now it is time for us to do some C# coding where the console application we code 

will use mathematical operators to perform arithmetic. We will read data input from 

Chapter 8  arithmetiC



163

the console using the Console.ReadLine() method and will write to the console using 

the Console.WriteLine() method. As we are dealing with mathematical operators, 

our data will need to be numerical, so our code will apply some conversion using the 

Convert class and the appropriate methods of this class, for example, ToInt32(). We 

will also apply some casting, particularly when undertaking division, which involves int 

data types.

In creating this C# application, we should use the same solution that we created 

for the earlier chapters, as we will still be able to see the code we have written for the 

previous chapters. The approach of keeping all our separate projects in one solution is 

a good idea while studying this book and coding the examples. Having already created 

some projects, we should be getting familiar with the process of project creation, and the 

whole idea of following a standard process to create the projects helps us reinforce our 

learning.

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project, as shown in Figure 8-1.

Figure 8-1. Adding a new C# project

 4. Choose Console App from the listed templates that appear, as 

shown in Figure 8-2.

Chapter 8  arithmetiC



164

Figure 8-2. Selecting a new C# console project

 5. Click the Next button.

 6. Name the project Chapter8 and leave it in the same location, as 

shown in Figure 8-3.

Figure 8-3. Naming a new C# console project

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher, as shown in Figure 8-4.

Chapter 8  arithmetiC



165

Figure 8-4. Choosing the project framework

 9. Click the Create button.

Figure 8-5 shows the Chapter8 project within the solution called CoreCSharp.

Figure 8-5. Solution Explorer displaying all projects

 10. Right-click the Chapter8 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter8 project name has been made to have bold text, as shown in 

Figure 8-6. This indicates that Chapter8 is the new startup project and it is the Program.

cs file within it that will be executed when we debug.

Chapter 8  arithmetiC



166

Figure 8-6. Solution Explorer displaying the startup project

 Solution Explorer and Project Analysis
The CoreCSharp solution shown in Figure 8-7 represents the folder that the Visual Studio 

Integrated Development Environment uses to hold details about the solution and the 

projects managed by it.

Figure 8-7. Solution Explorer and its toolbar

Inside the folder is a file called CoreCSharp, which is the solution file. If we look in 

the Windows File Explorer or the Finder on a Mac computer, where our projects are held, 

we will notice that the file type is sln, which represents a Visual Studio solution.

 12. Right-click the solution name.

 13. Choose Open Folder in File Explorer, or Finder on a Mac, as 

shown in Figure 8-8.

Chapter 8  arithmetiC



167

Figure 8-8. Right-clicking the solution and opening the folder in the File 
Explorer window

When the window opens, the CoreCSharp folder with the solution file will be 

displayed as shown in Figure 8-9.

Figure 8-9. Solution file within a File Explorer window

The solution file holds information about the projects that are part of the overall 

solution. There is no need for us to ever amend this file. If we were to open the file in a 

text editor, we would see our solution has several projects, and this information is stored 

in the solution file as shown in Figure 8-10.

Chapter 8  arithmetiC



168

Figure 8-10. Solution file holding project information

 14. Open the Chapter8 folder in File Explorer, or Finder on a Mac.

Looking inside the Chapter8, or any other project, folder reveals the file that holds 

information about this project. In this project the file is called Chapter8 and has a type of 

csproj, a visual C# project file, as shown in Figure 8-11.

Amend the name of the Program.cs file.
In each of the chapters so far, we have created a project within the solution, and 

we have accepted that Visual Studio creates a Program.cs file by default, which we 

have unassumingly used as a template, and added our own C# code to it. But might we 

want to have a different name from Program.cs? Well, we might, but if this is the file 

that contains the Main() method, the main entry point to our application, it would be 

unusual to rename it. Convention would be to have a Program.cs file with the Main() 

method contained within it. Future chapters will have multiple files within our project, 

and we will want to give them all meaningful names so we can quickly understand what 

their purpose is. So let us now rename the Program.cs file in our Chapter8 project, and 

Figure 8-11. Project file within a File Explorer window

Chapter 8  arithmetiC



169

then we will be able to use the same principle throughout the rest of the book chapters, 

so we have names that associate our code with the example application we are coding.

 15. Double-click the Chapter8 Program.cs file in the Solution Explorer 

window to open it in the editor window.

 16. Right-click the Chapter8 Program.cs file in the Solution 

Explorer window.

 17. Choose Rename.

 18. Change the name to Arithmetic.cs.

 19. Press the Enter key.

Code Analysis

• If we have not switched off the top-level statements, as discussed in 

Chapters 4, 5, and 6, the new template in Visual Studio 2022, for a 

console application, is shown in the editor window. 

• So the Visual Studio Integrated Development Environment is great 

at helping, but the unnecessary using statements it gives us do not fit 

well with the clean code concept. There is a programming concept 

known as YAGNI, which stands for You Ain't Going To Need It, and 

having the lines of code from the template code fits into this, so we 

will remove these two lines of code:

// See https://aka.ms/new-console-template for more information

Console.WriteLine("Hello, World!");

We should now be getting a better understanding of the structure for projects and 

solutions and, as we learn more, we will see how to add different classes to our projects, 

with only one class in each project containing the Main() method. Obviously, we will 

need to have different names for each class in a project, so do we always want to have 
the Program.cs file, or would we like to rename it? Well, it is possible for us to rename 

the file, so we will, for reinforcement purposes only, change the name of our Arithmetic.

cs file in this project within the Solution Explorer.

 20. Right-click the Arithmetic.cs file in the Solution Explorer window.

 21. Choose Rename.

Chapter 8  arithmetiC

https://doi.org/10.1007/978-1-4842-8619-7_4
https://doi.org/10.1007/978-1-4842-8619-7_5
https://doi.org/10.1007/978-1-4842-8619-7_6


170

 22. Change the name to QuoteArithmetic.cs, as shown in Figure 8-12.

 23. Press the Enter key.

First, we will set up the code structure for the file, which will be the entry point for 

our application. This will be the same structure for most of our projects:

• First is a namespace.

• Inside the namespace will be a class – here it is QuoteArithmetic.

• Inside the class will be the Main() method.

The shortcut for creating the Main() method is to type svm and press the Tab 
key twice.

 24. In the QuoteArithmetic editor window, add the code in 

Listing 8-2.

Listing 8-2. QuoteArithmetic.cs structure with class and namespace

namespace Chapter8

{

  public class QuoteArithmetic

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

Now we will add the variables to be used in our code. In the code in Listings 8-2 and 8-3 

and future listings, there are detailed comments to help us get a full understanding of the 

Figure 8-12. Program.cs file renamed

Chapter 8  arithmetiC



171

code. In this example all code is contained within the opening and closing curly braces, { }, 

of the Main() method.

 25. In the editor window, add the variables as shown in Listing 8-3.

Listing 8-3. Declaring the variables in the Main() method

namespace Chapter8

{

  public class QuoteArithmetic

  {

    static void Main(string[] args)

    {

      /*

      We will setup our variables that will be used in the

      mathematical calculation used to produce an insurance

      quotation for a vehicle.

      First we will setup the variables that will hold the user

      input and that will be used in calculating the quote

      */

      int vehicleAgeInYears;

      int vehicleCurrentMileage;

      /*

      For the quotation we will use 10000 kilometres as a base

      line for calculating a mileage factor. If the average

      kilometres travelled per year is above the base mileage of

      10000 the mileage factor will be above 1, if the average

      kilometres travelled per year is the lower than the base

      mileage of 10000 the mileage factor will be below 1

      */

      double quoteAverageExpectedKilometres = 10000;

      /*

      For the quotation we will use £100 as a base figure

      (this is just an example) and this figure will be

      multiplied by the mileage and age factors

      */

Chapter 8  arithmetiC



172

      double quoteBaseRate = 100.00;

      /*

      For the quotation we will use 10 as a base figure for the

      age of the vehicle (this is just an example).

      If the vehicle is older than 10 years, the age factor

      will be above 1.

      If the vehicle is younger than 10 years the age factor

      will be below 1

      */

      int quoteBaseAge = 10;

      /*

      This variable will be used to hold the value of the

      age factor

      */

      double quoteAgeFactor;

      /*

      This variable holds the quote amount based on the age

      factor and the base rate

      */

      double quoteAgeFactorPremium;

      /*

      This variable holds the quote mileage factor based on the

      number of kilometres travelled each year and how the

      kilometres per year is a ratio of the average expected

      10000 kilometres as decided by the insurance company

      */

      double quoteMileageFactor;

      /*

      This variable holds the amount for the quote based only

      on the mileage factor. The quote also has to take into

      account the age of the vehicle

      */

      double quoteMileageFactorPremium;

Chapter 8  arithmetiC



173

      /* 

      This variable will hold the discount amount.

      A discount will be applied to the quote based on the age

      of the vehicle. The age of the vehicle is divided into 1

      to get the discount. The decimal value is a representation

      of the discount and will then be multiplied by the quote

      value to get the actual discount in terms of £s

      */

      double quoteDiscount;

      /*

      This variable holds the total of the age factor premium

      and the mileage factor premium and will be used by the

      discount calculation to get the discount amount

      */

      double quoteAmountForPremium;

      /*

      This variable holds the final quotation value, the premium.

      */

      double quoteFinalAmountForPremium;

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

Now we will write some information to the console and ask for user input.

 26. Amend the code, as in Listing 8-4, adding print lines to the end of 

the code.

Listing 8-4. Displaying a message to the user

    /*

    This variable holds the final quotation value, the premium.

    */

    double quoteFinalAmountForPremium;

    Console.WriteLine();

Chapter 8  arithmetiC



174

    Console.WriteLine("---- Car Quotation Application ----");

    Console.WriteLine();

    Console.WriteLine("What is the age, in full years, of " +

        "the vehicle?\n");

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

Now we will

• Read the vehicle age input from the console and convert it to an int.

• Use the vehicle age to calculate an age factor, by dividing the base 

age that we set up as one of the variables by the vehicle age.

• Calculate the premium, based on the age factor and quote base rate 

of £100.

 27. Amend the code, as in Listing 8-5, adding the lines to the end of 

the code.

Listing 8-5. Get user input for the vehicle age and perform calculations

      Console.WriteLine("What is the age, in full years, of " +

        "the vehicle?\n");

      /*

      Perform the conversion, Parse, from string to int as we

      will use the age of the vehicle in our calculation and

      it needs to be numeric

      */

      vehicleAgeInYears = Convert.ToInt32(Console.ReadLine());

      /* 

      Perform the conversion from string to int as we will use

      the age of the vehicle in our calculation and it needs

      to be numeric

      Example: For a 5 year old car the factor is 10/5 = 2

      */

      quoteAgeFactor = (double)(quoteBaseAge) /

Chapter 8  arithmetiC



175

        (double)(vehicleAgeInYears);

      /*

      The quote amount based on the age is £100 multiplied by

      the age factor

      Example £100 * 2 = £200

      */

      quoteAgeFactorPremium = quoteBaseRate * quoteAgeFactor;

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

Now we will

• Read the vehicle mileage input from the console and convert it 

to an int.

• Use the vehicle mileage and divide it by the age of the vehicle to get 

the average yearly mileage.

• Divide this value by 10000, which is the expected yearly mileage, to 

calculate a mileage factor.

• Calculate the premium based on the mileage factor and the quote 

base rate of £100.

 28. Amend the code, as in Listing 8-6, to get the input and perform the 

two calculations.

Listing 8-6. Get user input for the mileage and perform calculations 

      quoteAgeFactorPremium = quoteBaseRate * quoteAgeFactor;

      /*

      Ask the user for the number of kilometres on the odometer

      */

      Console.WriteLine("What is the current mileage (in km) " +

        "of the vehicle?\n");

      vehicleCurrentMileage= Convert.ToInt32(Console.ReadLine());

Chapter 8  arithmetiC



176

      /*

      Calculate the mileage factor. This is based on the number

      of kilometres travelled each year and how the kilometres

      per year is a ratio of the average expected 10000

      kilometres as decided by the insurance company

      Example: For a 5 year old car with 60000km the factor is

                      (60000/5)/10000 = 12000/10000 = 1.2

      */

      quoteMileageFactor = (vehicleCurrentMileage /

        vehicleAgeInYears) / quoteAverageExpectedKilometres;

      /*

      The quote amount based on the mileage is £100

      multiplied by the mileage factor

      Example £100 * 1.2 = £120

      */

      quoteMileageFactorPremium = quoteBaseRate *

        quoteMileageFactor;

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

Now we will add the two values we have just calculated to give us the quote amount, 

the premium.

 29. Amend the code, as in Listing 8-7, to calculate the quote amount.

Listing 8-7. Calculate the quote amount for the premium

      quoteMileageFactorPremium = quoteBaseRate *

        quoteMileageFactor;

      /*

      Calculate the quotation based on a base rate of £100.

      This base rate is multiplied by the vehicle age factor

      and by the vehicle mileage factor.

      So, the older the vehicle the cheaper the quote or the

      newer the vehicle the more expensive the quote.

Chapter 8  arithmetiC



177

      The more kilometres travelled on average per year the

      more expensive the quote or the less kilometres travelled

      on average per year the cheaper the quote.

      Example: For a 5 year old car, 60000km, age factor is 2

      and mileage factor is 1.2

      The quote is (£100*2) + (£100*1.2 )= £200 + £120 = £320

      */

      /*

      The quote amount based on the age premium plus the

      mileage premium

      Example £2000 + £120 = £320

      */

      quoteAmountForPremium = quoteAgeFactorPremium +

        quoteMileageFactorPremium;

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

Now we will calculate the discount based on the calculated premium and the 

vehicle age.

 30. Amend the code, adding a quote discount formula to the end of 

the code, as in Listing 8-8.

Listing 8-8. Calculate the quote discount and use casting

      quoteAmountForPremium = quoteAgeFactorPremium +

        quoteMileageFactorPremium;

      /*

      The discount amount is based on the age of the vehicle

      Example:

      5 year old vehicle gives discount of 1/5 = 20 percent */

      quoteDiscount = (1 / (double)vehicleAgeInYears) *

        quoteAmountForPremium;

    } // End of Main() method

Chapter 8  arithmetiC



178

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

Now we will calculate the quote amount after the discount is applied.

 31. Amend the code, as in Listing 8-9, to perform the calculation for 

the final premium amount.

Listing 8-9. Calculate the quote final amount

      quoteDiscount = (1 / (double)vehicleAgeInYears) *

        quoteAmountForPremium;

      /*

      The final quote with the discount applied

      Example

      5 year old vehicle gives discount of 100/5 = 20 percent

      20% of £320 is £64.

      So, the actual amount is £320 - £64 = £256

      */

      quoteFinalAmountForPremium = quoteAmountForPremium -

        quoteDiscount;

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

 32. Amend the code, as in Listing 8-10, to add some print lines 

displaying a quotation.

Listing 8-10. Display output information

       quoteFinalAmountForPremium = quoteAmountForPremium -

        quoteDiscount;

      Console.WriteLine("**********************************\n");

      Console.WriteLine("Quotation is for 1 year from today\n");

      Console.WriteLine("**********************************\n");

      Console.WriteLine("The age of the vehicle is :\t\t" +

        vehicleAgeInYears);

Chapter 8  arithmetiC



179

      Console.WriteLine("The age factor is for this vehicle " +

        "is : " + quoteAgeFactor);

      Console.WriteLine();

      Console.WriteLine("The average kilometres per year " +

        "is :\t" + (vehicleCurrentMileage / vehicleAgeInYears));

      Console.WriteLine("The mileage factor is :\t\t\t" +

        quoteMileageFactor);

      Console.WriteLine();

      Console.WriteLine("The quotation is :\t\t\t£" +

        quoteAmountForPremium);

      Console.WriteLine();

      Console.WriteLine("The discount is :\t\t\t£" +

        quoteDiscount);

      Console.WriteLine();

      Console.WriteLine("The final discounted amount is :\t£" +

        quoteFinalAmountForPremium);

      Console.WriteLine("**********************************\n");

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

 33. Click the File menu.

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

 37. Type 5 as the age of the vehicle.

 38. Press the Enter key on the keyboard.

 39. Type 60000 as the number of kilometers on the odometer.

 40. Press the Enter key on the keyboard.

Figure 8-13 shows the console window with the quotation details.

Chapter 8  arithmetiC



180

Figure 8-13. Quotation output

 41. Press the Enter key to close the console window.

Now let us pose the question: Is the quotation amount correct?

• Well, we should have known what to expect, before we started the 

application.

• We need to know the formula before we code, but we should also 

have test data that would tell us what to expect for the final quote.

• If we followed a Test-Driven Development methodology, we would 

write tests first and then write the code that makes the tests pass.

It is imperative that we do not just accept that the console output is correct. An 

attitude of "It's in the console output, so it must be correct" is fundamentally wrong and 

a dangerous assumption. We need to verify the results. While we will not be using a Test- 

Driven Development approach, we still need to think like a software tester. Moving to a 

Test-Driven Development approach can only be achieved once we have built the core 

Chapter 8  arithmetiC



181

C# programming skills, and after gaining these skills, Test-Driven Development is just a 

different methodology to writing the same C# code that we will be producing throughout 

the chapters in the book.

Let’s check the mathematical calculations and see what the answer is:
quoteAgeFactor = 10/5 = 2.0

quoteAgeFactorPremium = £100 * 2.0 = £200

quoteMileageFactor = (60000/5)/ 10000 = 12000/10000 = 1.2

quoteMileageFactorPremium = £100 * 1.2 = £120

quoteAmountForPremium = £200 + £120 = £320

quoteDiscount = (1/5) * £320 = £64

quoteFinalAmountForPremium = £320 – £64 = £256

Formatting the Output
What we also see is that our output does not have two figures after the decimal point. 

The WriteLine() method merely prints out a line of code but does not format it. If we 

wish to have formatted text, we can use some “special” code.

The WriteLine() method can be used in a different way, not using the concatenation, 

+, version we have used up to now. We can keep all the output between double quotes "", 

and when we wish to have a variable included, we add a placeholder within the double 

quotes. The placeholder is used to represent the variable that will be included after the 

double quote, following a comma. Figures 8-14, 8-15, and 8-16 show the placeholder 

code and output for three different examples.

Figure 8-14. WriteLine() with placeholder

Chapter 8  arithmetiC



182

Figure 8-15. WriteLine() with placeholder and formatting to two decimal places

Figure 8-16. WriteLine() with placeholder and currency formatting

The placeholder(s) matches the variable(s) in the list after the ending double quote 

and comma. The placeholder can also control the number of decimal places.

 1. Amend the code, as in Listing 8-11, replacing some WriteLine() 

methods with the new format containing placeholders.

Listing 8-11. Using placeholders

      Console.WriteLine("*********************************\n");

      Console.WriteLine("Quotation is for 1 year from today\n");

      Console.WriteLine("*********************************\n");

       Console.WriteLine("The age of the vehicle is :\t\t{0}", 

vehicleAgeInYears);

       Console.WriteLine("The age factor for this vehicle is :\t{0}", 

quoteAgeFactor);

      Console.WriteLine();

       Console.WriteLine("The average kilometres per year is : \t{0:N2}", 

(vehicleCurrentMileage / vehicleAgeInYears));

       Console.WriteLine("The mileage factor is :\t\t\t{0:N2}", 

quoteMileageFactor);

Chapter 8  arithmetiC



183

      Console.WriteLine();

       Console.WriteLine("The quotation is :\t\t\t{0:C2}", 

quoteAmountForPremium);

      Console.WriteLine();

      Console.WriteLine("The discount is :\t\t\t{0:C2}" , quoteDiscount);

      Console.WriteLine();

       Console.WriteLine("The final discounted amount is :\t{0:C2}", 

quoteFinalAmountForPremium);

      Console.WriteLine("*********************************\n");

    } // End of Main() method

  } // End of QuoteArithmetic class

} // End of Chapter8 namespace

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

 6. Type 5 as the age of the vehicle.

 7. Press the Enter key on the keyboard.

 8. Type 60000 as the number of kilometers on the odometer.

 9. Press the Enter key on the keyboard.

Figure 8-17 shows the console window with the quotation details formatted using 

decimal places and currency.

Chapter 8  arithmetiC



184

Figure 8-17. Formatted output, two decimal places and currency

 10. Press the Enter key again to close the console window.

 Other Operators

Table 8-1 shows two interesting arithmetic operators included with C#.

Table 8-1. Add one and subtract one

Two arithmetic operators that are included with C#

++ means add one to the value

Example
double quoteMileageFactor = 1.2;

quoteMileageFactor ++;

quotemileageFactor will now be 2.2.

We will see this operator when we come to code with iteration and loops.

(continued)

Chapter 8  arithmetiC



185

Two arithmetic operators that are included with C#

-- means subtract one from the value

Example
double quoteMileageFactor = 1.2;

quoteMileageFactor --;

quotemileageFactor will now be 0.2.

We can use this operator when we code with iteration and loops.

postfix increment operator

++ When the ++ appears after the variable name, the action occurs and then the variable value is 

incremented, so with post-increment, the operation is performed and then the increment happens.

double quoteMileageFactor = 1.2;

// 1.2 is displayed, the value then increases to 2.2

Console.WriteLine(quoteMileageFactor++);

// 2.2 will be displayed

Console.WriteLine(quoteMileageFactor);

prefix increment operator

++ When the ++ appears before the variable name, the variable value is incremented before any 

action, so with pre-increment, the increment is performed and then the operation happens.

double quoteMileageFactor = 1.2;

// 2.2 is displayed, the value then increases to 2.2

Console.WriteLine(++quoteMileageFactor);

// 2.2 will be displayed

Console.WriteLine(quoteMileageFactor);

Table 8-1. (continued)

Apart from the mathematical operators +, –, *, /, and %, there are other operators 

included in C#. We will now look at what are called assignment operators, which store 

a value in the object on the left-hand side. Up to now in our code, we have used one 

operator, the = symbol, for example:

quoteAgeFactorPremium = quoteBaseRate * quoteAgeFactor;

Chapter 8  arithmetiC



186

The = operator is a simple operator. Now we will use the compound assignment 

operators. In the code examples in Table 8-2, we will see the use of the compound 
assignment, where an arithmetic operation is performed before the value is stored in 

the object on the left-hand side.

Table 8-2. Compound assignment operators

Compound assignment operators

+= means take the value on the right of the = and add it to the value of the object on the left of the 

=, storing the new value in the object on the left

Example
double quoteMileageFactor = 1.2;

quoteMileageFactor += 1;

quoteMileageFactor will now be 2.2.

-= means take the value on the right of the = and subtract it from the value of the object on the 

left of the =, storing the new value in the object on the left

Example
double quoteMileageFactor = 1.2;

quoteMileageFactor -= 1;

quoteMileageFactor will now be 0.2.

*= means take the value on the left of the = and multiply it by the value on the right of the =, 

storing the new value in the object on the left

Example
double quoteMileageFactor = 1.2;

quoteMileageFactor *= 2;

quoteMileageFactor will now be 2.4.

/= means take the value on the left of the = and divide it by the value on the right of the =, storing 

the new value in the object on the left

Example
double quoteMileageFactor = 1.2;

quoteMileageFactor /= 2;

quoteMileageFactor will now be 0.6.

Chapter 8  arithmetiC



187

We will now amend our existing code to use some of the operators we have just read 

about, starting with Listing 8-12.

 Plus Equals ( += )

 11. Add a new code statement that uses the += operator, as in 

Listing 8-12.

Listing 8-12. += operator

      quoteMileageFactor = (vehicleCurrentMileage /

        vehicleAgeInYears) / quoteAverageExpectedKilometres;

      quoteMileageFactor += 1;

 12. Click the File menu.

 13. Choose Save All.

 14. Click the Debug menu.

 15. Choose Start Without Debugging.

 16. Type 5 as the age of the vehicle.

 17. Press the Enter key on the keyboard.

 18. Type 60000 as the number of kilometers on the odometer.

 19. Press the Enter key on the keyboard.

Figure 8-18 shows the new calculations, after the increment of the variable 

quoteMileageFactor. We can see that the mileage factor has increased by 1 to become the 

value 2.2.

Figure 8-18. +=1

 20. Press the Enter key to close the console window.

Chapter 8  arithmetiC



188

 Minus Equals ( -= )

 21. Amend the one code line, as Listing in 8-13, to use the -= operator.

Listing 8-13. -= operator

      quoteMileageFactor = (vehicleCurrentMileage /

        vehicleAgeInYears) / quoteAverageExpectedKilometres;

      quoteMileageFactor -= 1;

 22. Click the File menu.

 23. Choose Save All.

 24. Click the Debug menu.

 25. Choose Start Without Debugging.

 26. Type 5 as the age of the vehicle.

 27. Press the Enter key on the keyboard.

 28. Type 60000 as the number of kilometers on the odometer.

 29. Press the Enter key on the keyboard.

Figure 8-19 shows the new calculations, after the decrement of the variable 

quoteMileageFactor. We can see that the mileage factor has decreased by 1 to become 

the value 0.2.

Figure 8-19. -=1

 30. Press the Enter key to close the console window.

 Multiply Equals ( *= )

 31. Amend the one code line, as in Listing 8-14, to use the *= operator.

Chapter 8  arithmetiC



189

Listing 8-14. *= operator

      quoteMileageFactor = (vehicleCurrentMileage /

        vehicleAgeInYears) / quoteAverageExpectedKilometres;

     quoteMileageFactor *= 2;

 32. Click the File menu.

 33. Choose Save All.

 34. Click the Debug menu.

 35. Choose Start Without Debugging.

 36. Type 5 as the age of the vehicle.

 37. Press the Enter key on the keyboard.

 38. Type 60000 as the number of kilometers on the odometer.

 39. Press the Enter key on the keyboard.

Figure 8-20 shows the new calculations, after the increment of the variable 

quoteMileageFactor. We can see that the mileage factor has multiplied by 2, doubled, to 

become the value 2.4.

Figure 8-20. *= operator

 40. Press the Enter key to close the console window.

 Divide Equals ( /= )

 41. Amend the one code line, as in Listing 8-15, to use the /= operator.

Listing 8-15. /= operator

      quoteMileageFactor = (vehicleCurrentMileage /

        vehicleAgeInYears) / quoteAverageExpectedKilometres;

      quoteMileageFactor /= 2;

Chapter 8  arithmetiC



190

 42. Click the File menu.

 43. Choose Save All.

 44. Click the Debug menu.

 45. Choose Start Without Debugging.

 46. Type 5 as the age of the vehicle.

 47. Press the Enter key on the keyboard.

 48. Type 60000 as the number of kilometers on the odometer.

 49. Press the Enter key on the keyboard.

Figure 8-21 shows the new calculations, after the decrement of the variable 

quoteMileageFactor. We can see that the mileage factor has been divided by 2, halved, to 

become the value 0.6.

Figure 8-21. /= operator

 50. Press the Enter key to close the console window.

 Square Root

Here we will use the Math class and its Sqrt() method. The Sqrt() method accepts a 

numeric value, which is to be operated on.

 51. Amend the one code line, as in Listing 8-16, to use the 

Sqrt() method.

Listing 8-16. Square root

      quoteMileageFactor = (vehicleCurrentMileage /

        vehicleAgeInYears) / quoteAverageExpectedKilometres;

           quoteMileageFactor = Math.Sqrt(quoteMileageFactor);

Chapter 8  arithmetiC



191

 52. Click the File menu.

 53. Choose Save All.

 54. Click the Debug menu.

 55. Choose Start Without Debugging.

 56. Type 5 as the age of the vehicle.

 57. Press the Enter key on the keyboard.

 58. Type 60000 as the number of kilometers on the odometer.

 59. Press the Enter key on the keyboard.

Figure 8-22 shows the new calculations, after finding the square root of the variable 

quoteMileageFactor. We can see that the mileage factor has been calculated as the 

square root of 1.2, which is 1.1.

Figure 8-22. Square Root

 60. Press the Enter key to close the console window.

We will now change the format for the mileage factor, quoteMileageFactor, so we 

have 16 figures after the decimal point, just to illustrate that we do not necessarily always 

need or want to use two decimal places.

 61. Amend the code, changing the 2 to 16 in the line of code, as in 

Listing 8-17.

Listing 8-17. Square root to 16 decimal places

Console.WriteLine("The average kilometres per year is: " +

"\t{0:N2}", (vehicleCurrentMileage/vehicleAgeInYears));

Console.WriteLine("The mileage factor is :\t\t\t{0:N16}" ,

quoteMileageFactor);

Chapter 8  arithmetiC



192

 62. Click the File menu.

 63. Choose Save All.

 64. Click the Debug menu.

 65. Choose Start Without Debugging.

 66. Type 5 as the age of the vehicle.

 67. Press the Enter key on the keyboard.

 68. Type 60000 as the number of kilometers on the odometer.

 69. Press the Enter key on the keyboard.

Figure 8-23 shows the new calculations, after finding the square root of the variable 

quoteMileageFactor and displaying the output with 16 figures after the decimal point.

Figure 8-23. Square root to 16 decimal places

 70. Press the Enter key again to close the console window.

Note
The other calculations that depend on the quoteMileageFactor still have the same 

value. This should indicate to us that even though two decimal places were displayed, 

the underlying figure was more accurate than the two decimal places.

 Chapter Summary
In this chapter we have learned about the very important concept of arithmetic 

operations, which will be widely used in real-world applications. We also saw that 

arithmetic performed on variables or values can result in inaccuracies because the 

display does not show the required number of decimal places. We then saw the use of 

the {0:D}, {0:2D}, and {0:C} type placeholders where we could specify the number of 

decimal places required in the output. Besides the popular arithmetic operators +, -, *, 

and /, we also saw some “strange” operators, +=, -=, *=, and /=.

Chapter 8  arithmetiC



193

We are making great progress in our programming of C# applications and we should 

be proud of our achievements. In finishing this chapter and increasing our knowledge, 

we are advancing to our target.

 

Chapter 8  arithmetiC



195

CHAPTER 9

Selection

 Arithmetic Operations
We learned in Chapter 8 that we could apply arithmetic operations on some variables 

and use the {0:D} and {0:C} type placeholders to specify the number of decimal places 

required in the output. We also investigated the use of less familiar arithmetic operators 

such as +=, -=, *=, and /=. In this chapter we will use comparison operators, some of 

which will look similar to arithmetic operators.

 Selection
In this chapter we will learn about the very important concept of selection and its use 

within an application. However, the concept of selection should be familiar to us through 

our everyday life. Many of the things we do in everyday life require us to make decisions, 

and often we will be directed down one path or another. Figure 9-1 illustrates such a 

scenario.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_9

https://doi.org/10.1007/978-1-4842-8619-7_8
https://doi.org/10.1007/978-1-4842-8619-7_9#DOI


196

Figure 9-1. Everyday decision using a yes-or-no scenario

In a similar manner, the programs we, and every developer, write will normally 

require us to make decisions. Decisions in our code will change the execution flow 

depending on the decision made, as shown in Figure 9-1. Figure 9-1 indicates that

• A yes decision changes execution down the yes path.

• A no decision changes execution down the no path.

In Figure 9-1 the execution eventually returns to a common path, Go to the shops. In 

programming, making decisions can be achieved in a number of ways, and we will now 

look at the use of the SELECTION statements within C#.

 Comparison Operators
To build our program code to make decisions, we need to make use of comparison 

operators to construct a condition. The operators we can use are familiar mathematical 

expressions, for example, less than, greater than, and equal to. Table 9-1 shows the 

symbols used in C# for the operators.

Chapter 9  SeleCtion



197

Table 9-1. Comparison operators

Symbol Meaning

<

<=

>

>=

==

!=

&&

||

!

less than

less than or equal to

Greater than

Greater than or equal to

equal to

not equal to

logical anD

logical or

logical not

It is important we fully understand that when testing if one piece of data is equal to 

another, we use the double equals (= =), because, as mentioned previously, a single 

equal symbol (=) is an assignment operation.

The primary selection constructs we will use in our C# code will be

• if

• if-else

• if else if construct

• switch

We will also look at the logical operators AND (&&), || (OR), and ! (NOT).

if Statement
The if construct is used whenever a choice has to be made between two alternative 

actions. The construct will enable a block of code to be executed depending upon 

whether or not a condition is true. If the condition is not true, it is false, and the code 

does not execute the block of code associated with the if statement. It just moves to the 

next code statement. The general format of the if construct is

      if (condition)

      {

        // perform these statements when condition is true

      }

Chapter 9  SeleCtion



198

In simple terms all we are doing with the if construct is saying "Is something true?" – 

is it true or is it false? So the statement

if( condition ) means if( true ).

Remember true is a bool or Boolean data type.

In most programs selection will be a key element, but for an insurance program, 

selection statements may include

• Checking the maximum years of no claims a driver has and informing 

the user

That the value is within the years of no claims limit and will be 

used – this is the true part

Or

To just move to the next code statement

• Checking the maximum amount that can be charged to a credit card 

and informing the user

That the insurance amount is under or equal to the credit card 

limit and can be processed – this is the true part

or

To just move to the next code statement

if-else Statement
The general format of the if-else construct is

      if (condition)

      {

        // perform these statements when condition is true

      }

      else

      {

        // perform these statements when condition is false

      }

In simple terms all we are doing with the if-else construct is saying "Is something 

true or is it false?" – is it true or is it false? So the statement

if( condition ) means if( true ).

Chapter 9  SeleCtion



199

else means it is not true – it is false.

Remember false is also a bool or Boolean data type.

The else part of the if-else construct may be omitted depending on requirements, but 

if it is omitted, it becomes an if statement, which is what we looked at first.

Using the same insurance program criteria as we had in the preceding if statement, 

we can see how the if-else construct could be applied. The program selection statements 

may include

• Checking the maximum years of no claims a driver has and informing 

the user that

The value is within the years of no claims limit and will be used – 

this is the true part.

or

The value is over the years of no claims limit and will be reduced 

to 10 years – this is the else part, the false part.

• Checking the maximum amount that can be charged to a credit card 

and informing the user that

The insurance amount is under or equal to the credit card limit 

and can be processed.

or 

The insurance amount is over the credit card limit and the user 

will need to call the company to give additional information.

The if-else statement is used to make a selection within a program, and the following 

points are important in understanding the format of the if-else statement:

• The if statement will test if a particular condition statement is true, for 

example:

      if (yearsofnoclaims > 10)

• If the condition is true, then the program will execute a block of code 

within the curly braces following it, for example:

Chapter 9  SeleCtion



200

      if (yearsofnoclaims > 10)

      {

        // This block of code will be executed if the

        // yearsofnoclaims is greater than 10

      }

• If the condition is false, then the program will execute a different 

block of code, the else part, that handles a false condition executed 

when the statement is not true, for example:

      if (yearsofnoclaims > 10)

      {

        // This block of code will be executed if the

        // yearsofnoclaims is greater than 10

      }

      else

      {

        // This block of code will be executed if the

        // yearsofnoclaims is

        // less than or equal to 10

      }

• It is essential that the two different blocks of code are clearly 

indicated, and to ensure this, we use the curly braces:

{ opening (left) curly brace

} closing (right) curly brace

• The two different blocks of code are separated using the else 

keyword:

      if (yearsofnoclaims > 10)

      {

        BLOCK ONE

       // This block of code will be executed if the

       // yearsofnoclaims is greater than 10

      }

Chapter 9  SeleCtion



201

      else

      {

        BLOCK TWO

       // This block of code will be executed if the

       // yearsofnoclaims is less than or equal to 10

      }

switch Statement
A switch statement can have a number of advantages over the equivalent if-else 

statements including being easier to

• Read

• Debug

• Maintain

In using a switch construct, we will have multiple cases, and the matching case 

will be the one that will have its code executed. Switch also has some disadvantages 

depending on the version of C# we use. From C# 7.0 we can use pattern matching, 

but for now we will concentrate on the switch statement for C# 6 or earlier where the 

matching expression uses the data types char, string, and bool, an integral numeric type, 

or an enum type.

The general format of the switch construct is

      switch (expression)

      {

        case 1:

          {

            statements;

            break;

          }

        case 2:

          {

            statements;

            break;

          }

Chapter 9  SeleCtion

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/char
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/enum


202

        default:

          {

            statements;

            break;

          }

          break;

      } // End of switch statement

We will now use the same insurance program criteria as used in the preceding if and 

if-else constructs and explore how the switch construct could be applied. The program 

selection statements may include

• Checking the maximum years of no claims a driver has and informing 

the user that

• If the value is 0 years, the discount is 0%.

• If the value is 5 years, the discount is 5%.

• If the value is 10 years, the discount is 10%.

As a switch statement, this would be

      switch (years_of_no_claims)

      {

        case 0:

          {

            discount = 0.00;

            break;

          }

        case 5:

          {

            discount = 5.00;

            break;

          }

        case 10:

          {

            discount = 10.00;

            break;

          }

Chapter 9  SeleCtion



203

        default:

          {

            discount = 0.00;

            break;

          }

      } // End of switch statement

Let's code some C# and build our programming muscle.

 The if Construct

We will now use the if construct that has one block of code, between the curly braces, 

that is executed if the condition inside the brackets evaluates as Boolean true. If the 

condition evaluates to Boolean false, then, with the if construct, there is no other block 

of code associated with it, so the next line in the program after the close curly brace is 

executed. The evaluation to Boolean true would be equivalent to the area highlighted by 

the green dotted rectangle in Figure 9-2, the pathway to the left.

Figure 9-2. The Boolean true section

We should use the same solution that we created for the earlier chapters, as we will 

still be able to see the code we have written for the previous chapters. The approach of 

keeping all our separate projects in one solution is a good idea while studying this book 

and coding the examples.

Chapter 9  SeleCtion



204

This chapter, while concentrating on selection, will use an insurance quote example 

and build on our learning from the previous chapters. Now having created five projects, 

we should be confident with the process of creating projects inside a solution.

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter9 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter9 project within the solution called CoreCSharp.

 10. Right-click the project Chapter9 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to Selection.cs, as shown in Figure 9-3.

Figure 9-3. Program.cs file renamed

Chapter 9  SeleCtion



205

 15. Press the Enter key.

 16. Double-click the Selection.cs file to open it in the editor window.

Now we can set up the code structure with a namespace, and inside it will be 

the Selection class, and inside the class will be the Main() method. The shortcut for 
creating the Main() method is to type svm and press the Tab key twice. We will also 

create a variable inside the Main() method.

 17. Amend the code as shown in Listing 9-1.

Listing 9-1. Selection – setting up variables within the Main() method

// Program Description:    C# program to perform selection

// Author:                 Gerry Byrne

// Date of creation:       01/10/2021

namespace Chapter9

{

  internal class Selection

  {

    static void Main(string[] args)

    {

      // Set up variables to be used in the quote application

      int yearsOfNoClaims;

    } // End of Main() method

  } // End of Selection class

} // End of Chapter9 namespace

 18. Amend the code to request user input and then convert it to an 

int, as in Listing 9-2.

Listing 9-2. Request user input and convert from string to int

      // Set up variables to be used in the quote application

      int yearsOfNoClaims;

      /* Read the user input and convert it to an int */

       Console.WriteLine("How many full years of no claims does the driver 

have?\n");

Chapter 9  SeleCtion



206

      yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

  } // End of Selection class

} // End of Chapter9 namespace

We will now add code that will

• Check if the number of years of no claims is greater than 10:

• If this is true, execute some code.

• Otherwise, move to the next set of code lines.

 19. Amend the code, as in Listing 9-3.

Listing 9-3. Use the if construct to check if value is greater than 10

      yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

      /*

      Now we will check if the years of no claims is greater

      than 10 if it is true then we execute some lines of code

      which exist between the curly braces, else the program

      just moves to the next code line which is to read a key

      */

      if (yearsOfNoClaims > 10)

      {

       /*

       This block of code will be executed if the

       yearsOfNoClaims is more than 10

       */

        Console.WriteLine();

        Console.WriteLine("Years of no claims is more than 10");

      }

    } // End of Main() method

  } // End of Selection class

} // End of Chapter9 namespace

Chapter 9  SeleCtion



207

 20. Click the File menu.

 21. Choose Save All.

 22. Click the Debug menu.

 23. Choose Start Without Debugging.

 24. Type 10 as the number of full years of no claims.

 25. Press the Enter key.

Figure 9-4 shows the console window with no additional data after the 10, as the 

code has evaluated that 10 is not greater than (>) 10, so it skips the if block of code and 

moves to the next line of code after the closing curly brace, which is the end of the code.

Figure 9-4. If block skipped

 26. Press the Enter key to close the console window.

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

The console window will appear and ask the question.

 29. Type 20 and press the Enter key.

The console window will appear as shown in Figure 9-5.

Figure 9-5. If block executed

Chapter 9  SeleCtion



208

The code has evaluated that 20 is greater than (>) 10 so it executes the if block of 

code and then it moves to the next line of code, which is the end of the code.

 30. Press the Enter key to close the console window.

 The if-else Construct

We will now use the if-else construct, which is an extension of the if construct we 

have just used. In the if construct, we had one block of code, between the curly braces, 

that was executed when the condition inside the brackets evaluated to true. When the 

condition evaluated to false, the block of code was passed over, and the next line in the 

program was executed. Now, in the if-else construct, there will be a second block of 

code, with its own set of curly braces. This second block of code will be executed when 

the condition evaluates as false. This would be the equivalent to the area highlighted by 

the red dotted rectangle in Figure 9-6, the right-hand pathway.

Figure 9-6. The Boolean false section

 31. Amend the code, as in Listing 9-4, to add the else part of the 

construct.

Listing 9-4. Use the if-else construct to check if value is greater than 10

      if (yearsOfNoClaims > 10)

      {

        /*

Chapter 9  SeleCtion



209

        This block of code will be executed if the

        yearsofnoclaims is more than 10

        */

        Console.WriteLine("Years of no claims is more than 10");

      }// End of true block of code in the if construct

      else

      {

      /*

      This block of code will be executed if the yearsofnoclaims

      is not more than 10. We need to be careful when we are

      dealing with boundaries and in this example we should

      realise that the >10 means 11, 12, 13 etc. The not greater

      than 10 then means 10, 9, 8 etc. In other words, 10 is

      included in the else part. We could also use >= 10 if we

      wanted 10 to be included in the true section

        */

        Console.WriteLine("Years of no claims is less than " +

          "or equal to 10");

      } // End of false block of code in the if construct

    } // End of Main() method

 32. Click the File menu.

 33. Choose Save All.

 34. Click the Debug menu.

 35. Choose Start Without Debugging.

 36. Type 20 as the number of full years of no claims.

Figure 9-7 shows the console window, and we can see that the true block of code 
has been executed.

Figure 9-7. If block executed – this is the true part

Chapter 9  SeleCtion



210

 37. Press the Enter key to close the console window.

 38. Click the Debug menu.

 39. Choose Start Without Debugging.

 40. Type 10 as the number of full years of no claims.

Figure 9-8 shows the console window, and we can see that the false, else, block of 
code has been executed.

Figure 9-8. If block skipped – this is the false part

 41. Press the Enter key to close the console window.

 The if else if Construct

The if-else construct we have used has two blocks of code, one for the Boolean true and 

the other for the Boolean false. However, what would happen if we had other choices 

when the first condition was not true? Well, the C# language provides us with a solution, 

which is an extension of the if-else construct. The if part of the construct can be followed 

by an else if statement. The general format will be

    if (first expression is true)

    {

        /*

          This block of code will be executed if the first

          expression is true

        */

      }

    else if (second expression is true)

    {

        /*

          This block of code will be executed if the second

          expression is true

        */

    }

Chapter 9  SeleCtion



211

    else if (third expression is true)

    {

        /*

          This block of code will be executed if the third

          expression is true

        */

    }

    else

    {

        /*

          This block of code will be executed if the first

          expression, second expression and third expression

          are all false

        */

    }

 42. Amend the code, as in Listing 9-5, to add the else if parts of the 

construct, replacing the existing else code block.

Listing 9-5. Adding the else if parts of the if-else construct

      if (yearsOfNoClaims > 10)

      {

       /*

       This block of code will be executed if the

       yearsofnoclaims is more than 10

       */

        Console.WriteLine("Years of no claims is more than 10");

      }// End of true block of code in the if construct

      else if (yearsOfNoClaims > 8)

      {

       /*

       This block of code will be executed if the

       yearsofnoclaims is more than 8 which means 9, 10, 11,

       12 etc. However, if yearsofnoclaims is 11, 12 etc it

       will have been detected in the yearsofnoclaims > 10

Chapter 9  SeleCtion



212

       block so really it will only be the 9 and 10 that will

       be detected in this block

       */

      Console.WriteLine("Years of no claims is either 9 or 10");

      } // End of first false block of code in the if construct

      else if (yearsOfNoClaims > 6)

      {

       /*

       This block of code will be executed if the yearsofnoclaims

       is more than 6 which means 7, 8, 9, 10 etc. However,

       if yearsofnoclaims is 9, 10 etc it will have been

       detected in the yearsofnoclaims > 8 block so really it

       will only be the 7 and 8 that will be detected in

       this block

       */

        Console.WriteLine("Years of no claims is either 7 or 8");

      } // End of second false block of code in the if construct

      else if (yearsOfNoClaims > 4)

      {

       /*

       This block of code will be executed if the

       yearsofnoclaims is more than 4 which means 5, 6, 7,

       8 etc. However, if yearsofnoclaims is 7, 8 etc it will

       have been detected in the yearsofnoclaims > 6 block so

       really it will only be the 5 and 6 that will be detected

       in this block

       */

        Console.WriteLine("Years of no claims is either 5 or 6");

      } // End of third false block of code in the if construct

      else if (yearsOfNoClaims > 2)

      {

       /*

       This block of code will be executed if the

       yearsofnoclaims is more than 2 which means 3, 4, 5,

       6 etc. However, if yearsofnoclaims is 5, 6 etc it will

Chapter 9  SeleCtion



213

       have been detected in the yearsofnoclaims > 4 block so

       really it will only be the 3 and 4 that will be detected

       in this block

       */

        Console.WriteLine("Years of no claims is either 3 or 4");

      } // End of fourth false block of code in the if construct

      else

      {

       /*

        This block of code will be executed if the

       yearsofnoclaims is not more than 2.

       For this block of code to be executed none of the

       conditions above must have been true (and none of the

       blocks of code were executed)

       */

        Console.WriteLine("Years of no claims is 2, 1, 0 " +

         "\n or indeed a negative number of years " +

         "\n because of a penalty being enforced on our 

policy");          } // End of final false block of code in the if 

construct

} // End of Main() method

  } // End of Selection class

} // End of Chapter9 namespace

 43. Click the File menu.

 44. Choose Save All.

 45. Click the Debug menu.

 46. Choose Start Without Debugging.

The console window will appear and ask the question. Now we can 

try the values 10, 8, 6, 4, and 2, which will test the five else blocks. We will 

start with 10.

 47. Type 10 as the number of full years of no claims.

 48. Press the Enter key.

Chapter 9  SeleCtion



214

Figure 9-9 shows the console window and we can see that the first else 
if block of code has been executed.

Figure 9-9. First else if block executed

 49. Press the Enter key to close the console window.

Start the program again.

 50. Click the Debug menu.

 51. Choose Start Without Debugging.

 52. Type 8 as the number of full years of no claims.

 53. Press the Enter key.

Figure 9-10 shows the console window and we can see that the second else if block 
of code has been executed.

Figure 9-10. Second else if block executed

 54. Press the Enter key to close the console window.

Start the program again.

 55. Click the Debug menu.

 56. Choose Start Without Debugging.

 57. Type 6 as the number of full years of no claims.

 58. Press the Enter key.

Chapter 9  SeleCtion



215

Figure 9-11 shows the console window and we can see that the third else if block of 
code has been executed.

Figure 9-11. Third else if block executed

 59. Press the Enter key to close the console window.

Start the program again.

 60. Click the Debug menu.

 61. Choose Start Without Debugging.

 62. Type 4 as the number of full years of no claims.

 63. Press the Enter key.

Figure 9-12 shows the console window and we can see that the fourth else if block of 
code has been executed.

Figure 9-12. Fourth else if block executed

 64. Press the Enter key to close the console window.

Start the program again.

 65. Click the Debug menu.

 66. Choose Start Without Debugging.

 67. Type 2 as the number of full years of no claims.

 68. Press the Enter key.

Chapter 9  SeleCtion



216

Figure 9-13 shows the console window and we can see that the fifth else if block of 
code has been executed.

Figure 9-13. Fifth else if block executed

 69. Press the Enter key to close the console window.

As we can see, the code works fine, and our test values have shown the correct blocks 

of code were executed. If we formatted the code differently, we could see why the if else if 

construct is often called the if else ladder. The code moves into the right for each section 

as shown in Figure 9-14.

Figure 9-14. If else ladder

So do we think the code is OK because it executes properly?
We might say yes, but that would mean we are only concerned about the code 

execution. Let's think differently and consider code readability, maintainability, and 

efficiency. These aspects of code also play an important role in the code development 

process. It is not aways about our view; there may be others involved in the process. We 

Chapter 9  SeleCtion



217

must take a wider view of code development and not just think about our own small 

worldview. By thinking wider, we will think about others who are required to read our 

code, those who will have to maintain our code, and those who will use the code.

The previous code can indeed be made better in terms of readability and 

maintainability, by using another selection construct called the switch construct. It is 

important for us to understand that, in terms of efficiency, the switch construct is not 

always faster than the if else if construct.

 The switch Construct
The switch construct is an alternative to the if- else construct we have just used in our 

code. As we read earlier, the general format of the switch construct is

      switch (expression)

      {

        case 1:

          {

            statements;

            break;

          }

        case 2:

          {

            statements;

            break;

          }

        default:

          {

            statements;

            break;

          }

          break;

      } // End of switch statement

We will now apply this format to the if else if construct code we have just written. To 

do this we will create a new class in the project and make this new class the startup class.

Chapter 9  SeleCtion

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/if-else


218

 1. Right-click the Chapter9, Selection, project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class Switch.cs.

 5. Click the Add button.

The Switch class code will appear in the editor window and will be similar to 

Listing 9-6. Remember using System is intrinsic and may not be displayed.

Listing 9-6. Class template when adding a class

using System;

namespace Chapter9

{

  internal class Switch

  {

  } // End of Switch class

} // End of Chapter9 namespace

As the Main() method has not been created automatically, we will create a Main() 

method within the class by typing svm and pressing the Tab key twice. We will also delete 

the unwanted imports.

 6. Amend the code as in Listing 9-7.

Listing 9-7. Main() method added and unused imports removed

using System;

namespace Chapter9

{

  internal class Switch

  {

    static void Main(string[] args)

    {

    } // End of Main() method

Chapter 9  SeleCtion



219

  } // End of Switch class

} // End of Chapter9 namespace

Now we need to set this class as the startup class for the project.

 7. Right-click the Chapter9 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the Chapter9.Switch class in the Startup object drop-

down list, as shown in Figure 9-15.

Figure 9-15. Changing the startup class in the C# project 

 10. Close the Properties window.

Now we will add the variables that will be used in our code. Firstly, we will set up a 

variable for the years of no claims and then add the code that will ask the user for input, 

read the console input, and convert it to data type int. In the code there are detailed 

comments to help us get a full understanding of the code.

 11. Amend the code, as in Listing 9-8.

Listing 9-8. Ask for user input and convert the string input to int

    static void Main(string[] args)

    {

      /*

      We will setup our variables that will be used in

      the quote application

      */

      int yearsOfNoClaims;

      /* Read the user input and convert it to an int */

Chapter 9  SeleCtion



220

      Console.WriteLine("How many full years of no claims " +

        "does the driver have?\n");

      yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

 12. Amend the code, as in Listing 9-9, to add the switch construct.

Listing 9-9. The switch construct

      yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

     /*

     Now we will check if the years of no claims is greater

     than 10 if it is true then we execute some lines of code

     which exist between the curly braces, else the program

     just moves to the next code line which is to read a key

     */

     switch (yearsOfNoClaims)

     {

       case 11:

       case 12:

       case 13:

       case 14:

       case 15:

        /*

        This block of code will be executed if the

        yearsOfNoClaims is more than 10

        */

        Console.WriteLine("Years of no claims is more" +

          " than 10 but less than 16");

        break;

       case 9:

       case 10:

        /*

        This block of code will be executed if the

Chapter 9  SeleCtion



221

        yearsOfNoClaims is either 9 or 10

        */

        Console.WriteLine("Years of no claims is either" +

          " 9 or 10");

        break;

       case 7:

       case 8:

        /*

        This block of code will be executed if the

        yearsOfNoClaims is either 7 or 8

        */

        Console.WriteLine("Years of no claims is either 7 or 8");

        break;

       case 5:

       case 6:

        /*

        This block of code will be executed if the

        yearsOfNoClaims is either 5 or 6

        */

        Console.WriteLine("Years of no claims is either 5 or 6");

        break;

       case 3:

       case 4:

        /*

        This block of code will be executed if the

        yearsOfNoClaims is either 3 or 4

        */

        Console.WriteLine("Years of no claims is either 3 or 4");

        break;

       default:

       /*

       This block of code will be executed if the

       yearsOfNoClaims is not one of the values in the case

       statements 4 to 15. That means if the value is more than

       15 or less than 4 this block will be executed.

Chapter 9  SeleCtion



222

       We need to think, is this what we really want. Certainly

       it does not give us the same result as the if else-if

       */

       Console.WriteLine("Years of no claims is either less " +

         "than 3 or greater than 15");

       break;

      } // End of switch construct

    } // End of Main() method

  } // End of Switch class

} // End of Chapter9 namespace

 13. Click the File menu.

 14. Choose Save All.

 15. Click the Debug menu.

 16. Choose Start Without Debugging.

The console window will appear and ask the question. Now we can try the values 15, 

10, 8, 6, 4, and 2, which will test the six case blocks. We will start with 15.

 17. Type 15 and press the Enter key.

Figure 9-16 shows the console window, and we can see that the first case block of 

code has been executed.

Figure 9-16. Switch case 15

 18. Press the Enter key to close the console window.

Start the program again.

 19. Click the Debug menu.

 20. Choose Start Without Debugging.

 21. Type 10 and press the Enter key.

Chapter 9  SeleCtion



223

Figure 9-17 shows the console window, and we can see that the second case block of 

code has been executed.

Figure 9-17. Switch case 10

 22. Press the Enter key to close the console window.

Start the program again.

 23. Click the Debug menu.

 24. Choose Start Without Debugging.

 25. Type 8 and press the Enter key.

Figure 9-18 shows the console window, and we can see that the third case block of 

code has been executed.

Figure 9-18. Switch case 8

 26. Press the Enter key to close the console window.

Start the program again.

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

 29. Type 6 and press the Enter key.

Figure 9-19 shows the console window, and we can see that the fourth case block of 

code has been executed.

Chapter 9  SeleCtion



224

Figure 9-19. Switch case 6

 30. Press the Enter key to close the console window.

Start the program again.

 31. Click the Debug menu.

 32. Choose Start Without Debugging.

 33. Type 4 and press the Enter key.

Figure 9-20 shows the console window, and we can see that the fifth case block of 

code has been executed.

Figure 9-20. Switch case 4

 34. Press the Enter key to close the console window.

Start the program again.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

 37. Type 2 and press the Enter key.

Figure 9-21 shows the console window, and we can see that the sixth case block, the 

default block, of code has been executed.

Figure 9-21. Switch case default

Chapter 9  SeleCtion



225

 38. Press the Enter key to close the console window.

The switch construct is a replacement for the if else if construct.
As we might see, the only issue in our case construct code arises for 

the equivalent of yearsOfNoClaims >10:

• In the if else if, the yearsOfNoClaims >10 handled values 11, 12, 13, 

14, 15, 16, 17, etc.

• In the switch statement, we had to individually state case 11, case 

12, case 13, case 14, case 15, etc. But to do this for all values above 10 

would be a long and wasteful process.

• So we may need to think of a better way to do this. We might use an 

if statement in the default block to check if the value is less than 3 or 

greater than 15 or just use the if else if construct.

• The case construct in C# 6 or lower does not always allow for the use 

of a range of numbers or even >10 as the case. The switch statement 

should not be used for condition checking.

C# 7
From C# 7 we can use a when clause to specify an additional condition that must be 

satisfied for the case statement to evaluate to true. The when clause can be any expression 

that returns a Boolean value, true or false.

 The switch Construct Using when
We will now apply this format to the code we wrote for the case construct. To do this we 

will create a new class in the project and make this new class the startup class.

 1. Right-click the Chapter9 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class Switch7Onwards.cs.

 5. Click the Add button.

Chapter 9  SeleCtion



226

 6. Create a Main() method within the class, as this was not 

produced automatically, and delete the unwanted imports, as in 

Listing 9-10.

Listing 9-10. The class with the Main() method

namespace Chapter9

{

  internal class Switch7Onwards

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Switch7Onwards class

} // End of Chapter9 namespace

Now we need to set this class as the startup class for the project.

 7. Right-click the Chapter9 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the Chapter9.Switch7Onwards class in the Startup object 

drop-down list, as shown in Figure 9-22.

Figure 9-22. Changing the startup class in the C# project

 10. Close the Properties window.

 11. Amend the code, as in Listing 9-11, to add the code with the new 

when format for the first case block.

Chapter 9  SeleCtion



227

Listing 9-11. First case block with the when clause

using System;

namespace Chapter9

{

  internal class Switch7Onwards

  {

    static void Main(string[] args)

    {

      /*

      We will setup our variables that will be used in

      the quote application

      */

      int yearsOfNoClaims;

      /* Read the user input and convert it to an int */

       Console.WriteLine("How many full years of no claims does the driver 

have?\n");

      yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

      /*

      Now we will check if the years of no claims is greater

      than 10

      * if it is true then we execute some lines of code

        which exist between the curly braces, else the program

        just moves to the next code line which is to read a key

      */

      switch (yearsOfNoClaims)

      {

       case int numberOfYearsEntered when (yearsOfNoClaims > 10):

       /*

       This block of code will be executed if the

       yearsofnoclaims is more than 10

       */

      Console.WriteLine("Years of no claims is more than 10");

       break;

Chapter 9  SeleCtion



228

      } // End of switch construct

    } // End of Main() method

  } // End of Switch7Onwards class

} // End of Chapter9 namespace

Note
The line of code that has the when clause in it tells the compiler that we want this case 

block to execute when the yearsOfNoClaims value is greater than 10.

 12. Amend the code, as in Listing 9-12, to add the new when format 

for the second case block.

Listing 9-12. Second case block with the when clause

      Console.WriteLine("Years of no claims is more than 10");

       break;

      case int numberOfYearsEntered when (yearsOfNoClaims > 8):

       /*

       This block of code will be executed if the

       yearsofnoclaims is more than 8 which means 9, 10, 11,

       12 etc. However if yearsofnoclaims is 11, 12 etc it

       will have been detected in the case above where the

       condition  yearsofnoclaims > 10is used.

       */

      Console.WriteLine("Years of no claims is either 9 or 10");

      break;

      } //End of switch construct

    } // End of Main() method

  } // End of Switch7Onwards class

} // End of Chapter9 namespace

The when clause tells the compiler that we want this case block to execute when the 

yearsOfNoClaims value is greater than 8 and less than 11.

We will now repeat the use of the when statement for the other case elements.

 13. Amend the code, as in Listing 9-13, to add the new format for the 

remaining case blocks.

Chapter 9  SeleCtion



229

Listing 9-13. Completed code with all when clauses

      Console.WriteLine("Years of no claims is either 9 or 10");

        break;

      case int numberOfYearsEntered when (yearsOfNoClaims > 6):

        /*

        This block of code will be executed if the

        yearsofnoclaims is more than 6 which means 7, 8, 9,

        10 etc. However if yearsofnoclaims is 9, 10 etc it will

        have been detected in the case above where the condition

        yearsofnoclaims > 8 is used.

        */

        Console.WriteLine("Years of no claims is either 7 or 8");

        break;

      case int numberOfYearsEntered when (yearsOfNoClaims > 4):

      /*

      This block of code will be executed if the

        yearsofnoclaims is more than 4 which means 5, 6, 7,

        8 etc. However if yearsofnoclaims is 7, 8 etc it will

        have been detected in the case above where the condition

        yearsofnoclaims > 4 is used.

        */

        Console.WriteLine("Years of no claims is either 5 or 6");

        break;

      case int numberOfYearsEntered when (yearsOfNoClaims > 2):

        /*

        This block of code will be executed if the

        yearsofnoclaims is more than 2 which means 3, 4, 5,

        6 etc.. However if yearsofnoclaims is 5, 6 etc it will

        have been detected in the case above where the condition

        yearsofnoclaims > 2 is used.

        */

        Console.WriteLine("Years of no claims is either 3 or 4");

        break;

Chapter 9  SeleCtion



230

      default:

      /*

      This block of code will be executed if the

      yearsofnoclaims is not more than 2. For this block of

      code to be executed none of the conditions above must

      have been true (and none of the blocks of code were

      executed*/

      Console.WriteLine("Years of no claims is 2, 1, 0 " +

       "\n or indeed a negative number of years " +

       "\n because of a penalty being enforced on our policy");

      break;

      } // End of switch construct

    } // End of Main() method

  } // End of Switch7Onwards class

} // End of Chapter9 namespace

 14. Click the File menu.

 15. Choose Save All.

 16. Click the Debug menu.

 17. Choose Start Without Debugging.

The console window will appear and ask the question. Now we can try the values 15, 

10, 8, 6, 4, and 2, which will test the six case blocks. We will start with 15.

 18. Type 15 and press the Enter key.

Figure 9-23 shows the console window and we can see that the first case block of 

code has been executed.

Figure 9-23. Case when > 10 executed

Chapter 9  SeleCtion



231

 19. Press the Enter key to close the console window.

 20. Start the program again by clicking the Debug menu.

 21. Choose Start Debugging.

 22. Type 10 and press the Enter key.

Figure 9-24 shows the console window and we can see that the second case block of 

code has been executed.

Figure 9-24. Case when > 8 executed

 23. Press the Enter key to close the console window.

Repeat the input process for the values 8, 6, 4, and 2.

 switch with Strings
The C# switch programs we have been writing have switches using an integer. We have 

therefore executed one block of code, or another, based on the integer value in the 

case statement. C# also allows us to use the case construct with a string. When we use 

a string, the construct is the same as we have already coded, but the string must be 

enclosed in double quotes "".

We will now use a string in the case construct. To do this we will amend the Switch.cs 

program, so the data read from the console is not converted to an int – we will just keep 

it as a string. To achieve this, we will also need to change the data type of the variable 

yearsOfNoClaims from int to string. Rather than changing the existing Switch class, we 

will create a copy of the class, rename it, and then change the code in the copied class. 

This is a great technique, as we can reuse existing code and save lots of time having to 

start a program from “scratch.”

 24. Right-click the Switch class.

 25. Choose Copy.

 26. Right-click the Chapter9 project.

Chapter 9  SeleCtion



232

 27. Choose Paste.

The new file Switch – Copy.cs will be added to the project.

 28. Right-click the Switch – Copy.cs file.

 29. Choose Rename.

 30. Type SwitchString.cs as the new name for this class.

 31. Make sure this new class is open in the editor window, not the 

original class.

Looking at the code for the new class in the editor window, we will see an error line 

under the class name in the code, as shown in Figure 9-25. This is because the class 

name does not match the name of the file, class, in the Solution Explorer panel and the 

class name Switch is therefore already in existence in the Chapter9 namespace.

Figure 9-25. Class code has not been renamed as shown by the error

Although it says a class called Switch exists, which is correct, we just need to rename 

the class to match the name we gave it, SwitchString.
We can right-click the word Switch and choose rename, but do not check the 

boxes that appear and ask about renaming other things as this may also rename the 

original class. If we did this, we would have two classes with the same name in the same 

namespace, and we read in Chapter 3 that this is not allowed.

 32. Amend the word Switch in the editor window to say 

SwitchString.cs.

 33. Amend the code as shown in Listing 9-14 to change the data type 

of the variable to string instead of int.

Chapter 9  SeleCtion

https://doi.org/10.1007/978-1-4842-8619-7_3


233

Listing 9-14. Change variable type from int to string

    static void Main(string[] args)

    {

      /*

      We will setup our variables that will be used in

      the quote application  */

      string yearsOfNoClaims;

 34. Amend the code as shown in Listing 9-15 to remove the 

conversion of the data input by the user, as we want this to remain 

a string, which is the default for console input.

Listing 9-15. Remove the conversion from string to int

      string yearsOfNoClaims;

      /* Read the user input and convert it to an int */

      Console.WriteLine("How many full years of no claims " +

        "does the driver have?\n");

      yearsOfNoClaims = Console.ReadLine();

The code line was yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());, 

and we have removed the conversion from string to Int32.

 35. Amend the code as shown in Listing 9-16 to add the new format 

for the first case block. This will mean enclosing the numbers in 

double quotes as they are being entered as strings.

Listing 9-16. Case statements accepting string values (double quotes)

     switch (yearsOfNoClaims)

     {

       case "11":

       case "12":

       case "13":

       case "14":

       case "15":

Chapter 9  SeleCtion



234

 36. Amend the code as shown in Listing 9-17 to add the new format 

for the second and remaining case blocks.

Listing 9-17. All case statements accepting string values (double quotes)

     switch (yearsOfNoClaims)

     {

       case "11":

       case "12":

       case "13":

       case "14":

       case "15":

        /*

        This block of code will be executed if the

        yearsofnoclaims is more than 10

        */

        Console.WriteLine("Years of no claims is more" +

          " than 10 but less than 16");

        break;

       case "9":

       case "10":

        /*

        This block of code will be executed if the

        yearsofnoclaims is either 9 or 10

        */

        Console.WriteLine("Years of no claims is either" +

          " 9 or 10");

        break;

       case "7":

       case "8":

        /*

        This block of code will be executed if the

        yearsofnoclaims is either 7 or 8

        */

        Console.WriteLine("Years of no claims is either 7 or 8");

        break;

Chapter 9  SeleCtion



235

       case "5":

       case "6":

        /*

        This block of code will be executed if the

        yearsofnoclaims is either 5 or 6

        */

        Console.WriteLine("Years of no claims is either 5 or 6");

        break;

       case "3":

       case "4":

        /*

        This block of code will be executed if the

        yearsofnoclaims is either 3 or 4

        */

        Console.WriteLine("Years of no claims is either 3 or 4");

        break;

       default:

       /*

       This block of code will be executed if the

       yearsofnoclaims is not one of the values in the case

       statements 4 to 15. That means if the value is more than

       15 or less than 4 this block will be executed.

       We need to think, is this what we really want. Certainly

       it does not give us the same result as the if else-if

       */

       Console.WriteLine("Years of no claims is either less " +

         "than 3 or greater than 15");

       break;

      } //End of switch construct    } // End of Main() method

    } // End of SwitchString class

  } // End of Chapter9 namespace

 37. Right-click the Chapter9 project in the Solution Explorer panel.

 38. Choose Properties from the pop-up menu.

Chapter 9  SeleCtion



236

 39. Choose the SwitchString class in the Startup object drop-down 

list, as shown in Figure 9-26.

Figure 9-26. Set the startup class

 40. Click the File menu.

 41. Choose Save All.

 42. Click the Debug menu.

 43. Choose Start Without Debugging.

The console window will appear and ask the question. Now we can try the values 15, 

10, 8, 6, 4, and 2, which will test the six case blocks. We will start with 15.

 44. Type 15 and press the Enter key.

Figure 9-27 shows the console window and we can see that the first case block of 

code that uses the string has been executed.

Figure 9-27. Switch case 15

 45. Press the Enter key to close the console window.

Start the program again.

 46. Click the Debug menu.

 47. Choose Start Without Debugging.

Chapter 9  SeleCtion



237

 48. Type 10 and press the Enter key.

Figure 9-28 shows the console window and we can see that the second case block of 

code that uses the string has been executed.

Figure 9-28. Switch case 10

 49. Press the Enter key to close the console window.

Start the program again.

 50. Click the Debug menu.

 51. Choose Start Without Debugging.

 52. Type 8 and press the Enter key.

Figure 9-29 shows the console window and we can see that the third case block of 

code that uses the string has been executed.

Figure 9-29. Switch case 8

 53. Press the Enter key to close the console window.

Start the program again.

 54. Click the Debug menu.

 55. Choose Start Without Debugging.

 56. Type 6 and press the Enter key.

Figure 9-30 shows the console window and we can see that the fourth case block of 

code that uses the string has been executed.

Chapter 9  SeleCtion



238

Figure 9-30. Switch case 6

 57. Press the Enter key to close the console window.

Start the program again.

 58. Click the Debug menu.

 59. Choose Start Without Debugging.

 60. Type 4 and press the Enter key.

Figure 9-31 shows the console window and we can see that the fifth case block of 

code that uses the string has been executed.

Figure 9-31. Switch case 4

 61. Press the Enter key to close the console window.

Start the program again.

 62. Click the Debug menu.

 63. Choose Start Without Debugging.

 64. Type 2 and press the Enter key.

Figure 9-32 shows the console window and we can see that the sixth case block, the 

default block, of code that uses the string has been executed.

Chapter 9  SeleCtion



239

Figure 9-32. Switch case default

 65. Press the Enter key to close the console window.

 switch with Strings
 Additional Example

We should remember the coding technique for displaying data using placeholders that 

we applied earlier: 

• The placeholder has the format placeholders {}.

• Each placeholder has a number contained in the open and 

close braces.

• The number represents the position of the variable name, which is in 

the comma-separated list at the end of the statement.

• The variables are numbered starting with a 0, then a 1, etc. This 

means the numbers are zero indexed.

The placeholder format is very neat and means we do not have to keep opening and 

closing the double quotes to insert the concatenation + symbol. This new example will 

reinforce selection using the switch statement with string values.

 1. Right-click the Chapter9 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class SwitchStringVehicleModel.cs.

 5. Click the Add button.

Chapter 9  SeleCtion



240

 6. Amend the code as shown in Listing 9-18 to add the required 

variables and make use of the new WriteLine() format within the 

switch construct.

Listing 9-18. Switch using strings and using WriteLine() with placeholders

namespace Chapter9

{

  internal class SwitchStringVehicleModel

  {

    static void Main()

    {

      /*

      In this section we declare the two variables of data type

      string that we will use throughout the program code.

      */

      string vehicleModel;

      string vehicleManufacturer;

      Console.WriteLine();

      Console.WriteLine("What is the model of the vehicle?\n");

      /*

      In this section we read the user input from the console.

      The console input is by default a string data type which

      means we can directly assign the value to the string

      variable called vehicleModel. */

      vehicleModel = Console.ReadLine();

      /*

      In this section we use the string variable called

      vehicleModel in the case statement to decide which block

      of code will be executed. The blocks of code therefore

      will be based on the model of the vehicle and the code will

      set the value of the variable called vehicleManufacturer.

      */

      switch (vehicleModel)

      {

Chapter 9  SeleCtion



241

        case "Edge":

        case "Fiesta":

        case "Focus":

        case "Kuga":

        case "Mondeo":

        case "Mustang":

          vehicleManufacturer = "Ford";

          break;

        case "Astra":

        case "Corsa":

        case "Insignia":

        case "Viva":

          vehicleManufacturer = "Vauxhall";

          break;

        case "Altima":

        case "Juke":

        case "Sentra":

          vehicleManufacturer = "Nissan";

          break;

        case "C-Class":

        case "E-Class":

        case "S-Class":

        case "GLA":

        case "GLC":

        case "GLE":

          vehicleManufacturer = "Mercedes Benz";

          break;

        default:

          vehicleManufacturer = "unknown";

          break;

      }

      /*

      Here we will write the same message to the console in two

      different ways so we can use a new technique

      */

Chapter 9  SeleCtion



242

      /*

      In this statement we are writing data to the console in

      our normal way with a concatenated (joined) string and

      this works fine

      */

      Console.WriteLine("\nThe " + vehicleModel + " " +

        "manufacturer is " + vehicleManufacturer);

      /*

      In this statement we are writing data to the console in a

      different way using a string which has placeholders {}.

      Each place holder has a number and this number represents

      the position of the variable name which is in the comma

      separated list at the end of the statement. The variables

      are numbered starting with a 0 then a 1 etc (zero indexed)

      and are at the end of the statement.

      The example below effectively means

      Console.WriteLine("\nThe vehicleModel manufacturer is

      vehicleManufacturer ");

      This new format is very neat and means we do not have to

      keep opening and closing the double quotes and having the

      concatenation + symbol.

      */

      Console.WriteLine("\nThe {0} manufacturer is {1} ",

        vehicleModel, vehicleManufacturer);

    } // End of Main() method

  } // End of SwitchStringVehicleModel class

} // End of Chapter9 namespace

 7. Right-click the Chapter9 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the SwitchStringVehicleModel.cs class in the Startup 

object drop-down list.

 10. Click the File menu.

Chapter 9  SeleCtion



243

 11. Choose Save All.

 12. Click the Debug menu.

 13. Choose Start Without Debugging.

The console window will appear and ask the question. Now we can try the string 

values Mustang, Corsa, Juke, S-Class, and Pacifica, which will test the five case blocks. 

We will start with Mustang.

 14. Type Mustang and press the Enter key.

Figure 9-33 shows the console window and we can see that the first case block of 

code has been executed, and the different WriteLine() formats have output the same 

message, but one has used concatenation and the other has used the placeholders.

Figure 9-33. Switch case block 1

 15. Press the Enter key to close the console window.

Start the program again.

 16. Click the Debug menu.

 17. Choose Start Without Debugging.

 18. Type Corsa and press the Enter key.

Figure 9-34 shows the console window and we can see that the second case block of 

code has been executed.

Chapter 9  SeleCtion



244

Figure 9-34. Switch case block 2

 19. Press the Enter key to close the console window.

Start the program again.

 20. Click the Debug menu.

 21. Choose Start Without Debugging.

 22. Type Juke and press the Enter key.

Figure 9-35 shows the console window and we can see that the third case block of 

code has been executed.

Figure 9-35. Switch case block 3

 23. Press the Enter key to close the console window.

Start the program again.

 24. Click the Debug menu.

 25. Choose Start Without Debugging.

 26. Type S-Class and press the Enter key.

Figure 9-36 shows the console window and we can see that the fourth case block of 

code has been executed.

Chapter 9  SeleCtion



245

Figure 9-36. Switch case block 4

 27. Press the Enter key to close the console window.

Start the program again.

 28. Click the Debug menu.

 29. Choose Start Without Debugging.

 30. Type Pacifica and press the Enter key.

Figure 9-37 shows the console window and we can see that the fifth case block, the 

default case block, of code has been executed.

Figure 9-37. Switch case block 5 – the default case block

 31. Press the Enter key to close the console window.

An issue to be considered when using strings with the case statement is that 

checking is case sensitive. This should be no surprise to us really, as we will be familiar 

with writing and will know that these are all different strings:

• Mustang

• MUSTANG

• mustang

• mUSTANG

Chapter 9  SeleCtion



246

So, if these are all different in our writing, then we can imagine that the C# compiler 

will also treat them as being different. This will mean that the user needs to input the 

data in precisely the same way that we as the developer have checked the string in the 

switch statement. This is certainly an issue and not a very satisfactory experience for 

the end user. To avoid such issues, different techniques can be used by us as developers, 

such as using a method to convert the user input to uppercase and then having the case 

statements have uppercase text. The uppercase method belongs to the String class and is 

called ToUpper(), as shown in Figure 9-38.

Figure 9-38. The ToUpper() method from the String class

We will see more of this in Chapter 15 on string handling, but as a “taster,” this might 

be coded as shown in Listing 9-19.

Listing 9-19. ToUpper() method of the String class

      switch (vehicleModel.ToUpper())

      {

        case "EDGE":

        case "FIESTA":

        case "FOCUS":

        case "KUGA":

        case "MONDEO":

        case "MUSTANG":

          vehicleManufacturer = "Ford";

          break;

If the user inputs any string, it will be converted to uppercase when the switch 

statement is executed. So, if the user enters mUsTaNg, the code will convert it to 

uppercase MUSTANG and the case statement will find the correct manufacturer. We 

could also use the ToUpper() method on the output, as shown in Listing 9-20, and the 

output would show uppercase letters as shown in Figure 9-39.

Chapter 9  SeleCtion

https://doi.org/10.1007/978-1-4842-8619-7_15


247

Listing 9-20. ToUpper() method of the String class

      Console.WriteLine("\nThe {0} manufacturer is {1} ",

        vehicleModel.ToUpper(), vehicleManufacturer);

Figure 9-39. The ToUpper() method from the String class

For now, do not worry about this uppercase and lowercase.

 Logical Operators
We said earlier

We will also look at the logical operators AND (&&), || (OR), and ! (NOT).

Well, now is the time to use them, by building on the if construct we have learned.

AND
Looking at the AND operator, we will see that both parts must be TRUE for the whole 

statement to be TRUE. Listing 9-21 shows the AND in an if construct, even though in C# 

coding we will not use the word AND.

Listing 9-21. Simplified version of an AND operator

    if (yearsOfNoClaims > 10 AND policyHolderAge > 50)

    {

      // Some business logic

    }

Looking at Table 9-2, we can see all the possibilities for an AND operator when there 

are two parts.

Chapter 9  SeleCtion



248

Table 9-2. The AND, &&, operator

First part Operator Second part Result

trUe anD trUe = trUe

trUe anD FalSe = FalSe

FalSe anD trUe = FalSe

FalSe anD FalSe = FalSe

OR
Looking at the OR operator, we will see that only one part must be TRUE for the 

whole statement to be TRUE. Listing 9-22 shows the OR in an if construct, even though 

in C# coding we will not use the word OR.

Listing 9-22. Simplified version of an OR operator

    if (yearsOfNoClaims > 10 OR policyHolderAge > 50)

    {

      // Some business logic

    }

Looking at Table 9-3, we can see all the possibilities for an OR operator.

Table 9-3. The OR, !!, operator

First part Operator Second part Result

trUe or trUe = trUe

trUe or FalSe = trUe

FalSe or trUe = trUe

FalSe or FalSe = FalSe

NOT
Looking at the NOT operator, we will see that the current value becomes the opposite 

of what it is: TRUE becomes FALSE and FALSE becomes TRUE. An example of using 

NOT in the if construct is shown in Listing 9-23.

Chapter 9  SeleCtion



249

Listing 9-23. Simplified version of a NOT, !, operator

    if (!yearsOfNoClaims > 10)

    {

      // Some business logic

    }

Looking at Table 9-4, we can see all the possibilities for a NOT operator.

Table 9-4. The NOT, !, operator

Operator First part Result

not trUe = FalSe

not FalSe = trUe

In C# the logical operators will only evaluate the second part of the expression if it 

is necessary. “Why?” we might ask. Well, we will see from the following examples that it 

makes sense to use this short-circuit evaluation to save needless evaluation.

AND
In our truth table, Table 9-2, we saw that the only combination that evaluates to 

TRUE is when both parts of the expression are TRUE. So we can short-circuit any 

combinations that start with a FALSE:

if(6>7 AND 9<10) equates to if(FALSE AND TRUE), which equates to FALSE.

As the first part evaluates to FALSE there is no point in evaluating the second part.

OR
In our truth table, Table 9-3, we saw that a TRUE or a FALSE as the first part could 

lead to an overall evaluation of TRUE. So we cannot short-circuit when using the OR 

construct.

Let's code some C# and build our programming muscle.

 Using the AND Operator

 1. Right-click the Chapter9 project.

 2. Choose Add.

 3. Choose Class.

Chapter 9  SeleCtion



250

 4. Name the class SelectionAnd.cs.

 5. Click the Add button.

 6. Amend the code to add the Main() method as in Listing 9-24.

Listing 9-24. Adding the Main() method

namespace Chapter9

{

  internal class SelectionAnd

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of SelectionAnd class

} // End of Chapter9 namespace

Now we need to set this class as the startup class.

 7. Right-click the Chapter9 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the SelectionAnd.cs class in the Startup object drop-

down list.

 10. Close the Properties window.

 11. Amend the code to add the variables required, as in Listing 9-25.

Listing 9-25. Adding the variables

    static void Main(string[] args)

    {

      /*

      We will setup our variables that will be used in

      the quote application

      */

      int yearsOfNoClaims;

      int ageOfDriver;

    } // End of Main() method

Chapter 9  SeleCtion



251

 12. Amend the code, as in Listing 9-26, to request user input for the 

years of no claims and convert it to an int.

Listing 9-26. Accept user input and convert to an int

      int yearsOfNoClaims;

      int ageOfDriver;

      /* Read the user input and convert it to an int */

       Console.WriteLine("How many full years of no claims does the driver 

have?\n");

      yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

 13. Amend the code, as in Listing 9-27, to request user input for the 

driver age and convert it to an int.

Listing 9-27. Accept user input and convert to an int

      yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

      Console.WriteLine("What is the current age of the driver?\n");

      ageOfDriver = Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

Now we will check if the number of years of no claims is greater than 10 and if the 

age of the driver is greater than 40:

• If these are both true, we execute code in the if block.

• Otherwise, move to the else block and execute the code in this block.

 14. Amend the code, as in Listing 9-28.

Listing 9-28. Use selection through an if-else statement

      ageOfDriver = Convert.ToInt32(Console.ReadLine());

      /*

      Now we will check if the years of no claims is greater

      than 10 AND if the age of the driver is greater than 40.

Chapter 9  SeleCtion



252

      If both are TRUE we have the Boolean expression

      TRUE AND TRUE which equates to TRUE and we then we

      execute some lines of code which exist between the

      curly braces of the code block, otherwise the program

      moves to the else code block and execute some lines of

      code in this code block

      */

      if (yearsOfNoClaims > 10 && ageOfDriver > 40)

      {

      /*

        This block of code will be executed if both

        parts of the condition are TRUE

      */

        Console.WriteLine("This quote is eligible for a 10% discount");

      } // End of true part

      else

      {

      /*

      This block of code will be executed if the one

      part of the condition is FALSE

      */

        Console.WriteLine("This quote is ineligible for a discount");

      } // End of false part

    } // End of Main() method

  } // End of SelectionAnd class

} // End of Chapter9 namespace

Testing TRUE AND TRUE

 15. Click the File menu.

 16. Choose Save All.

 17. Click the Debug menu.

 18. Choose Start Without Debugging.

 19. Click in the console window.

Chapter 9  SeleCtion



253

 20. Type 20 as the number of years of no claims.

 21. Press the Enter key on the keyboard.

 22. Type 50 as the current age of the driver.

 23. Press the Enter key on the keyboard.

Figure 9-40 shows the console window with the message that a discount is 

applicable, as 20 is greater than 10 AND 50 is greater than 40.

Figure 9-40. True section of if-else executed

 24. Press the Enter key to close the console window.

Testing FALSE AND TRUE

 25. Click the File menu.

 26. Choose Save All.

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

 29. Click in the console window.

 30. Type 10 as the number of years of no claims.

 31. Press the Enter key on the keyboard.

 32. Type 50 as the current age of the driver.

 33. Press the Enter key on the keyboard.

Figure 9-41 shows the console window with the message that no discount is 

applicable, as 50 is greater than 40 BUT 10 is not greater than 10.

Chapter 9  SeleCtion



254

Figure 9-41. False section of if-else executed

 34. Press the Enter key to close the console window.

Testing TRUE AND FALSE

 35. Click the File menu.

 36. Choose Save All.

 37. Click the Debug menu.

 38. Choose Start Without Debugging.

 39. Click in the console window.

 40. Type 20 as the number of years of no claims.

 41. Press the Enter key on the keyboard.

 42. Type 30 as the current age of the driver.

 43. Press the Enter key on the keyboard.

Figure 9-42 shows the console window with the message that no discount is 

applicable as 20 is greater than 10 BUT 30 is not greater than 40.

Figure 9-42. False section of if-else executed

Chapter 9  SeleCtion



255

 44. Press the Enter key to close the console window.

Let's code some C# and build our programming muscle.

 Using the OR Operator

 1. Right-click the Chapter9 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class SelectionOR.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not produced 

automatically. Type svm and press Tab twice, and then delete the 

unwanted imports.

Now we need to set this class as the startup class.

 7. Right-click the Chapter9 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the SelectionOR class in the Startup object drop-down list.

 10. Close the Properties window.

 11. Open the SelectionAnd file and copy the code from within the 

Main() method.

 12. Move back to the SelectionOR file in the editor and paste the 

copied code between the open and close curly braces, { }, of the 

Main() method.

We will amend the code to use the logical operator OR rather than the 

logical operator AND. Within the copied code, we will change the && to 

|| and change the comments to match. This means our code will

Chapter 9  SeleCtion



256

• Check if the number of years of no claims is greater than 10 OR if the 

age of the driver is greater than 40:

If these are both true, we execute code in the if block.

If one of these is true, we execute code in the if block.

Otherwise, move to the else block and execute the code in 

this block.

 13. Amend the code, as in Listing 9-29.

Listing 9-29. Use the OR ( || ) instead of the AND ( && )

      ageOfDriver = Convert.ToInt32(Console.ReadLine());

      /*

      Now we will check if the years of no claims is greater

      than 10 OR if the age of the driver is greater than 40.

      If both are TRUE we have the Boolean expression

      TRUE AND TRUE which equates to TRUE or if one of them

      is TRUE we have the Boolean expression TRUE OR FALSE

      or FALSE OR TRUE which equates to TRUE and we then we

      execute some lines of code which exist between the curly

      braces of the code block, otherwise the program moves

      to the else code block and executes some lines of code

      in this code block

      */

      if (yearsOfNoClaims > 10 || ageOfDriver > 40)

      {

        /*

          This block of code will be executed if one

          part of the condition are TRUE

        */

        Console.WriteLine("This quote is eligible for a 10% discount");

      } // End of true part

      else

      {

        /*

Chapter 9  SeleCtion



257

        This block of code will be executed if the one

        part of the condition is FALSE

        */

        Console.WriteLine("This quote is ineligible for a discount");

      } // End of false part

Testing TRUE OR TRUE

 14. Click the File menu.

 15. Choose Save All.

 16. Click the Debug menu.

 17. Choose Start Without Debugging.

 18. Click in the console window.

 19. Type 20 as the number of years of no claims.

 20. Press the Enter key on the keyboard.

 21. Type 50 as the current age of the driver.

 22. Press the Enter key on the keyboard.

Figure 9-43 shows the console window with the message that a discount is applicable 

as 20 is greater than 10 OR 50 is greater than 40. In this case both are TRUE, which 

equates to TRUE.

Figure 9-43. True section of if-else executed

 23. Press the Enter key to close the console window.

Testing FALSE OR TRUE

 24. Click the File menu.

Chapter 9  SeleCtion



258

 25. Choose Save All.

 26. Click the Debug menu.

 27. Choose Start Without Debugging.

 28. Click in the console window.

 29. Type 10 as the number of years of no claims.

 30. Press the Enter key on the keyboard.

 31. Type 50 as the current age of the driver.

 32. Press the Enter key on the keyboard.

Figure 9-44 shows the console window with the message that a discount is applicable 

as 10 is not greater than 10 (FALSE) OR 50 is greater than 40 (TRUE). In this case we have 

FALSE OR TRUE, which equates to TRUE.

Figure 9-44. True section of if-else executed

 33. Press the Enter key to close the console window.

Testing TRUE OR FALSE

 34. Click the File menu.

 35. Choose Save All.

 36. Click the Debug menu.

 37. Choose Start Without Debugging.

 38. Click in the console window.

 39. Type 20 as the number of years of no claims.

 40. Press the Enter key on the keyboard.

Chapter 9  SeleCtion



259

 41. Type 30 as the current age of the driver.

 42. Press the Enter key on the keyboard.

Figure 9-45 shows the console window with the message that a discount is applicable 

as 20 is greater than 10 (TRUE) OR 30 is not greater than 40 (FALSE). In this case we have 

TRUE OR FALSE, which equates to TRUE. 

Figure 9-45. True section of if-else executed

 43. Press the Enter key to close the console window.

Testing FALSE OR FALSE

 44. Click the File menu.

 45. Choose Save All.

 46. Click the Debug menu.

 47. Choose Start Without Debugging.

 48. Click in the console window.

 49. Type 10 as the number of years of no claims.

 50. Press the Enter key on the keyboard.

 51. Type 30 as the current age of the driver.

 52. Press the Enter key on the keyboard.

Figure 9-46 shows the console window with the message that a discount is not 

applicable as 10 is not greater than 10 (FALSE) OR 30 is not greater than 40 (FALSE). In 

this case we have FALSE OR FALSE, which equates as FALSE.

Chapter 9  SeleCtion



260

Figure 9-46. False section of if-else executed

 53. Press the Enter key.

Let's code some C# and build our programming muscle.

 Using the NOT Operator

 1. Right-click the Chapter9 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class SelectionNOT.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not produced 

automatically, and delete the unwanted imports.

Remember the shortcut to create the Main() method is to type svm and then press 

the Tab key twice. Now we need to set this class as the startup class.

 7. Right-click the Chapter9 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the SelectionNOT class in the Startup object drop-

down list.

 10. Close the Properties window.

 11. Open the SelectionOR file and copy the code within the 

Main() method.

Chapter 9  SeleCtion



261

 12. In the Main() method of the SelectionNOT file, paste the 

copied code.

Now we will amend the code to use the logical operator NOT. We will

• Change the || to && (change the OR to an AND).

• Add brackets around the expression.

• Add the !, NOT, in front of the brackets.

• Leave the comments the same.

The if (!(yearsOfNoClaims > 10 && ageOfDriver > 40)) code line means we 

are checking if the number of years of no claims is greater than 10 AND if the age of the 

driver is greater than 40:

• If these are both true, the expression in the brackets equates to true 

but we negate it (!) to false, and we do not execute the code in the 

if block.

• If one of these is false, the expression in the brackets equates to false 

but we negate it (!) to true, and we execute the code in the if block.

• If these are both false, the expression in the brackets equates to false 

but we negate it (!) to true, and we execute the code in the if block.

We will now change to an AND expression, add an extra set of brackets () around it, 

and put a !, NOT, before the new brackets. We will leave the comments as they are.

 13. Amend the code, as in Listing 9-30.

Listing 9-30. Use the NOT ( ! ) operator

      if (!(yearsOfNoClaims > 10 && ageOfDriver > 40))

      {

        /*

          This block of code will be executed if one

          parts of the condition are TRUE

        */

        Console.WriteLine("This quote is eligible for a 10% discount");

      } // End of true part

Testing TRUE AND TRUE

Chapter 9  SeleCtion



262

 14. Click the File menu.

 15. Choose Save All.

 16. Click the Debug menu.

 17. Choose Start Without Debugging.

 18. Click in the console window.

 19. Type 20 as the number of years of no claims.

 20. Press the Enter key on the keyboard.

 21. Type 50 as the current age of the driver.

 22. Press the Enter key on the keyboard.

Figure 9-47 shows the console window with the message that a discount is not 

applicable as we have an overall TRUE negated to a FALSE (20 is greater than 10 AND 50 

is greater than 40, which means TRUE negated to FALSE, so no discount is applicable).

Figure 9-47. False section of if-else executed

 23. Press the Enter key.

Testing FALSE AND TRUE
Start the program again.

 24. Click the Debug menu.

 25. Choose Start Without Debugging.

 26. Click in the console window.

 27. Type 10 as the number of years of no claims.

 28. Press the Enter key on the keyboard.

 29. Type 50 as the current age of the driver.

Chapter 9  SeleCtion



263

 30. Press the Enter key on the keyboard.

Figure 9-48 shows the console window with the message that a discount is applicable 

as we have an overall FALSE negated to a TRUE (10 is not greater than 10 AND 50 is 

greater than 40, which means FALSE negated to TRUE, so a discount is applicable).

Figure 9-48. False section of if-else executed

 31. Press the Enter key to close the console window.

Testing TRUE AND FALSE
Start the program again.

 32. Click the Debug menu.

 33. Choose Start Without Debugging.

 34. Click in the console window.

 35. Type 20 as the number of years of no claims.

 36. Press the Enter key on the keyboard.

 37. Type 30 as the current age of the driver.

 38. Press the Enter key on the keyboard.

Figure 9-49 shows the console window with the message that a discount is applicable 

as we have an overall FALSE negated to a TRUE (20 is greater than 10 AND 30 is not 

greater than 40, which means FALSE negated to TRUE, so a discount is applicable).

Chapter 9  SeleCtion



264

Figure 9-49. False section of if-else executed

 39. Press the Enter key to close the console window.

 Conditional Operator (Ternary Operator)
Earlier, we used the if-else construct where there is one block of code executed if the 

condition is true and another block executed if the condition is false. The code we used 

is shown in Listing 9-31, with the comments removed.

Listing 9-31. if-else construct

  if (yearsOfNoClaims > 10)

  {

    Console.WriteLine("Years of no claims is more than 10");

  }// End of true block of code in the if construct

  else

  {

    Console.WriteLine("Years of no claims is less than or " +

      "equal to 10");

  } // End of false block of code in the if construct

However, there is another way to do the if-else construct, using the C# conditional 

operator, or ternary operator as it is also known. The ternary conditional operator 

will evaluate the Boolean expression and return either true or false. The syntax for the 

ternary conditional operator is

Condition ? First Expression : Second Expression

Chapter 9  SeleCtion



265

So analyzing this syntax, we will see that

• Condition is a “statement” that must evaluate to true or false.

• If the condition is true, the First Expression gets executed.

• If the condition is false, the Second Expression gets executed.

Looking at our if-else example, we could say

Condition is yearsOfNoClaims > 10

First Expression is Console.WriteLine("Years of no claims is more than 10");

Second Expression is Console.WriteLine("Years of no claims is less than or equal 

to 10");

If we follow this syntax, then our code could be written as

 yearsOfNoClaims > 10 ? "Years of no claims is more than 10" :

                "Years of no claims is less than or equal to 10";

But let's see how we actually write it.

Let's code some C# and build our programming muscle.

 1. Right-click the Chapter9 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class Ternary.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not produced 

automatically, and delete the unwanted imports.

Remember the shortcut to create the Main() method is to type svm and then press 

the Tab key twice. Now we need to set this class as the startup class.

 7. Right-click the Chapter9 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the Ternary class in the Startup object drop-down list.

Chapter 9  SeleCtion



266

 10. Close the Properties window.

Now we will amend the code to use the ternary conditional operator.

 11. Amend the code as in Listing 9-32.

Listing 9-32. Ternary operator

namespace Chapter9

{

  internal class Ternary

  {

    static void Main(string[] args)

    {

    /*

    We will setup our variables that will be used in

    the quote application

    */

    int yearsOfNoClaims;

    /* Read the user input and convert it to an int */

    Console.WriteLine("How many full years of no claims" +

      " does the driver have?\n");

    yearsOfNoClaims = Convert.ToInt32(Console.ReadLine());

    // Assign the result of the ternary to a string variable

    string message = yearsOfNoClaims > 10 ?

              "Years of no claims is more than 10" :

              "Years of no claims is less than or equal to 10";

    // Display the result of the ternary condition

    Console.WriteLine(message);

    } // End of Main() method

  } // End of Ternary class

} // End of Chapter9 namespace

 12. Click the File menu.

 13. Choose Save All.

Chapter 9  SeleCtion



267

 14. Click the Debug menu.

 15. Choose Start Without Debugging.

 16. Click in the console window.

 17. Type 5 as the number of years of no claims.

 18. Press the Enter key on the keyboard.

Figure 9-50 shows the console window with the message for the FALSE block as 5 is 

not greater than 10.

Figure 9-50. False section of ternary executed

 19. Press the Enter key to close the console window.

Start the program again.

 20. Click the Debug menu.

 21. Choose Start Without Debugging.

 22. Click in the console window.

 23. Type 15 as the number of years of no claims.

 24. Press the Enter key on the keyboard.

Figure 9-51 shows the console window with the message for the TRUE block as 15 is 

greater than 10.

Figure 9-51. True section of ternary executed

 25. Press the Enter key to close the console window.

Code Analysis

Chapter 9  SeleCtion



268

We said earlier

If we follow this syntax, then our code could be written as

yearsOfNoClaims > 10 ? "Years of no claims is more than 10" : "Years of no 
claims is less than or equal to 10";

But we have written the code using an assignment as in Listing 9-33.

Listing 9-33. Ternary operator

    // Assign the result of the ternary to a string variable

    string message = yearsOfNoClaims > 10 ?

              "Years of no claims is more than 10" :

              "Years of no claims is less than or equal to 10";

Not putting the assignment causes the error message as shown in Figure 9-52.

Figure 9-52. Ternary error message when not assigned

So our quote was slightly inaccurate as we need to assign the ternary to a value.

 Nested Ternary Conditional Operator
We saw that the ternary conditional operator syntax was

Condition ? First Expression : Second Expression
We can incorporate another ternary conditional operator as the second expression, 

and in this second ternary conditional operator, we can add another ternary conditional 

operator as the second expression in it. We can continue the nesting as required. 

Warning: This can get complex to read and understand, as we are essentially doing an 

if-elseif-elseif and so on.

We will now amend the code, as in Listing 9-34, to do the same thing as our if else if 

example but using the ternary operator.

 26. Amend the code as in Listing 9-34.

Chapter 9  SeleCtion



269

Listing 9-34. Ternary operator

    // Assign the result of the ternary to a string variable

    string message = yearsOfNoClaims > 10 ?

              "Years of no claims is more than 10" :

              "Years of no claims is less than or equal to 10";

    // Display the result of the ternary condition

    Console.WriteLine(message);

    // Assign the result of the ternary to a string variable

    string newMessage = yearsOfNoClaims > 10 ?

            "Years of no claims is more than 10" :

            yearsOfNoClaims > 8 ?

            "Years of no claims is either 9 or 10" :

            yearsOfNoClaims > 6 ?

            "Years of no claims is either 7 or 8" :

            yearsOfNoClaims > 4 ?

            "Years of no claims is either 5 or 6" :

            yearsOfNoClaims > 2 ?

            "Years of no claims is either 3 or 4" :

            "Years of no claims is 2, 1, 0 \n " +

            "or indeed a negative number of years \n " +

            "because of a penalty being enforced on our policy";

      // Display the result of the new ternary condition

      Console.WriteLine(newMessage);

    } // End of Main() method

  } // End of Ternary class

} // End of Chapter9 namespace

Before we run the code, let us look at the nested ternary conditional operator in a 

more readable form:

yearsOfNoClaims > 10 ? "Years of no claims is more than 10" :

yearsOfNoClaims > 8 ? "Years of no claims is either 9 or 10" :

yearsOfNoClaims > 6 ? "Years of no claims is either 7 or 8" :

yearsOfNoClaims > 4 ? "Years of no claims is either 5 or 6" :

Chapter 9  SeleCtion



270

yearsOfNoClaims > 2 ? "Years of no claims is either 3 or 4": "Years of no claims is 2, 
1, 0 \n or indeed a negative number of years \n because of a penalty being enforced 
on our policy";

• The second expression of the first ternary is ternary starting with 

yearsOfNoClaims > 8.

• The second expression of the second ternary is ternary starting with 

yearsOfNoClaims > 6.

• The second expression of the third ternary is ternary starting with 

yearsOfNoClaims > 4.

• The second expression of the fourth ternary is ternary starting with 

yearsOfNoClaims > 2.

 27. Click the File menu.

 28. Choose Save All.

 29. Click the Debug menu.

The console window will appear and ask the question. Now we can try 

the values 10, 8, 6, 4, and 2, which will test the five ternary sections. We 

will start with 10.

 30. Type 10 as the number of years of no claims.

 31. Press the Enter key on the keyboard.

Figure 9-53 shows the console window, and we can see that the false part of the first 

ternary section has executed and there is another ternary and the true section of this 

ternary has been executed:

yearsOfNoClaims > 8 ? "Years of no claims is either 9 or 10"

Figure 9-53. Nested ternary – first part executed

Chapter 9  SeleCtion



271

 32. Press the Enter key to close the console window.

Start the program again.

 33. Click the Debug menu.

 34. Choose Start Without Debugging.

 35. Type 8 and press the Enter key.

The console window will appear, as shown in Figure 9-54, and we can see that the 

false part of the first ternary section has executed, there is another ternary and the false 

section of this ternary has been executed, and there is another ternary and the true 

section of this has been executed:

yearsOfNoClaims > 6 ? "Years of no claims is either 7 or 8"

 36. Press the Enter key to close the console window.

Start the program again.

 37. Click the Debug menu.

 38. Choose Start Without Debugging.

 39. Type 6 and press the Enter key.

The console window will appear, as shown in Figure 9-55, and we can see that the 

false part of the first ternary section has executed, there is another ternary and the false 

section of this ternary has been executed, there is another ternary and the false section of 

this has been executed, and there is another ternary and the true section of this ternary 

has been executed:

yearsOfNoClaims > 4 ? "Years of no claims is either 5 or 6" :

Figure 9-54. Nested ternary – second part executed

Chapter 9  SeleCtion



272

Figure 9-55. Nested ternary – third part executed

Figure 9-56. Nested ternary – fourth part executed

 40. Press the Enter key to close the console window.

Start the program again.

 41. Click the Debug menu.

 42. Choose Start Without Debugging.

 43. Type 4 and press the Enter key.

The console window will appear, as shown in Figure 9-56, and we can see that the 

false part of the first ternary section has executed, there is another ternary and the false 

section of this ternary has been executed, there is another ternary and the false section 

of this has been executed, there is another ternary and the false section of this ternary 

has been executed, and there is another ternary and the true section of this ternary has 

been executed:

yearsOfNoClaims > 2 ? "Years of no claims is either 3 or 4":

 44. Press the Enter key to close the console window.

Start the program again.

 45. Click the Debug menu.

 46. Choose Start Without Debugging.

Chapter 9  SeleCtion



273

 47. Type 2 and press the Enter key.

The console window will appear as shown in Figure 9-57 and we can see that the 

final ternary false section has been executed.

Figure 9-57. Nested ternary – fifth part executed

 48. Press the Enter key to close the console window.

Whoa, whoa, let us catch our breath after that nested ternary code block. The 

code works and gives us the same results as the if else if code block. However, are we 

thinking that this ternary code looks confusing compared with the if else if code block? 

Remember we talked about clean code, so if we see this as confusing and not as readable 

as the if else if code block, we should not use it. We have choice in how we write our 
code, but we have a responsibility to make the code readable and easy to maintain.

 Chapter Summary
In this chapter we have learned about a very important programming concept called 

selection and have seen that

• Selection in C# can have different formats, including

The if construct

The if-else construct

The if else if construct

The switch construct and the case label

Ternary conditional operator

• The case construct can use numeric or string data types.

• The case label is case sensitive.

Chapter 9  SeleCtion



274

• the ternary conditional operator can replace the if else construct

• There is a different way to display data to the console with the use of 

“placeholders” {}.

• C# has a string handling class with useful methods, one of which is 

the ToUpper() method.

• We can have more than one class in a package.

We are making great progress in our programming of C# applications and we should 

be proud of our achievements. In finishing this chapter and increasing our knowledge, 

we are advancing to our target.

 

Chapter 9  SeleCtion



275

CHAPTER 10

Iteration

 Iteration and Loops
We learned in Chapter 9 that selection is a particularly important programming concept 

in all programming languages. To use selection in our C# code, we have several construct 

options, and the best construct option to choose will depend on the particular task the 

code has to perform. The different construct options for selection are the if construct, 

the if-else construct, the if else if construct, and the switch construct with its case label. 

The switch construct can use numeric or string data types, and when we use strings, it is 

based on a case-sensitive comparison. To help in using strings with the switch construct, 

we can make use of the ToUpper() or ToLower() method of the String class. We also 

learned that displaying data to the console could be achieved using “placeholders,” {}, 

within the WriteLine() method.

In terms of the project structure, we learned that not only can we have multiple 

projects but within a project we can have multiple classes, each needing to have a unique 

name, but only one of the classes can be the startup class with the Main() method.

 Introduction to Iteration
Many of the things we do in everyday life require iteration. Think about when we wish to 

make a number of slices of toast in our toaster. The instructions could be as follows:

• Take a slice of bread from the recyclable packaging.

• Put the slice of bread in the toaster.

• Pull the toaster lever down to start the heating process.

• When the toast pops up, remove the slice of toast from the toaster.

• Put the slice of toast on a plate.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_10

https://doi.org/10.1007/978-1-4842-8619-7_9
https://doi.org/10.1007/978-1-4842-8619-7_10#DOI


276

• Repeat the process the required number of times.

Think about when we are brushing our teeth – we move the toothbrush left and 

right, up and down, the required number of times. The movements show that we repeat 

specific actions. Even thinking about how often we should be cleaning our teeth, we 

should be repeating the process at least twice every day.

The concept of iteration is important in programming and the C# language offers 

different structures to perform iteration. In this chapter we will look at the C# iteration 

constructs, also called loops, including those listed in Table 10-1.

Table 10-1. Iteration constructs and concepts

C# iteration constructs (loops)

The for loop

The while loop

The do loop

The foreach loop

The principle of iteration is to repeat a sequence of C# instructions, a number of 

times. The sequence is a block of code. The number of times the iteration repeats is 

determined by the type of loop structure, as we will see when we code each type of loop 

structure. We can also change how the iteration acts by using the break or continue 

statement, and we will look at these in our code examples.

 For Loop
First, we will look at the for loop structure, which allows us to repeat a sequence of 

instructions a set number of times. The for statement repeats the block of code, a 

number of lines of code, until a Boolean expression evaluates to true.

The format of the for loop is shown in the following:

     for(<Start value>; <Condition>; <increment value>)

     {

         <statements>

     }

There are three parts to the for construct:

• Start value – Which will be of data type int.

ChapTer 10  ITeraTIon



277

• Condition – Which will equate to true or false.

• Increment – Which will change the start value by a specified amount, 

which could be a positive value or a negative value. Using a positive 

value will mean an increment, while using a negative value will mean 

a decrement, a negative increment if we wish to say that

Example:

     for (int counter = 0; counter < 2; counter++)

     {

           block of code statements

     }

In this example code

• A local variable called counter is set up inside the brackets ().

• The counter variable will be used as the loop counter and helps to 

decide how many times the block of code is executed.

• The variable is created as an integer and set to have an initial value 
of 0, but 0 does not have to be the starting point. This is the first part 
of the for loop, the start value.

• The loop counter is compared with the value 2, and if it is less than 2, 

the execution of the block of code continues. This is the second part 
of the for loop, the condition.

• The loop counter is incremented, increased, by 1. This is the third 
part of the for loop, the increment – we could also decrement.

• Each section is separated by a semicolon ;.

• All of this is enclosed in the brackets ().

• The block of code to be executed the required number of times is 

enclosed between open and close curly braces {}.

If required, the for construct can be exited early, by using the keyword break, and we 

can move to the next iteration in the loop by using the keyword continue.

Note:

ChapTer 10  ITeraTIon



278

If required, the for construct can be exited early, by using the keyword return or indeed 

by using the less favored keyword goto.

Add a new project to hold the code for this chapter

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter10 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter10 project within the solution called CoreCSharp.

 10. Right-click the Chapter10 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter10 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to Iteration.cs.

 15. Press the Enter key.

 16. Double-click the Iteration.cs file to open it in the editor window.

Now we can set up the code structure with a namespace, and inside it will be the 

Iteration class, and inside the class will be the Main() method. The shortcut for creating 

the Main() method is to type svm and press the Tab key twice.

 17. In the editor window, add the code in Listing 10-1.

ChapTer 10  ITeraTIon



279

Listing 10-1. Class template with the Main() method

namespace Chapter10

{

  internal class Iteration

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Iteration class

} // End of Chapter10 namespace

When a vehicle is involved in an accident and requires repair, it could go to a repair 

center that has been nominated by the insurance company. When the repairs are 

completed, the repair center will recoup their costs from the insurance company. We will 

now develop a program that will ask the user from the repair shop to enter the details 

required by the insurance company. The details will be

• The repair shop unique id (string)

• The vehicle insurance policy number (string)

• The claim amount (double)

• The date of the claim (string)

Now we will add the variables that will be used in our code. In the following code, 

there are detailed comments to help us get a full understanding of the code.

Let's code some C# and build our programming muscle.

 18. Amend the code to add the variables we will require as in 

Listing 10-2.

Listing 10-2. Add the variables 

using System;

namespace Chapter10

{

  internal class Iteration

  {

ChapTer 10  ITeraTIon



280

    static void Main(string[] args)

    {

      /*

      Set up the variables to be used in the quote application

      The details will be:

          - the repair shop unique id            (string)

          - the vehicle insurance policy number  (string)

          - the claim amount and                 (double)

          - the date of the claim                (string)

      */

      string repairShopID;

      string vehiclePolicyNumber;

      string claimDate;

      double claimAmount;

    } // End of Main() method

  } // End of Iteration class

} // End of Chapter10 namespace

 19. Amend the code, as in Listing 10-3, to include a for construct that 

will iterate twice.

Listing 10-3. Add the for loop

   string repairShopID;

   string vehiclePolicyNumber;

   string claimDate;

   double claimAmount;

   for(int claimsCounter = 0; claimsCounter < 2; claimsCounter++)

   {

   } // End of for loop

  } // End of Main() method

We will now ask the user to input the repair shop id, accept the input, keep it as a 

string, and assign the value to the variable called repairShopID.

ChapTer 10  ITeraTIon



281

 20. Amend the code, as in Listing 10-4.

Listing 10-4. Ask for the repair shop id and assign it to a variable

     for(int claimsCounter = 0;claimsCounter < 2;claimsCounter++)

     {

      /*

      Read the user input for the repair shop id and

      keep it as a string

      */

      Console.WriteLine("What is your repair shop id?\n");

      repairShopID = Console.ReadLine();

      } // End of for loop

    } // End of Main() method

We will now ask the user to input the vehicle policy number, accept the input, keep it 

as a string, and assign the value to the vehiclePolicyNumber variable.

 21. Amend the code, as in Listing 10-5.

Listing 10-5. Ask for the policy number and assign it to a variable

      Console.WriteLine("What is your repair shop id?\n");

      repairShopID = Console.ReadLine();

      /*

      Read the user input for the vehicle policy number

      and keep it as a string

      */

      Console.WriteLine("What is the vehicle policy number?\n");

      vehiclePolicyNumber = Console.ReadLine();

      } // End of for loop

We will now ask the user to input the repair amount, accept the input, convert it to a 

double, and assign the value to the variable called claimAmount.

ChapTer 10  ITeraTIon



282

 22. Amend the code, as in Listing 10-6.

Listing 10-6. Ask for the amount being claimed and assign it to a variable

      vehiclePolicyNumber = Console.ReadLine();

      /*

      Read the user input for the repair amount and

      convert it to a double

      */

      Console.WriteLine("What is the amount being claimed" +

        " for the repair?\n");

      claimAmount = Convert.ToDouble(Console.ReadLine());

      } // End of for loop

We will now ask the user to input the repair date, accept the input, keep it as a string, 

and assign the value to the variable called claimDate, which is of type string.

 23. Amend the code, as in Listing 10-7.

Listing 10-7. Ask for the repair date and assign it to a variable

      Console.WriteLine("What is the amount being claimed" +

        " for the repair?\n");

      claimAmount = Convert.ToDouble(Console.ReadLine());

      /*

      Read the user input for the repair date

      */

      Console.WriteLine("What was the date of the repair?\n");

      claimDate = Console.ReadLine();

      } // End of for loop

We will now display the details that have been entered by the user. The displaying of 

the details will occur at the end of each iteration, and therefore we will have two displays.

 24. Amend the code, as in Listing 10-8.

ChapTer 10  ITeraTIon



283

Listing 10-8. Display the details as entered by the user

      Console.WriteLine("What was the date of the repair?\n");

      claimDate = Console.ReadLine();

      Console.WriteLine("The details entered for repair "

        + (claimsCounter + 1) + " are");

      Console.WriteLine("Repair shop id:\t" + repairShopID);

      Console.WriteLine("Policy number:\t" +vehiclePolicyNumber);

      Console.WriteLine("Claim amount:\t" + claimAmount);

      Console.WriteLine("Claim date:\t" + claimDate);

      } // End of for loop

When the code is executed, the user will be asked to input two sets of details:

• The counter will start at 0 and the block of code is executed.

• Then the counter is incremented to 1 and the block of code is 

executed.

• When it is incremented to 2, it will be checked against the 

comparator (claimsCounter < 2); and as it is not less than 2, the loop 

will be exited.

 25. Click the File menu.

 26. Choose Save All.

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

 29. Click in the console window.

The console window will appear and ask the user to input the repair shop id.

 30. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 31. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 32. Type 1999.99 and press the Enter key.

ChapTer 10  ITeraTIon



284

The console will now ask the user to input the date of the repair

 33. Type 2021/10/01 and press the Enter key.

Iteration 1 is now completed; the block of code has been executed, as shown in 

Figure 10-1. The claims counter will now be incremented by 1 and become a 1. The 

comparison is made to see if the claims counter value is less than 2, and as it is, the 

iterations continue.

The console window will now ask the user to input the repair shop id.

 34. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 35. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 36. Type 2500.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 37. Type 2021/10/01 and press the Enter key.

Figure 10-1. Iteration 1

ChapTer 10  ITeraTIon



285

Figure 10-2. Iteration 2

Iteration 2 is now completed; the block of code has been executed for the second 

time, as shown in Figure 10-2. The claims counter will now be incremented by 1 and 

become a 2. The comparison is made to see if the claims counter value is less than 2, and 

as it is not, the iterations will end. The code will now move to the next line, which waits 

for the user to press a key.

 38. Press any key to close the console window.

Thinking about the code applications we have completed, we should see that all 

the details we entered are lost. In the next chapter, we will look at storing the details in 

an array, so they will be available for the lifetime of the running application, but in this 

chapter, we are concentrating on iterations.
The iteration works fine, but we could improve the situation by adhering to the 

principle of writing clean and maintainable code: 

• In the loop we have used a hard-coded value in the comparator, that 

is, the 2.

• In this case 2 is known as a “magic number,” as it just appears.

• Ideally, we need to set up a constant that will store the value for the 

number of times that the loop is to be executed.

• We will now amend the code in two stages, just to show clearly the 

process of developing code that is more maintainable.

The first stage will be to

• Set up a constant called NumberOfClaimsBeingMade of data 

type int.

• Assign the value 2 to the variable.

• Remove the hard-coded 2 from the loop and replace it with the 

variable NumberOfClaimsBeingMade.

ChapTer 10  ITeraTIon



286

 39. Amend the code, as in Listing 10-9, to implement variable 

declaration and value assignment.

Listing 10-9. Set up a variable and assign it a value

     double claimAmount;

     /*

     Set up a constant called NumberOfClaimsBeingMade

     of data type int and assign the variable the value 2

     */

     const int NumberOfClaimsBeingMade = 2;

     for(int claimsCounter = 0;claimsCounter < 2;claimsCounter++)

     {

      /*

      Read the user input for the repair shop id and

      keep it as a string

      */

      Console.WriteLine("What is your repair shop id?\n");

      repairShopID = Console.ReadLine();

 40. Click the File menu.

 41. Choose Save All.

 42. Amend the code, as in Listing 10-10, to remove the hard-coded 

number, the magic number, from the for loop and replace it with 

the variable name.

Listing 10-10. Remove the magic number

     /*

     Set up a constant called NumberOfClaimsBeingMade

     of data type int and assign the constant the value 2

     */

     const int NumberOfClaimsBeingMade = 2;

ChapTer 10  ITeraTIon



287

     for(int claimsCounter = 0;claimsCounter <

                      NumberOfClaimsBeingMade; claimsCounter++)

     {

      /*

      Read the user input for the repair shop id and

      keep it as a string

      */

      Console.WriteLine("What is your repair shop id?\n");

      repairShopID = Console.ReadLine();

 43. Click the File menu.

 44. Choose Save All.

If we ran the program, we would see nothing has changed but our code is a little 

better, as we have used a constant in the loop. However, the code will still have to be 

amended if the user is required to enter a different number of claims than 2. Our code 

can be improved by removing the assigned value of 2 and replacing it with a value 

entered by the user. We will need to make the constant into a variable to do this. This will 

mean the code is written once and does not need to be changed, as the control lies with 

the value typed in by the user. Writing highly maintainable code is very important.

The second stage will therefore be to

• Ask the user to input the number of claims they wish to make.

• Read the value from the console.

• Assign the converted value to the variable 

numberOfClaimsBeingMade.

 45. Amend the code, as in Listing 10-11, to implement these changes. 

Start with removing the initial value of 2 and deleting the const 

keyword and then change the PascalCase to camelCase for the 

variable. Remember to change the case of the variable inside the 

brackets of the for (int claimsCounter = 0; claimsCounter  

< numberOfClaimsBeingMade; claimsCounter++).

ChapTer 10  ITeraTIon



288

Listing 10-11. Remove the initial value

     double claimAmount;

     /*

     Set up a variable called numberOfClaimsBeingMade

     of data type int and assign the variable the value 2

     */

     int numberOfClaimsBeingMade;

 46. Amend the code, as in Listing 10-12, to ask the user to input the 

number of claims.

Listing 10-12. Input the number of claims

     int numberOfClaimsBeingMade;

     /*

     Read the user input for the number of claims being

     made and convert the string value to an integer data type

     */

     Console.WriteLine("How many claims are being made?\n");

     numberOfClaimsBeingMade=Convert.ToInt32(Console.ReadLine());

     /*

     As we are using a variable in the loop our code is

     flexible and can be used for any number of claims.

     An ideal situation and good code.

     */

 47. Click the File menu.

 48. Choose Save All.

 49. Click the Debug menu.

 50. Choose Start Without Debugging.

 51. Click in the Console window.

ChapTer 10  ITeraTIon



289

The console window will appear and ask the user how many claims they wish 

to make.

 52. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 53. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 54. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 55. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair

 56. Type 2021/10/01 and press the Enter key.

Iteration 1 is now completed as shown in Figure 10-3. The claims counter will now be 

incremented by 1 and become a 1. The comparison is made to see if the claims counter 

value is less than 2, and as it is, the iterations continue.

The console window will now ask the user to input the repair shop id.

 57. Type RS000001 and press the Enter key.

Figure 10-3. Iteration 1 having used cleaner code

ChapTer 10  ITeraTIon



290

The console will now ask the user to input the vehicle policy number.

 58. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 59. Type 2500.99 and press the Enter key.

The console will now ask the user to input the date of the repair

 60. Type 2021/10/01 and press the Enter key.

Iteration 2 is now completed; the block of code has been executed for the second 

time, as shown in Figure 10-4. The claims counter will now be incremented by 1 and 

become a 2. The comparison is made to see if the claims counter value is less than 2, and 

as it is not, the iterations will end. The code will now move to the next line, which waits 

for the user to press a key.

 61. Press any key to close the console window.

Wow! Very good! We have a nice little application handling multiple claims from any 

user, and we are not hard-coding values and using magic numbers.

 Break Statement

Control of the for loop is determined by the three sections shown in Figure 10-5.

Figure 10-4. Iteration 2 having used cleaner code

ChapTer 10  ITeraTIon



291

Figure 10-5. The three sections of a for loop

• The first section determines the start value of the counter.

• The second section determines when the loop has completed enough 

iterations.

• The third section increments the counter.

However, the control may be modified by using the break statement, which forces a 

loop to exit immediately.

We will create a variable called maximumNumberOfClaims and assign it the initial 

value of 1. This means that for this example the user will now be able to enter only one 

claim – it’s just an example. Then we will check inside the loop if the counter has reached 

the value set for the maximumNumberOfClaims, that is, 1. If the value of the counter has 

reached 1, the loop will be exited.

 1. Amend the code, as in Listing 10-13, by adding the new variable 

called maximumNumberOfClaims.

Listing 10-13. Create the variable maximumNumberOfClaims

     /*

     Set up a variable called numberOfClaimsBeingMade

     of data type int and assign the variable the value 2

     */

     int numberOfClaimsBeingMade;

     int maximumNumberOfClaims = 1;

ChapTer 10  ITeraTIon



292

 2. Amend the code, as in Listing 10-14, to implement this break 

statement within an if selection block.

Listing 10-14. Using an if construct with a break statement

     for (int claimsCounter = 0;claimsCounter <

                     numberOfClaimsBeingMade; claimsCounter++)

    {

      /*

      We will use the if statement to perform a boolean test

      and if the test produces a true value we will break out

      of the loop. There is no else part to the if statement

      so if the boolean test produces a false value the loop

      simply continues executing the block of code

      */

        if (claimsCounter == maximumNumberOfClaims)

        {

        /*

        We have reached the maximum number of claims allowed

        in one session so we will break out of the loop early

        */

          Console.WriteLine("Breaking out of the loop?\n");

          break;

        } // End of if section

     /*

     Read the user input for the repair shop id and

     keep it as a string

     */

     Console.WriteLine("What is your repair shop id?\n");

     repairShopID = Console.ReadLine();

 3. Amend the code, as in Listing 10-15, to display a message that the 

application has finished.

ChapTer 10  ITeraTIon



293

Listing 10-15. Display a message showing that the application has ended

      } // End of for loop

      Console.WriteLine("End of program\n");

    } // End of Main() method

  } // End of Iteration class

} // End of Chapter10 namespace

 4. Click the File menu.

 5. Choose Save All.

 6. Click the Debug menu.

 7. Choose Start Without Debugging.

The console window will appear, as shown in Figure 10-6, and ask the user how 

many claims they wish to make. Remember we have set a variable that will stop the 

iteration when the counter is 1, so the number entered here will be irrelevant!

 8. Type 3 and press the Enter key.

The console window will now ask the user to input the repair shop id.

 9. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 10. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 11. Type 2500.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 12. Type 2021/10/01 and press the Enter key.

 13. Press the Enter key again to continue and close the 

console window.

The break statement has been executed and we are not asked for any further entries 

as the loop was exited, as in Figure 10-6.

ChapTer 10  ITeraTIon



294

Figure 10-6. The break statement executes

 Continue Statement

Control of the loop may also be modified by using the continue statement. The continue 

statement forces the code to move to the next iteration in the loop. So the loop continues, 

skipping the rest of the code in the current iteration, unlike the break statement where 

the loop is exited with no more iterations taking place.

Let’s look at a sample scenario where the number of claims to be entered is 3:

• We will enter 3 for the number of claims to be made.

• When the counter starts, the value will be set to 0.

• When the check is made, it performs a division by 2.

• When the division is applied, the remainder is evaluated to see if 

it is a 0.

• If the remainder is 0, the counter number is an even number, so 

the code will stop this iteration and continue to the next iteration, if 

there is one.

ChapTer 10  ITeraTIon



295

• So, for the first iteration, the number is even, and no questions will 

be asked.

• The counter is incremented by 1 and will now have a value of 1.

• When the check is made, it performs a division by 2.

• The remainder is evaluated to see if it is 0; in this case it will not be 

0 – it will be 1.

• So the questions will be asked.

• The counter is incremented by 1 and will now have a value of 2.

• When the check is made, it performs a division by 2.

• The remainder is evaluated to see if it is 0; in this case it will be 0.

• So the questions will not be asked.

• The counter is incremented by 1 and will now have a value of 3.

• The loop will be ended as the loop has been executed three times, 

but only once was the counter an odd number, so the questions were 

only asked once. We skipped out of the existing loop twice through 

the use of the continue statement.

 14. Amend the code, as in Listing 10-16, by changing the value of the 

variable maximumNumberOfClaims to 5 so that we never actually 

come to the break statement.

Listing 10-16. Set the value of the variable

     /*

     Set up a variable called numberOfClaimsBeingMade

     of data type int and assign the variable the value 2

     */

     int numberOfClaimsBeingMade;

     int maximumNumberOfClaims = 5;

 15. Amend the code, as in Listing 10-17, to add a line at the start of the 

for loop that displays the counter’s current value.

ChapTer 10  ITeraTIon



296

Listing 10-17. Display the counter value

     for (int claimsCounter = 0;claimsCounter <

                     numberOfClaimsBeingMade; claimsCounter++)

    {

      Console.WriteLine("The current value of the counter is :" + 

claimsCounter + "\n");

 16. Amend the code, as in Listing 10-18, to implement this continue 

statement.

Listing 10-18. Use the continue in an if statement

          Console.WriteLine("Breaking out of the loop?\n");

          break;

        } // End of if section

        /*

        We will use the if statement to perform a boolean test

        and if the test produces a true value we continue with

        the loop but will skip out of this current iteration.

        In this example we will check if the value of the

        counter is even (when we divide by 2 the remainder is 0).

        If it is an even number we will skip the rest of this

        iteration by using the continue statement. There is

        no else part to the if statement so if the boolean test

        produces a false value the loop carries on executing

        the block of code

        */

        if (claimsCounter % 2 == 0)

        {

        /*

        We have an even number so the continue is executed

        */

          continue;

        }

ChapTer 10  ITeraTIon



297

        /*

        Read the user input for the repair shop id and

        keep it as a string

        */

        Console.WriteLine("What is your repair shop id?\n");

     repairShopID = Console.ReadLine();

 17. Click the File menu.

 18. Choose Save All.

 19. Click the Debug menu.

 20. Choose Start Without Debugging.

The console window will appear and ask the user to input the number of claims to 

be made.

 21. Type 3 and press the Enter key.

The console window will show that the current value of the claims counter is 0 

and will then immediately show that the current value of the claims counter is 1, as in 

Figure 10-7. This means no block of code was executed the first time, as the value 0 of the 

claims counter was an even number, and as such the continue statement was executed, 

putting the code to the next iteration, skipping the code in the current iteration.

Figure 10-7. The counter value of 0 is even so the code continues

As the value of the claims counter is now 1, and this is not an even number, the block 

of code in the current iteration is executed, so the questions are asked.

 22. Type RS000001 for the repair shop id and press the Enter key.

ChapTer 10  ITeraTIon



298

The console will now ask the user to input the vehicle policy number.

 23. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 24. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 25. Type 2021/10/01 and press the Enter key.

Iteration 1 is now completed; the block of code has been executed. The claims 

counter will now be incremented by 1 and become a 2.

The claims counter value of 2 is an even number, and as such the continue statement 

was executed, putting the code to the next iteration, skipping the code in the current 

iteration. The claims counter will now be incremented by 1 and become a 3, and as 

this is not less than the numberOfClaimsBeingMade, the loop has completed and will 

be exited.

 26. Press the Enter key again to continue and close the 

console window.

 While Loop
When we use a while loop, it will check a condition and then continue to execute a block 

of code if the condition evaluates to true. As the condition is evaluated at the start, before 

each execution, it is possible that the while loop will not execute the block of code at all. 

The while loop is said to “execute zero or more times.” So, yes, it is possible that the loop 

does not execute the block of code.

Like the for construct, the while loop can be exited early, by using the keyword 

break, and we can move to the next iteration in the loop by using the keyword continue.

Note:

If required, the while construct can be exited early, by using the keyword return or 

indeed by using the less favored keyword goto.

while (<Condition>)

{

<statements>

 }

ChapTer 10  ITeraTIon



299

Example:

  int counter = 0;

  while (counter < 2)

  {

    block of code to be executed

    counter++

  } // End of while iteration

Code Analysis
In the example

• A variable called counter is set up outside the while loop. It cannot be 

created inside the brackets () as it can be in the for loop.

• The variable is initialized before entering the while loop.

• The loop counter is compared with the value 2, and if it is less than 2, 

the execution of the block of code continues.

• The loop counter is increased, incremented, by 1.

• The Boolean test is enclosed inside the brackets ().

• The block of code to be executed the required number of times is 

enclosed between opening and closing curly braces {}.

• When the condition is TRUE, the statements in the braces will 

execute.

• Once the statements have executed, control returns to the beginning 

of the while loop to check the condition again.

• When the condition is FALSE, the while statements in the braces are 

skipped, and execution begins after the closing brace of that block 

of code.

We will use the same example for this exercise as we did in the for loop exercise. To 

avoid having to enter the code again, we can copy and paste from the last program as we 

use a while loop.

 1. Right-click the Chapter10 project.

 2. Choose Add.

ChapTer 10  ITeraTIon



300

 3. Choose Class.

 4. Name the class WhileIteration.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not 

produced automatically, and delete the unwanted imports as in 

Listing 10-19.

Remember the shortcut to create the Main() method is to type svm and then press 

the Tab key twice.

Listing 10-19. Add the Main() method to the class template

using System;

namespace Chapter10

{

  internal class WhileIteration

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of WhileIteration class

} // End of Chapter10 namespace

 7. Right-click the Chapter10 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the WhileIteration class in the Startup object drop-

down list.

 10. Close the Properties window.

 11. Amend the code, as in Listing 10-20, to set up and initialize the 

variables. Copy the code from the last program where possible.

ChapTer 10  ITeraTIon



301

Listing 10-20. Add the variables

    static void Main(string[] args)

    {

      /*

      Set up the variables to be used in the quote application

      The details will be:

          - the repair shop unique id            (string)

          - the vehicle insurance policy number  (string)

          - the claim amount and                 (double)

          - the date of the claim                (DateTime)

      */

      string repairShopID;

      string vehiclePolicyNumber;

      double claimAmount;

      DateTime claimDate;

      int numberOfClaimsBeingMade;

      int maximumNumberOfClaims = 0;

      int numberOfClaimsEntered = 0;

    } // End of Main() method

 12. Amend the code, as in Listing 10-21, to ask the user how many 

claims are being made and read the input value.

Listing 10-21. Ask for user input and read the input value

    int numberOfClaimsEntered = 0;

    /*

    Read the user input for the number of claims being

    made and convert the string value to an integer data type

    */

    Console.WriteLine("How many claims are being made?\n");

    numberOfClaimsBeingMade= Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

  } // End of WhileIteration class

} // End of Chapter10 namespace

ChapTer 10  ITeraTIon



302

 13. Amend the code, as in Listing 10-22, to include the start of a 

while loop.

Listing 10-22. While loop construct

    Console.WriteLine(“How many claims are being made?\n”);

    numberOfClaimsBeingMade= Convert.ToInt32(Console.ReadLine());

    /*

    Here we use the while iteration which uses a Boolean test

    to see if the number of claims entered by the user so far

    is less than the number of claims being made. If the

    comparison equates to true then the while loop block of

    code is executed. If the comparison equates

    to false then the while loop block of code is not executed.

    As we are using a variable in the loop our code is

    flexible and can be used for any number of claims.

    An ideal situation and good code.

    */

    while (numberOfClaimsEntered < numberOfClaimsBeingMade)

    {

    } // End of while loop

    } // End of Main() method

  } // End of WhileIteration class

} // End of Chapter10 namespace

 14. Amend the code, as in Listing 10-23, to read the user input from 

within the while loop. Copy the code from the last program.

Listing 10-23. Read user input for the four values required

      while (numberOfClaimsEntered < numberOfClaimsBeingMade)

      {

       /*

       Read the user input for the repair shop id and keep

       it as a string

       */

ChapTer 10  ITeraTIon



303

       Console.WriteLine("What is your repair shop id?\n");

       repairShopID = Console.ReadLine();

       /*

       Read the user input for the vehicle policy number

       and keep it as a string

       */

       Console.WriteLine("What is the vehicle policy number?\n");

       vehiclePolicyNumber = Console.ReadLine();

       /*

       Read the user input for the repair amount and

       convert it to a double

       */

       Console.WriteLine("What is the amount being claimed " +

         " for the repair?\n");

       claimAmount = Convert.ToDouble(Console.ReadLine());

       /* 

       Read the user input for the repair date and

       convert it to a Date

       */

       Console.WriteLine("What was the date of the repair?\n");

       claimDate = Convert.ToDateTime(Console.ReadLine());

    } // End of while loop

    } // End of Main() method

  } // End of WhileIteration class

} // End of Chapter10 namespace

We will now display the details that have been entered and then close the while 

loop. Remember to try and copy the code from the last program and make the small 

amendment to the first line, which shows the “counter.”

 15. Amend the code, as in Listing 10-24.

ChapTer 10  ITeraTIon



304

Listing 10-24. Displaying the details entered

     Console.WriteLine("What was the date of the repair?\n");

     claimDate = Convert.ToDateTime(Console.ReadLine());

     Console.WriteLine("The details entered for " +

        "repair " + (numberOfClaimsEntered + 1) + " are");

     Console.WriteLine("Repair shop id:\t" + repairShopID);

     Console.WriteLine("Policy number:\t" + vehiclePolicyNumber);

     Console.WriteLine("Claim amount:\t" + claimAmount);

     Console.WriteLine("Claim date:\t" + claimDate);

       /* Increment the loop counter by 1 */

       numberOfClaimsEntered++;

      } // End of while loop

    } // End of Main() method

  } // End of WhileIteration class

} // End of Chapter10 namespace

When the code is executed, the user will be asked to input the number of claims to 

be entered. We will enter 2. When the code is executed, the user will therefore be asked 

to input two sets of details:

• The counter in the while loop will be the variable called 

numberOfClaimsEntered, which will start at 0.

• At the start of the while loop, the numberOfClaimsEntered is 

compared to the variable numberOfClaimsBeingMade, which is 2.

• The comparison produces a true value and the block of code is 

executed.

• The numberOfClaimsEntered variable is incremented by 1 – it 

is now 1.

• The numberOfClaimsEntered is now 1 and is compared to the 

variable numberOfClaimsBeingMade, which is 2.

• The comparison produces a true value and the block of code is 

executed.

ChapTer 10  ITeraTIon



305

• The numberOfClaimsEntered variable is incremented by 1 – it 

is now 2.

• The numberOfClaimsEntered is now 2 and is compared to the 

variable numberOfClaimsBeingMade, which is 2.

• The comparison produces a false value and the block of code is not 

executed.

 16. Click the File menu.

 17. Choose Save All.

 18. Click the Debug menu.

 19. Choose Start Without Debugging.

 20. Click in the console window.

The console window appears and asks the user how many claims are to be made.

 21. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 22. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 23. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 24. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 25. Type 2021/10/01 and press the Enter key.

ChapTer 10  ITeraTIon



306

Figure 10-8. Iteration 1 

Figure 10-9. Iteration 2 

Iteration 1 is now completed; the block of code has been executed, as shown in 

Figure 10-8. The claims counter will now be incremented by 1 and become a 1. The 

comparison is made to see if the claims counter value is less than 2, and as it is, the 

iterations continue.

The console window will now ask the user to input the repair shop id.

 26. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 27. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 28. Type 2500.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 29. Type 2021/10/01 and press the Enter key.

ChapTer 10  ITeraTIon



307

The code will now move to the next line after the while loop, which waits for the user 

to press a key, as shown in Figure 10-9.

 30. Press any key to close the console window.

 Break Statement

Control of the while loop is determined by the Boolean section, as shown in Figure 10-10.

Figure 10-10. The Boolean section

The Boolean section determines if the counter has reached its limit; however, the 

control may be modified by using the break statement, which forces a loop to exit 

immediately.

We will now add a break statement as we did with the for loop. We have a variable 

called maximumNumberOfClaims, which is set to the value 0. This means for this 

example the user will not be able to enter any values – it’s just an example. Now we 

will check inside the while condition if the number of claims entered has reached the 

maximumNumberOfClaims, that is, 0. If the value of the counter has reached 0, the loop will 

be exited, and the break is executed.

 31. Amend the code, as in Listing 10-25, to implement this break 

statement using an if construct inside the while loop.

Listing 10-25. Break statement inside an if construct

      while (numberOfClaimsEntered < numberOfClaimsBeingMade)

      {

        /*

        We will use the if statement to perform a boolean

        test and if the test produces a true value we will

        break out of the loop. If the boolean test produces a

ChapTer 10  ITeraTIon



308

        false value the loop simply continues executing the

        block of code

        */

        if (numberOfClaimsEntered == maximumNumberOfClaims)

        {

          /*

          We have reached the maximum number of claims

          allowed in one session so we will break out of the

          loop early

          */

          break;

        }

 32. Click the File menu.

 33. Choose Save All.

 34. Click the Debug menu.

 35. Choose Start Without Debugging.

 36. Type 3 for the number of claims being made, as shown in 

Figure 10-11.

Remember, we have set a variable that will stop the iteration when the number of 

claims entered is 0, the maximum number of claims allowed, so the number of claims we 

say we wish to enter will be irrelevant!

 37. Press the Enter key to continue and close the console window.

The break statement has been executed and we are not asked any of the questions, 

as the loop was exited as shown in Figure 10-11.

 38. Press the Enter key again to continue and close the 

console window.

Figure 10-11. Break statement executed

ChapTer 10  ITeraTIon



309

 Continue Statement

Control of the while loop may also be modified by using the continue statement. The 

continue statement forces the code to move to the next iteration in the loop. So the 

loop continues, skipping the rest of the code in the current iteration, unlike the break 

statement where the loop is exited with no more iterations taking place. This is the same 

as we saw in the for loop. We will now add a continue statement, and we will use the 

same sample scenario as used in the for loop, where the number of claims to be entered 

is keyed in as 3.

 39. Amend the code, as in Listing 10-26, by changing the value of the 

variable maximumNumberOfClaims to 5.

Listing 10-26. Change the value of the variable

    DateTime claimDate;

    int numberOfClaimsBeingMade;

    // was int maximumNumberOfClaims = 0;

    int maximumNumberOfClaims = 5;

    int numberOfClaimsEntered = 0;

 40. Amend the code, as in Listing 10-27, to add a line at the start of the 

while loop that informs us of the counter’s current value.

Listing 10-27. Display the counter value

      while (numberOfClaimsEntered < numberOfClaimsBeingMade)

      {

       Console.WriteLine("The current value of the counter is :" + 

numberOfClaimsEntered + "\n");

In the next piece of code, we will increment the variable called 

numberOfClaimsEntered using the ++ operator. If we did not do this, we would be 

in an infinite loop because its initial value of 0 would never change and this value 

is checked in the brackets of the while statement to see if it is less than the variable 

numberOfClaimsBeingMade, which has been set to 5, so this will always be true and the 

code in the while block will always execute.

ChapTer 10  ITeraTIon



310

Continuing from this, we will highlight differences between the for and while 

iteration constructs:

• The for loop knows in advance how many times it will iterate, but the 

while loop does not know.

• The for loop has an initialization step, whereas the while loop 

does not.

• The for loop uses an increment or decrement step, which in our 

code was claimsCounter++, for (int claimsCounter = 0; 

claimsCounter < numberOfClaimsBeingMade; claimsCounter++), 

whereas the while loop does not and we have to add our own, 

numberOfClaimsEntered++.

 41. Amend the code, as in Listing 10-28, to implement this continue 

statement, after the end of the if statement.

Listing 10-28. Implement the continue statement

        if (numberOfClaimsEntered == maximumNumberOfClaims)

        {

          /*

          We have reached the maximum number of claims

          allowed in one session so we will break out of the

          loop early

          */

          break;

        }

        /*

        We will use the if statement to perform a boolean test

        and if the test produces a true value we continue with

        the loop but will skip out of this current iteration.

        In this example we will check if the value of the

        counter is even (when we divide by 2 the remainder is 0).

        If it is an even number we will skip the rest of this

        iteration by using the continue statement.

        There is no else part to the if statement so if the

ChapTer 10  ITeraTIon



311

        boolean test produces a false value the loop carries

        on executing the block of code

        */

        if (numberOfClaimsEntered % 2 == 0)

        {

         /*

         We have reached the maximum number of claims allowed

         in one session so we will break out of the loop early.

         Increment the loop counter by 1

         This is an important statement as we are increasing the

         value of the numberOfClaimsEntered and the while loop

         only knows when to stop iterating when the

         numberOfClaimsEntered is not less than the

         numberOfClaimsBeingMade. So, if we do not increment the

         value it will remain constant and we will be in an

         infinite loop. NOT Good.

         In the for iteration we had the 'counter' handled in

         the at the top of the iteration using claimsCounter++

         

          for (int claimsCounter = 0; claimsCounter < 

numberOfClaimsBeingMade; claimsCounter++)

        */

         numberOfClaimsEntered++;

         continue;

        } // End of second if construct

        /*

        Read the user input for the repair shop id and keep

        it as a string

        */

        Console.WriteLine("What is your repair shop id?\n");

       repairShopID = Console.ReadLine();

 42. Click the File menu.

 43. Choose Save All.

ChapTer 10  ITeraTIon



312

 44. Click the Debug menu.

 45. Choose Start Without Debugging.

The console window will appear and ask the user to input the number of claims to be 

made as shown in Figure 10-12.

 46. Type 3 and press the Enter key.

Figure 10-12 shows the console window, which displays the current value of the 

claims counter as 0. The console window will immediately show that the current value 

of the claims counter is 1. This means no block of code was executed the first time, as 

the 0 value of the numberOfClaimsEntered counter was an even number. Consequently, 

the continue statement was executed, putting the code into the next iteration, skipping 

the code in the current iteration. As the value of the counter is now 1, and this is not an 

even number, the block of code in the current iteration is executed. So the questions 

are asked.

 47. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 48. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 49. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair

 50. Type 2021/10/01 and press the Enter key.

Figure 10-12. Continue statement executed

ChapTer 10  ITeraTIon



313

Now the counter value is 2, which is an even number, so the continue statement 

was executed, putting the code to the next iteration, skipping the code in the current 

iteration. The counter is incremented by 1 and becomes 3, and as this is not less than the 

variable numberOfClaimsBeingMade, the loop has completed and will be exited as shown 

in Figure 10-13.

 51. Press the Enter key again to continue and close the 

console window.

 Do (While) Loop
The do loop is like the while loop, except it has the Boolean check at the end rather than 

the start. This means that the do loop is guaranteed to execute at least once, unlike the 

while loop that may never be executed. Remember the “execute zero or more times” 

phrase associated with the while loop. The do while loop will check a condition at the 

end of the first iteration and then continue to execute the loop if the Boolean condition 

evaluates as true.

Like the for and while constructs, the do while loop can be exited early, by using the 

keyword break, and we can move to the next iteration in the loop by using the keyword 

continue.

Note:

If required, the do while construct can be exited early, by using the keyword return or 

indeed by using the less favored keyword goto.

Figure 10-13. Program exits 

ChapTer 10  ITeraTIon



314

The format of the do while loop is shown in Figure 10-14 and Listing 10-29.

Figure 10-14. Format of the do while iteration

Listing 10-29. Sample do while format

      int counter = 0;

      do

      {

        Block of code

        counter++

       } while (counter < 2);

Code Analysis
In Listing 10-29

• A variable called counter is set up outside the do while loop. It cannot 

be created inside the brackets () as it can be in the for loop.

• The variable is initialized before entering the do while loop.

• The block of code between the {} braces is executed.

• Inside the block of code the counter is incremented.

• The loop counter is compared with the value 2, and if it is less than 2, 

the execution of the block of code will continue. In other words when 

the condition is true, the statements in the braces will execute.

• Once the condition is true, control returns to the beginning of the do 

while loop.

• When the condition is false, the statements in the braces are skipped, 

and execution begins after the closing brace of that block of code, the 

next code statement.

ChapTer 10  ITeraTIon



315

We will use the same example for this exercise as we did in the while loop exercise. 

To avoid having to enter the code again, we can copy and paste code as required.

 1. Right-click the Chapter10 project in the Solution Explorer panel.

 2. Choose Add.

 3. Choose Class.

 4. Name the class DoWhileIteration.cs.

 5. Click the Add button.

 6. Amend the code, as in Listing 10-30, to add the Main() method.

Listing 10-30. Main() method in the class template

namespace Chapter10

{

  internal class DoWhileIteration

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of DoWhileIteration class

} // End of Chapter10 namespace

 9. Amend the code, as Listing 10-31, to add the variables we will use.

Listing 10-31. Add the required variables

    static void Main(string[] args)

    {

      /*

      Set up the variables to be used in the quote application

ChapTer 10  ITeraTIon



316

      The details will be:

          - the repair shop unique id            (string)

          - the vehicle insurance policy number  (string)

          - the claim amount and                 (double)

          - the date of the claim                (DateTime)

      */

      string repairShopID;

      string vehiclePolicyNumber;

      DateTime claimDate;

      double claimAmount;

      int numberOfClaimsBeingMade;

      /*

      This variable will be used to maintain a count for the

      number of claims that have been entered by the user

      */

      int numberOfClaimsEntered = 0;

    } // End of Main() method

  } // End of DoWhileIteration class

} // End of Chapter10 namespace

 10. Amend the code, as in Listing 10-32, to request user 

input and assign the input value to the variable 

numberOfClaimsBeingMade.

Listing 10-32. Request user input and convert it

   /*

   This variable will be used to maintain a count for the

   number of claims that have been entered by the user

   */

   int numberOfClaimsEntered = 0;

   /*

   Read the user input for the number of claims being made

   and convert the string value to an integer data type

   */

ChapTer 10  ITeraTIon



317

   Console.WriteLine("How many claims are you wishing to make?\n");

   numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

   } // End of Main() method

 11. Amend the code, as in Listing 10-33, to add the do while loop.

Listing 10-33. Add the do while loop

   numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

      /*

      Here we use the do iteration which means at least one

      iteration will be performed. The do iteration uses a

      Boolean test after iteration one to see if the number of

      claims entered by the user so far is less than the number

      of claims being made. If the comparison equates to true

      then the do loop block of code is executed again. If the

      comparison equates to false then the do loop block of

      code is not executed. As we are using a variable in the

      loop our code is flexible and can be used for any

      number of claims. An ideal situation and good code.

      */

      do

      {

         Console.WriteLine("The current value of the counter is :" + 

numberOfClaimsEntered + "\n");

        /*

        Read the user input for the repair shop id and

        keep it as a string

        */

        Console.WriteLine("What is your repair shop id?\n");

        repairShopID = Console.ReadLine();

        /*

        Read the user input for the vehicle policy number

        and keep it as a string

        */

ChapTer 10  ITeraTIon



318

       Console.WriteLine("What is the vehicle policy number?\n");

        vehiclePolicyNumber = Console.ReadLine();

        /*

        Read the user input for the repair amount and

        convert it to a double

        */

         Console.WriteLine("What is the amount being claimed for the 

repair?\n");

        claimAmount = Convert.ToDouble(Console.ReadLine());

        /*

        Read the user input for the repair date and

        convert it to a Date

        */

        Console.WriteLine("What was the date of the repair?\n");

        claimDate = Convert.ToDateTime(Console.ReadLine());

         Console.WriteLine("The details entered for repair " + 

(numberOfClaimsEntered + 1) + " are");

        Console.WriteLine("Repair shop id:\t" + repairShopID);

        Console.WriteLine("Policy number:\t" + vehiclePolicyNumber);

        Console.WriteLine("Claim amount:\t" + claimAmount);

        Console.WriteLine("Claim date:\t" + claimDate);

        /* Increment the loop counter by 1 */

        numberOfClaimsEntered++;

      } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

    } // End of Main() method

When the code is executed, the user will be asked to input the number of claims 

being made. We will enter 2 and the user will therefore be asked to input two sets of 

details. The sequence of events will be as follows:

• The block of code is executed immediately. Remember the statement 

associated with the do while loop: “execute at least once.”

ChapTer 10  ITeraTIon



319

• The counter in the do while loop will be the variable called 

numberOfClaimsEntered, which will start at 0 as it enters the loop.

• At the end of the block of code, the variable called 

numberOfClaimsEntered is incremented and is now 1.

• At the end of the do while loop, the numberOfClaimsEntered is 

compared with the variable numberOfClaimsBeingMade, which is 2.

• The comparison is true and the block of code is executed again.

• The numberOfClaimsEntered variable is incremented by 1 – it 

is now 2.

• At the end of the do while loop, the numberOfClaimsEntered is 

compared with the variable numberOfClaimsBeingMade, which is 2.

• The comparison produces a false value and the block of code is not 

executed again.

 12. Click the File menu.

 13. Choose Save All.

 14. Right-click the Chapter10 project in the Solution Explorer panel.

 15. Choose Properties.

 16. Select the DoWhileIteration from the drop-down menu of the 

Startup object.

 17. Close the Properties window.

 18. Click the Debug menu.

 19. Choose Start Without Debugging.

The console window will appear and ask the user how many claims they wish 

to make.

 20. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 21. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

ChapTer 10  ITeraTIon



320

 22. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 23. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 24. Type 2021/10/01 and press the Enter key.

Figure 10-15 shows that iteration 1 is now completed; the block of code has been 

executed. The claims counter has been incremented by 1 and is now 1. The comparison 

is made to see if the claims counter value is less than 2, and as it is, the iterations 

continue.

The console window will now ask the user to input the repair shop id.

 25. Type RS000001 and press the Enter key.

Figure 10-15. Iteration 1

ChapTer 10  ITeraTIon



321

The console will now ask the user to input the vehicle policy number.

 26. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 27. Type 2500.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 28. Type 2021/10/01 and press the Enter key.

The code will now move to the next line after the while loop, which waits for the user 

to press a key, as shown in Figure 10-16.

 29. Press any key to close the console window.

 Break Statement

Control of the do while loop is determined by the Boolean section as shown:

       do

      {

         < statements >

       } while (< Condition >)

               Boolean section

The Boolean section determines if the counter has reached its limit. However, the 

control may be modified by using the break statement, where the break statement 

forces a do while loop to exit immediately. We will now add a break statement in 

the same way as we did with the for and while loops. We will create a variable called 

Figure 10-16. Iteration 2

ChapTer 10  ITeraTIon



322

maximumNumberOfClaims and set its value to 0. Now we will check inside the while 

condition if the counter has reached the value set for the maximumNumberOfClaims, 

that is, 0. If the value of the counter has reached 0, the loop will be exited.

 30. Amend the code, as in Listing 10-34, to add a variable to hold the 

maximum number of claims.

Listing 10-34. Add a new variable

      int numberOfClaimsBeingMade;

      /*

      This variable will be used to maintain a count for the

      number of claims that have been entered by the user

      */

      int numberOfClaimsEntered = 0;

      int maximumNumberOfClaims = 0;

 31. Amend the code, as in Listing 10-35, to implement the break 

statement.

Listing 10-35. Implement the break statement within an if construct

      do

      {

         Console.WriteLine("The current value of the counter is :" + 

numberOfClaimsEntered + "\n");

        /*

        We will use the if statement to perform a boolean

        test and if the test produces a true value we will

        break out of the loop. If the boolean test produces

        a false value the loop simply continues executing the

        block of code

        */

ChapTer 10  ITeraTIon



323

        if (numberOfClaimsEntered == maximumNumberOfClaims)

        {

         /*

         We have reached the maximum number of claims allowed

         in one session so we will break out of the loop early

         */

          break;

        }

 32. Click the File menu.

 33. Choose Save All.

 34. Click the Debug menu.

 35. Choose Start Without Debugging.

 36. When the console window appears, type 3 as the number of 

claims we wish to make.

Remember, we have set a variable that will stop the iteration when the counter is 0, 

so the number entered here will be irrelevant to the extent that the loop will definitely be 

entered, and the break statement will be executed.

 37. Press the Enter key to continue and close the console window.

Figure 10-17 shows that the break statement has been executed and we are not asked 

any of the questions as the loop was exited.

Figure 10-17. Program exits

ChapTer 10  ITeraTIon



324

 Continue Statement

Control of the do while loop may also be modified by using the continue statement. 

The continue statement forces the code to move to the next iteration in the loop. So the 

loop continues, skipping the rest of the code in the current iteration, unlike the break 

statement where the loop is exited with no more iterations taking place. This is the same 

as we saw in the for and while loops. We will now add a continue statement in the same 

way as we did with the for loop. We will use the same sample scenario as used in the for 

loop, where the number of claims to be entered is keyed in as 3.

 38. Amend the code, as Listing 10-36, to change the value of the 

maximumNumberOfClaims variable.

Listing 10-36. Change the variable value

      double claimAmount;

      int numberOfClaimsBeingMade;

      /*

      This variable will be used to maintain a count for the

      number of claims that have been entered by the user

      */

      int numberOfClaimsEntered = 0;

      int maximumNumberOfClaims = 5;

 39. Amend the code, as Listing 10-37, to implement this continue 

statement within an if construct.

Listing 10-37. Implement the continue statement inside an if construct

   if (numberOfClaimsEntered == maximumNumberOfClaims)

   {

    /*

    We have reached the maximum number of claims allowed

    in one session so we will break out of the loop early

    */

     break;

   }

ChapTer 10  ITeraTIon



325

   /*

   We will use the if statement to perform a boolean test

   and if the test produces a true value we will continue

   with the loop but will skip out of this current

   iteration. In this example we will check if the value

   of the counter is even (when we divide by 2 the

   remainder is 0). If it is an even number we will skip

   the rest of this iteration by using the continue

   statement. There is no else part to the if statement so

   if the boolean test produces a false value the loop

   carries on executing the block of code

   */

   if (numberOfClaimsEntered % 2 == 0)

   {

     /*

     We have reached the maximum number of claims allowed

     in one session so we will break out of the loop early.

     Increment the loop counter by 1

     */

     numberOfClaimsEntered++;

     continue;

   }

   /*

   Read the user input for the repair shop id and

   keep it as a string

   */

   Console.WriteLine("What is your repair shop id?\n");

 40. Click the File menu.

 41. Choose Save All.

 42. Click the Debug menu.

 43. Choose Start Without Debugging.

ChapTer 10  ITeraTIon



326

The console window will appear and ask the user to input the number of claims to 

be made.

 44. Type 3 and press the Enter key.

The console window will show that the current value of the claims counter is 0, and 

it will immediately show that the current value of the claims counter is 1. This means no 

block of code was executed the first time, as the 0 value of the numberOfClaimsEntered 

counter was an even number and as such the continue statement was executed, putting 

the code into the next iteration, skipping the code in the current iteration.

As the value of the counter is 1 and not an even number, the code in the current 

iteration is executed and the questions are asked, as shown in Figure 10-18.

Figure 10-18. Current iteration is executed

The console window will appear and ask the user to input the repair shop id.

 45. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 46. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 47. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 48. Type 2021/10/01 and press the Enter key.

Iteration 1 is now complete; the block of code has been executed. The counter will 

now be incremented by 1 and become a 2. The counter value of 2 is an even number, 

and as such the continue statement was executed, putting the code to the next iteration, 

ChapTer 10  ITeraTIon



327

skipping the code in the current iteration. The counter will now be incremented by 1 and 

become a 3, and as this is not less than the numberOfClaimsBeingMade, the do while 

loop has completed and will be exited, as shown in Figure 10-19.

Figure 10-19. Iterations completed

 49. Press the Enter key again to continue and close the 

console window.

We will learn about another widely used iteration, the foreach iteration, when we 

study arrays in the next chapter.

 Chapter Summary
In this chapter we have learned about a very important programming concept called 

iteration. We have learned that

• Iteration in C# can be completed in different ways, using different 

constructs including

• The for loop

• The while loop

• The do loop

• The foreach loop, which will be covered more in the next chapter

• The break statement

• The continue statement

• We can have more than one class in a project.

ChapTer 10  ITeraTIon



328

We are making great progress in our programming of C# applications and we should 

be proud of our achievements. In finishing this chapter and increasing our knowledge, 

we are advancing to our target.

 

ChapTer 10  ITeraTIon



329

CHAPTER 11

Arrays

 Arrays: A Data Structure
We learned in Chapter 10 that iteration is a very important programming concept in all 

programming languages. To use iteration in our C# code, we have a number of construct 

options, and the best construct option to choose will depend on the particular task the 

code has to perform. The different constructs for iteration are the for construct, the while 

construct, the do while construct, and the foreach construct. Within the constructs, 

there are options to break out of the iterations completely or to break out of a particular 

iteration using the continue keyword. In terms of the project structure, we once again 

used the ability to have multiple classes within a package where each class must have a 

unique name.

We read earlier that when data was entered into our applications, it was stored 

temporarily. Now we will look at storing data in a structured and more “permanent” 

way using an array. An array is a list of data items, all of which must have the same type. 

We could also describe it as a collection of data items, each of the same type. We could 

have an array that contains a

• List of integers

• List of real numbers

• List of characters

• List of strings

If we think about a C# application that is applicable to a business that sells 

household products, it may contain arrays for

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_11

https://doi.org/10.1007/978-1-4842-8619-7_10
https://doi.org/10.1007/978-1-4842-8619-7_11#DOI


330

• Surface cleaners  ‐ This could be a list of strings.

• Hand soaps  ‐ This could be a list of strings.

• Product codes  ‐ This could be a list of integers.

If we think about a C# application that is applicable to a business that sells insurance, 

it may contain arrays for

• Insurance types  ‐ This could be a list of strings.

• Account numbers  ‐ This could be a list of integers.

• Insurance premiums  ‐ This could be a list of doubles.

• Vehicle manufacturers  ‐ This could be a list of strings.

• Vehicle models  ‐ This could be a list of strings.

An array is therefore a list of related items that can be treated by C# as one object. 

For now, we could say that an array is a number of variables that can be treated as one 

object. So, when we think of an array, we should understand that we are dealing with 

individual variables or objects, but with the added advantage of them being organized 

for us in one object.

If we have the array object with the data items “lumped” together into one object, we 

are said to have what is called a data structure. In programming, data structures may be 

very complex or more simplistic and will be in the form of a sequence of data items such 

as a data record or array. In a program for a playing card game, like solitaire, we might 

want to keep a record that holds information about a card, that is, the suit and the value. 

This means we will have two fields in the record. With the C# programming language, we 

have access to data structures that we can use to accommodate this type of record. Such 

structures in C# include an array and a data structure called a struct.

When declaring an array in C#, we must abide by some basic rules:

• The array must be assigned a data type.

• After the data type will be an open square bracket followed by a 

closing square bracket.

• The square brackets can come immediately after the data type, or 

there can be a space after the data type, just before the opening 

square bracket.

CHAPTer 11  ArrAyS



331

• The array will have a single name, which is called its identifier.

• The array is of fixed size and cannot be made bigger or smaller, so it 

is not a dynamic structure.

When we initialize or populate the array, we must ensure that each item in the array 

is of the same data type, as identified by the data type assigned to the array. We therefore 

say that an array is homogenous, having similarity in structure.

When we wish to access an item in the array, we must refer to the item by a subscript 

or index, which gives its position within the array. In C#, arrays are zero indexed, 
which means that the first element of the array has an index of zero. Arrays are common 

across nearly all programming languages and in each language they are used in a 

similar manner. However, C# has a few things that are different and are worth noting at 

the outset:

• The square brackets come after the data type, for example, string[], 

and not after the identifier.

• Putting the brackets after the identifier, for example, string 

claimAmounts[],is not permitted.

• The size of the array is not part of its type, and this means we 

can declare an array using initial values, for example, string[] 

claimAmounts = { "Home", "Auto", "Life" };.

In C# there is support for the following array types:

• Single-dimensional arrays

• Multidimensional arrays

• Jagged arrays (also known as an array of arrays)

We will look at single-dimensional arrays in more detail and will see how to

• Declare the array.

• Initialize the array.

• Reference the members of the array.

We will see that there are different ways to declare and create arrays and different 

ways to initialize arrays, so it is important at the outset to understand that we will find 

our own preferred option from the various approaches. Each approach will have its 

CHAPTer 11  ArrAyS



332

advantages and disadvantages, but as a developer we will usually have a preferred 

option. On the other hand, as a developer we will spend much of our time maintaining 

code rather than writing new code, and often the code we maintain has not been written 

by us, so we need to understand all the approaches.

 Single-Dimensional Arrays
A single-dimensional or one-dimensional array is a list of data items all of the same data 

type. It can be thought of as a type of linear array. At the start of this chapter, we read that 

a C# application for a business that sells insurance could contain arrays for

• Insurance types  ‐ This could be a list of strings.

• Account numbers  ‐ This could be a list of 

integers.

• Insurance premiums  ‐ This could be a list of doubles.

• Vehicle manufacturers  ‐ This could be a list of strings.

• Vehicle models  ‐ This could be a list of strings.

Taking this theme a little further, we could see that the arrays could contain

• A list of insurance types of data type string, for example:

{ "Auto", "SUV 4x4", "Motorcycle", "Motorhome", "Snowmobile", 

"Boat"};

Another way to think of the single-dimensional array is as a table with rows and 

columns. In the case of a single-dimensional array, there will only be a single row with 

the required number of columns as shown in Table 11-1.

Table 11-1. Representation of the insuranceTypes single-dimensional array

Array name [0] [1] [2] [3] [4] [5]

insuranceTypes Auto SUV 4x4 Motorcycle Motorhome Snowmobile Boat

Now, based on what was stated earlier about the basic rules to be abided by when 

declaring an array, we could write the code to declare, create, and populate the array for 

this example as

CHAPTer 11  ArrAyS



333

String[] insuranceTypes = new String[6];

insuranceTypes[0] = "Auto";

insuranceTypes[1] = "SUV 4x4";

insuranceTypes[2] = "Motorcycle";

insuranceTypes[3] = "Motorhome";

insuranceTypes[4] = "Snowmobile";

insuranceTypes[5] = "Boat";

• A list of account numbers (integers):

{ 000001, 001122, 002233, 003344, 004455, 005566};

Thinking of this single-dimensional array as a row with columns, it could be 

represented as shown in Table 11-2.

Table 11-2. Representation of the accountNumber single-dimensional array

Array name [0] [1] [2] [3] [4] [5]

accountNumber 000001 001122 002233 003344 004455 005566

Now, based on what was stated earlier about the basic rules to be abided by when 

declaring an array, we could write the code to declare, create, and populate the array for 

this example as

int[] accountNumber = new int[6];

accountNumber [0] = 000011;

accountNumber [1] = 001122;

accountNumber [2] = 002233;

accountNumber [3] = 003344;

accountNumber [4] = 004455;

accountNumber [5] = 005566;

CHAPTer 11  ArrAyS



334

• A list of insurance costs (doubles):

{ 104.99, 105.99, 106.99, 107.99, 108.99, 109.99};

Thinking of this single-dimensional array as a row with columns, it could be 

represented as shown in Table 11-3.

Table 11-3. Representation of the insurancePremiums single-dimensional array

Array name [0] [1] [2] [3] [4] [5]

insurancePremiums 104.99 105.99 106.99 107.99 108.99 109.99

Now, based on what was stated earlier about the basic rules to be abided by when 

declaring an array, we could write the code to declare, create, and populate the array for 

this example as

double[] insurancePremiums = new double[6];

insurancePremiums [0] = 104.99;

insurancePremiums [1] = 105.99;

insurancePremiums [2] = 106.99;

insurancePremiums [3] = 107.99;

insurancePremiums [4] = 108.99;

insurancePremiums [5] = 109.99;

Now that we have the concept of an array being a collection, a container, or a store 

for items of the same data type, we can look at how to code the implementation of 

an array. Like many things in life, we have choices. So C# gives us choices, different 

techniques, that allow us to set up and use arrays.

 Choice 1: Declaring and Creating an Array in Two Stages

Stage 1: Declare
In C#, the single-dimensional arrays we have just considered can be declared as

string[] insuranceTypes;

int[] accountNumber;

double[] insurancePremiums;

CHAPTer 11  ArrAyS



335

When we say that we are declaring an array in C#, we are actually saying that we 
want to use an array that will consist of items of the data type stated, but it will not 

exist yet.

Stage 2: Create
Now, when an array has been declared, it needs to be created. To create the array, it 

must be instantiated, and this can be achieved by using the new keyword syntax.

The single-dimensional arrays we have just considered can be created as shown:

string[]  insuranceTypes; declaration

insuranceTypes                        = new string[6]; creation

int[]  accountNumber; declaration

accountNumber                      = new int[6]; creation

double[]  insurancePremiums; declaration

insurancePremiums                 = new double[6]; creation

In instantiating the array, we are setting aside the required memory resources for the 

array of the specified size and data type.

 Choice 2: Declaring and Creating an Array in One Stage

In C#, the single-dimensional arrays we have just considered can be declared and 

created in one stage as

Declaration Creation

string[]  insuranceTypes = new string[6];

int[]  accountNumber = new int[6];

double[]  insurancePremiums = new double[6];

In each line of code, we are

• Declaring the data type of the array – string, int, or double

• Stating that the array is single dimensional – this is the [ ] part

CHAPTer 11  ArrAyS



336

• Giving the array its name – insuranceTypes, accountNumber, or 

insurancePremiums

• Instantiating the array with the new keyword

• Stating that it will contain six elements

The statement

string[] insuranceTypes = new string[6];

creates an array that can hold six strings and sets the array name as insuranceTypes. 

The newly created array is automatically filled with nulls. In C#, a newly created array is 

always filled with the default value as shown in Table 11-4.

Table 11-4. Default values for the types used with arrays

Value type Default value

bool false

byte 0

short 0

int 0

long 0L

float 0.0F

double 0.0D

char '\0'

decimal 0.0M

sbyte 0

uint 0

ulong 0

ushort 0

String null

The statement

int[] accountNumber = new int[6];

CHAPTer 11  ArrAyS

http://msdn.microsoft.com/en-us/library/c8f5xwh7.aspx
http://msdn.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn.microsoft.com/en-us/library/ybs77ex4.aspx
http://msdn.microsoft.com/en-us/library/5kzh1b5w.aspx
http://msdn.microsoft.com/en-us/library/ctetwysk.aspx
http://msdn.microsoft.com/en-us/library/b1e65aza.aspx
http://msdn.microsoft.com/en-us/library/678hzkk9.aspx
http://msdn.microsoft.com/en-us/library/x9h8tsay.aspx
http://msdn.microsoft.com/en-us/library/364x0z75.aspx
http://msdn.microsoft.com/en-us/library/d86he86x.aspx
http://msdn.microsoft.com/en-us/library/x0sksh43.aspx
http://msdn.microsoft.com/en-us/library/t98873t4.aspx
http://msdn.microsoft.com/en-us/library/cbf1574z.aspx


337

creates an array that can hold six integer values and sets the array name as 

accountNumber. The newly created array is automatically filled with zeros, as shown in 

Figure 11-1.

Figure 11-1. Array filled with default values for the int type

The statement

double[] accountNumber = new double[6];

creates an array that can hold six double values and sets the array name as 

accountNumber. The newly created array is automatically filled with 0 values as shown 

in Figure 11-2.

Figure 11-2. Array filled with default values for the double type

CHAPTer 11  ArrAyS



338

 Referencing the Array Elements

Now that we have declared, created, and instantiated arrays, we need to have a way to 

access the elements of the arrays so we can use them in our code as required. C# allows 

us to access array elements if two things are known:

• The array name

• The numeric position of the element we wish to access, remembering 

what was said earlier about C# using zero-based referencing

The syntax is arrayname[position in array – 1]

Example: insuranceTypes[2]

So what are the names of the elements in the array? Or, put another way, what are the 

names of the variables in the array? We will look at the examples we used in Tables 11-1, 

11-2, and 11-3.

Insurance type single-dimensional array as shown in Table 11-1:

insuranceTypes [0] = "Auto"; First item is indexed as 0.

insuranceTypes [1] = "SUV 4x4"; Second item is indexed as 1.

insuranceTypes [2] = "Motorcycle"; Third item is indexed as 2.

insuranceTypes [3] = "Motorhome"; Fourth item is indexed as 3.

insuranceTypes [4] = "Snowmobile"; Fifth item is indexed as 4.

insuranceTypes [5] = "Boat"; Sixth item is indexed as 5.

Account number single-dimensional array as shown in Table 11-2:

accountNumber [0] = 000011; First item is indexed as 0.

accountNumber [1] = 001122; Second item is indexed as 1.

accountNumber [2] = 002233; Third item is indexed as 2.

accountNumber [3] = 003344; Fourth item is indexed as 3.

accountNumber [4] = 004455; Fifth item is indexed as 4.

accountNumber [4] = 004455; Sixth item is indexed as 5.

CHAPTer 11  ArrAyS



339

Insurance cost single-dimensional array as shown in Table 11-3:

insurancePremium [0] = 104.99; First item is indexed as 0.

insurancePremium [1] = 105.99; Second item is indexed as 1.

insurancePremium [2] = 106.99; Third item is indexed as 2.

insurancePremium [3] = 107.99; Fourth item is indexed as 3.

insurancePremium [4] = 108.99; Fifth item is indexed as 4.

insurancePremium [4] = 109.99; Sixth item is indexed as 5.

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter11 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter11 project within the solution called CoreCSharp.

 10. Right-click the project Chapter11 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter11 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to Arrays.cs.

CHAPTer 11  ArrAyS



340

 15. Press the Enter key.

 16. Double-click the Arrays.cs file to open it in the editor window.

Now we can set up the code structure with a namespace, and inside it will be the 

Arrays class, and inside the class will be the Main() method. The shortcut for creating the 

Main() method is to type svm and press the Tab key twice.

 17. In the editor window, add the code in Listing 11-1.

Listing 11-1. Class template with the Main() method

namespace Chapter11

{

  internal class Arrays

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Arrays class

} // End of Chapter11 namespace

Note that the class name matches the filename, Arrays.
As we have seen earlier and have coded as an example, when a vehicle is involved 

in an accident and has to be repaired, the repair shop is required to supply specific 

details to the insurance company so they can be reimbursed for the costs. The details 

required are

• The repair shop unique id, data type string

• The vehicle insurance policy number, data type string

• The claim amount, data type double

• The date of the claim, data type Date

When we coded this program as part of the last chapter on iteration, we were aware 

that any data entered was not stored by the program code. We were made aware that 

this “flaw” would be rectified using an array. So now the time has come to amend the 

last program so that the data entered by the repair shop will be stored, for the duration 

that the program runs. It will not be available after the program is closed; that is why we 

marked the word permanent as “permanent” at the start of the chapter, indicating that 

CHAPTer 11  ArrAyS



341

permanent relates to the duration of the application run rather than forever. If we require 

the data after the application is exited, we could store the data in a text file or database, 

and later in Chapter 16, we will see how to store data permanently in a file.

To store the data in an array, we will

• Declare an array, having decided what data type the array will hold.

Remember the information at the start of this chapter when we read 

that an array can only hold variables of the same data type – an array 

is homogenous. We have strings, a double, and a Date, so what data 

type will we use? Well, one answer is the string data type. This will 

mean that the Date will have to be converted to a string value. We 

could even have a separate array for each data type, but for simplicity 

we are just going to use data type string.

• Use a name for the array. Here we will use the name 

repairShopClaims.

• Create the array using the new keyword and stating the size of 

the array.

• Add the values to the array in the correct position.

Let's code some C# and build our programming muscle.

 18. Amend the code, as in Listing 11-2, to declare and create the array 

that will hold the eight items of data input by the user.

Listing 11-2. Declare and create the array with eight values

    static void Main(string[] args)

    {

      /*

      The array is going to hold the data for 2 claims.

      Each claim has four pieces of information. The number

      of data items is therefore 2 multiplied by 4 = 8.

      So, we will make the array for this example of size 8.

      Not the best way to do things, but fine for now.

      */

      string[] repairShopClaims = new String[8];

    } // End of Main() method

CHAPTer 11  ArrAyS

https://doi.org/10.1007/978-1-4842-8619-7_16


342

 19. Amend the code, as in Listing 11-3, to add the variables to 

be used.

Listing 11-3. Add the variables

      string[] repairShopClaims = new String[8];

      /*

      We will setup our variables that will be used in the

      quote application. The details will be:

      •    the repair shop unique id (string)

      •    the vehicle insurance policy number (string)

      •    the claim amount (string)

      •    the date of the claim (string)

      */

      string repairShopID;

      string vehiclePolicyNumber;

      string claimAmount;

      DateTime claimDate;

      int numberOfClaimsBeingMade;

      int numberOfClaimsEntered = 0;

      int arrayPositionCounter = 0;

    } // End of Main() method

Now we will ask the user to input the number of claims being made, read the user 

input, convert it to an int, and assign it to the numberOfClaimsBeingMade variable.

 20. Amend the code, as in Listing 11-4.

Listing 11-4. Ask user for number of claims and convert it to an integer

  int numberOfClaimsEntered = 0;

  int arrayPositionCounter = 0;

  /*

  Read the user input for the number of claims being made

  and convert the string value to an integer data type

  */

CHAPTer 11  ArrAyS



343

  Console.WriteLine("How many claims are being made?\n");

  numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

  } // End of Main() method

Now we will include the start of a do while loop, which will iterate as many times as 

the user requested and display the current value of the counter for reference.

 21. Amend the code, as in Listing 11-5.

Listing 11-5. Adding the start of a do while loop

   numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

    /*

    As we are using a variable in the loop our code is

    flexible and can be used for any number of claims.

    An ideal situation and good code.

    */

    do

    {

      Console.WriteLine("The current value of the " +

        "counter is :" +numberOfClaimsEntered + "\n");

    } // End of Main() method

Now we will ask the user to input the repair shop id, read the user input, and assign 

the input to the variable repairShopID.

 22. Amend the code, as in Listing 11-6.

Listing 11-6. Ask user for repair shop id and read the value

      do

      {

        Console.WriteLine("The current value of the " +

          "counter is :" +numberOfClaimsEntered + "\n");

        /*

        Read the user input for the repair shop id and keep

        it as a string

        */

CHAPTer 11  ArrAyS



344

        Console.WriteLine("What is your repair shop id?\n");

        repairShopID = Console.ReadLine();

      } // End of Main() method

When the code is executed and the user has entered the details, we need to store 

these details in the array at position 0. We will now add the user input to the array in 

position 0 and then increment the arrayPositionCounter that is being used to track the 

positions at which the items go in the array.

 23. Amend the code, as in Listing 11-7.

Listing 11-7. Add input to the array and increment the counter

        Console.WriteLine("What is your repair shop id?\n");

        repairShopID = Console.ReadLine();

        /*

        Write the first input value to the array and then

        increment the value of the arrayPositionCounter by 1.

        */

        repairShopClaims[arrayPositionCounter] = repairShopID;

        arrayPositionCounter++;

      } // End of Main() method

Now we will ask the user to input the vehicle policy number, read the user input, and 

assign the input to the variable vehiclePolicyNumber.

 24. Amend the code, as in Listing 11-8.

Listing 11-8. Ask user for policy number and read the value

      repairShopClaims[arrayPositionCounter] = repairShopID;

      arrayPositionCounter++;

      /*

      Read the user input for the vehicle policy number

      and keep it as a string

      */

      Console.WriteLine("What is the vehicle policy number?\n");

      vehiclePolicyNumber = Console.ReadLine();

     } // End of Main() method

CHAPTer 11  ArrAyS



345

When the code is executed and the user has entered the details, we need to store 

these details in the array at position 1. We will now add the user input to the array in 

position 1 and then increment the arrayPositionCounter that is being used to track the 

positions at which the items go into the array.

 25. Amend the code, as in Listing 11-9.

Listing 11-9. Add input to the array and increment the counter

    Console.WriteLine("What is the vehicle policy number?\n");

    vehiclePolicyNumber = Console.ReadLine();

    /*

    Write the second input value to the array and then

    increment the value of the arrayPositionCounter by 1

    */

    repairShopClaims[arrayPositionCounter] = vehiclePolicyNumber;

        arrayPositionCounter++;

      } // End of Main() method

Now we will ask the user to input the claim amount, read the user input, and assign 

the input to the variable claimAmount.

 26. Amend the code, as in Listing 11-10.

Listing 11-10. Ask user for claim amount and read the value

    repairShopClaims[arrayPositionCounter] = vehiclePolicyNumber;

    arrayPositionCounter++;

    /*

    Read the user input for the repair amount and assign

    it the variable claimAmount

    */

    Console.WriteLine("What is the amount being claimed " +

      "for the repair?\n");

    claimAmount = Console.ReadLine();

      } // End of Main() method

CHAPTer 11  ArrAyS



346

When the code is executed and the user has entered the details, we need to store 

these details in the array we have set up at position 2. We will now add the user input to 

the array in position 2 and then increment the arrayPositionCounter that is being used to 

track the positions at which the items go into the array.

 27. Amend the code, as in Listing 11-11.

Listing 11-11. Add input to the array and increment the counter

        Console.WriteLine("What is the amount being claimed " +

          "for the repair?\n");

        claimAmount = Console.ReadLine());

        /*

        Write the third input value to the array and then

        increment the value of the arrayPositionCounter by 1

        */

        repairShopClaims[arrayPositionCounter] = claimAmount;

        arrayPositionCounter++;

      } // End of Main() method

 28. Amend the code, as in Listing 11-12, to ask the user to input the 

date of the claim and then read the user input.

Listing 11-12. Ask user for claim date, read the value, and convert it to a Date

        repairShopClaims[arrayPositionCounter] = claimAmount;

        arrayPositionCounter++;

        /*

        Read the user input for the repair date and assign

        it to the claimDate variable

        */

        Console.WriteLine("What was the date of the repair?\n");

        claimDate = Convert.ToDateTime(Console.ReadLine());

      } // End of Main() method

CHAPTer 11  ArrAyS



347

When the code is executed and the user has entered the details, we need to 

store these details in the array we have set up at position 3. Now we will add the 

user input, converted to a string, to the array in position 3 and then increment the 

arrayPositionCounter that is being used to track the positions at which the items go into 

the array

 29. Amend the code, as in Listing 11-13.

Listing 11-13. Add input to the array and increment the counter

        Console.WriteLine("What was the date of the repair?\n");

        claimDate = Convert.ToDateTime(Console.ReadLine());

        /*

        Write the fourth input value to the array and then

        increment the value of the arrayPositionCounter by 1

        */

        repairShopClaims[arrayPositionCounter] = claimDate.ToString();

        arrayPositionCounter++;

      } // End of Main() method

Now we have accepted all the data required for the first claim. But before getting 

details for the second claim, we need to increment the numberOfClaimsEntered counter 

that is being used to hold the value of the number of claims that have been entered.

 30. Amend the code, as in Listing 11-14.

Listing 11-14. Increment the numberOfClaimsEntered counter

        repairShopClaims[arrayPositionCounter] = claimDate.ToString();

        arrayPositionCounter++;

        /* Increment the loop counter by 1 */

        numberOfClaimsEntered++;

      } // End of Main() method

 31. Amend the code, as in Listing 11-15, to finish the do while loop by 

adding the Boolean condition to be tested.

CHAPTer 11  ArrAyS



348

Listing 11-15. Complete the do while iteration construct

        /* Increment the loop counter by 1 */

        numberOfClaimsEntered++;

      } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

    } // End of Main() method

  } // End of Arrays class

} // End of Chapter11 namespace

Depending on the number of claims the user wishes to make, the do while loop will 

be executed again the required number of times. This is great, but our only problem 

will be verifying that the details have been stored in the array. This now offers us a great 

opportunity to use the last type of iteration, foreach, that was mentioned in the last chapter.

 foreach Loop
We can use a foreach loop as an efficient way to iterate through an array or any 

collection. Unlike the other iteration constructs we looked at in the previous chapter – 

for, while, and do – there is no need for an index counter, as the foreach statement takes 

control and manages the required number of iterations. The foreach loop helps us as 

developers by reducing the amount of code we need to write. On the other hand, we do 

not actually have a counter variable to work with if we wish to use it in a display line or 

for some other reason. The format of the foreach loop is

    foreach (var item in collection)

    {

          <statements>

     }

In this generic example code

• var represents the data type of the array or collection items but we 

can use any data type from the C# language.

• item is a variable representing the member of the array. The item in 

the array at the current position.

CHAPTer 11  ArrAyS



349

• The name item is a variable name, and we can call it whatever we 

like, for example, thememberofthearray.

• in is a keyword and must be used in this position.

• collection represents the name of the array or collection we wish to 

iterate.

Applying this to the preceding program we have coded, we would have the code for 

the iteration statement as shown in Listing 11-16.

Listing 11-16. foreach loop

      foreach (var itemInTheClaimsArray in repairShopClaims)

      {

        Console.WriteLine("The item in the array is:" +

          "\t" + itemInTheClaimsArray + "\n");

      }

Looking at this specific example

• var represents the data type of the array or collection items.

• item has been replaced with the variable name 

itemInTheClaimsArray.

• in is the keyword.

• repairShopClaims represents the collection.

• In the write line statement, the variable itemInTheClaimsArray has 

been displayed.

We will now amend our code to iterate the array and display the items in the array as 

a way of confirming that the data entered by the user has been stored in the array.

 32. Amend the code, as in Listing 11-17, to add the foreach iteration.

Listing 11-17. foreach iteration

      } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

      foreach (var itemInTheClaimsArray in repairShopClaims)

      {

CHAPTer 11  ArrAyS



350

        Console.WriteLine("The item in the array is:" +

          "\t" + itemInTheClaimsArray + "\n");

      }

    } // End of Main() method

 33. Click the File menu.

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

The console window will appear and ask the user to input the number of claims to 

be made.

 37. Type 2 and press the Enter key.

 38. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 39. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 40. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 41. Type 2021/10/01 and press the Enter key.

CHAPTer 11  ArrAyS



351

Figure 11-3. Iteration 1

Iteration 1 is now completed; the block of code has been executed. The counter will 

now be incremented by 1 and become a 1. The questions are asked again for the second 

claim, as shown in Figure 11-3.

 42. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 43. Type VP000002 and press the Enter key.

The console will now ask the user to input the claim amount.

 44. Type 2999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 45. Type 2021/10/01 and press the Enter key.

CHAPTer 11  ArrAyS



352

Figure 11-4. Iteration 2

Figure 11-5. Foreach iteration shows the eight array items 

The number of claims entered is 2, and this is all that the user requested, so the 

do while loop is complete, as shown in Figure 11-4, and the next lines of code are the 

foreach iteration. As a result of the foreach iteration, the console will display all the items 

in the array as shown in Figure 11-5.

Figure 11-5 confirms that the array holds the data entered by the user since the 

foreach iteration has been used to display the array items. Our array is a single- 

dimensional array holding items of data type string.

 46. Press any key to close the console window.

Now that we have the basics of an array, we can now explore arrays further and see 

some of the possible errors associated with them.

CHAPTer 11  ArrAyS



353

Add a new class to hold the code for this example.

 1. Right-click the Chapter11 project in the Solution Explorer panel.

 2. Choose Add.

 3. Choose Class.

 4. Name the class ArrayErrors.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not produced 

automatically, and delete the unwanted imports.

The shortcut to create the Main() method is to type svm and then press the Tab key 

twice. Now we need to set this class as the startup class.

 7. Right-click the Chapter11 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the ArrayErrors.cs class in the Startup object drop-

down list.

 10. Close the Properties window.

We will now create a program that will declare and create an array whose size will be 

determined by the number of entries the user is making. Remember that the array size 

has to be known at compile time; otherwise, we will get an error. In this program we will 

keep the code straightforward and only ask the user for the vehicle policy number and 

the odometer reading.

 11. Amend the code, as in Listing 11-18, to declare and create the 

array using a variable for the size of the array.

Listing 11-18. Create a variable and use it for the array size

    static void Main(string[] args)

    {

      /*

      We will setup our variables that will be used in the

      application. The number of entries being made will

      determine the size of the array

CHAPTer 11  ArrAyS



354

      */

      int numberOfEntriesBeingMade;

      /*

      The array is going to hold the data for a number of

      vehicles and their corresponding odometer readings.

      Each entry will be a vehicle policy number and the

      number of kilometres shown on the odometer. This means

      that the size of the array will be twice the number of

      entries being made by the repair shop.

      */

      string[] odometerReadings = new string[numberOfEntriesBeingMade * 2];

    } // End of Main() method

We should note that as we have not initialized the numberOfEntriesBeingMade 

variable, we get an error as shown in Figure 11-6.

Figure 11-6. Error when variable not initialized

The error message shown in Figure 11-6 is saying that we cannot use an unassigned 

variable for the array size. So we will simply add a line of code that will ask the user to 

input the number of entries they are going to make and assign this value to the variable. 

Now the program will be happy as it will have a value for the variable – the variable is not 

unassigned. What we can see is that even though the actual value of the variable is not 

known, the program is happy as it will know the value before the array is created.

We will now ask the user to input the number of entries being made, read this value 

from the console, convert it to data type int, and assign the value to the variable called 

numberOfEntriesBeingMade. We will insert this code after the declaration of the array.

 12. Amend the code, as in Listing 11-19.

CHAPTer 11  ArrAyS



355

Listing 11-19. Read the user input – after array declaration

      string[] odometerReadings =

                    new string[numberOfEntriesBeingMade * 2];

      /*

      Read the user input for the number of entries being

      made and convert the string value to an integer data type

      */

      Console.WriteLine("How many entries are you wishing to make?\n");

      numberOfEntriesBeingMade = Convert.ToInt32(Console.ReadLine());

    } // End of Main() method

We still see a red underline under the variable numberOfEntriesBeingMade, and 

this is understandable as the value read from the console is only known after the line 

of code that tries to declare and create the array. This is an error as the size needs to be 

known at compile time, now, not at runtime.

 13. Amend the code, as in Listing 11-20, to move the block of code we 

have just entered to above the array declaration statement.

Listing 11-20. Read the user input – before array declaration

      int numberOfEntriesBeingMade;

      /*

      Read the user input for the number of entries being

      made and convert the string value to an integer data type

      */

      Console.WriteLine("How many entries are you wishing to make?\n");

      numberOfEntriesBeingMade = Convert.ToInt32(Console.ReadLine());

      /*

      The array is going to hold the data for a number of

      vehicles and their corresponding odometer readings.

      Each entry will be a vehicle policy number and the

      number of kilometres shown on the odometer. This means

CHAPTer 11  ArrAyS



356

      that the size of the array will be twice the number of

      entries being made by the repair shop.

      */

      string[] odometerReadings = new string[numberOfEntriesBeingMade * 2];

Great, the red underline has disappeared, and the compiler is happy. So now we 
know that we must tell the compiler the size of the array to make it happy. We can use 

a variable, but this must be known when the array is declared and created.

Now we will ask the user to input the value for the vehicle policy number followed 

by the odometer reading and this will be repeated the number of times requested by the 

user. For this we will use a do while loop. This code will be very similar to the code from 

the last code example.

 14. Amend the code, as in Listing 11-21, to add the other variables we 

will use.

Listing 11-21. Adding the extra variables we require

    static void Main(string[] args)

    {

      /*

           We will setup our variables that will be used in the

           application. The number of entries being made will

           determine the size of the array

           */

      int numberOfEntriesBeingMade;

      int numberOfEntriesEntered = 0;

      int arrayPositionCounter = 0;

      int odometerReadingForVehicle;

      string vehiclePolicyNumber;

 15. Amend the code, as in Listing 11-22, to add the loop and the 

questions.

CHAPTer 11  ArrAyS



357

Listing 11-22. Adding the do while loop and the user questions

    string[] odometerReadings =

                  new string[numberOfEntriesBeingMade * 2];

  /*

  As we are using a variable in the loop our code is

  flexible and can be used for any number of claims.

  An ideal situation and good code.

  */

  do

  {

     Console.WriteLine("The current value of the counter is :" + 

numberOfEntriesEntered + "\n");

    /*

    Read the user input for the vehicle policy number

    and keep it as a string

    */

    Console.WriteLine("What is the vehicle policy number?\n");

    vehiclePolicyNumber = Console.ReadLine();

    /*

    Write this first input value to the array and then

    increment the value of the arrayPositionCounter by 1

    */

    odometerReadings[arrayPositionCounter] = vehiclePolicyNumber;

    arrayPositionCounter++;

    /* Read the user input for the odometer reading */

    Console.WriteLine("What is the odometer reading?\n");

    odometerReadingForVehicle = Convert.ToInt32(Console.ReadLine());

    /*

    Write the second input value to the array and then

    increment the value of the arrayPositionCounter by 1

    */

CHAPTer 11  ArrAyS



358

     odometerReadings[arrayPositionCounter] = odometerReadingForVehicle.

ToString();

    arrayPositionCounter++;

    /* Increment the loop counter by 1 */

    numberOfEntriesEntered++;

  } while (numberOfEntriesEntered < numberOfEntriesBeingMade);

  } // End of Main() method

 16. Amend the code, as in Listing 11-23, to add the iteration construct 

and display the array values.

Listing 11-23. Adding the foreach iteration to display the array values

  /* Increment the loop counter by 1 */

   numberOfEntriesEntered++;

 } while(numberOfEntriesEntered < numberOfEntriesBeingMade);

  foreach(string itemInTheodometerReadingsArray in

                                      odometerReadings)

   {

      Console.WriteLine("The item in the array is: \t" + 

itemInTheodometerReadingsArray + "\n");

   } // End of foreach construct

 } // End of Main() method

 17. Click the File menu.

 18. Choose Save All.

 19. Click the Debug menu.

 20. Choose Start Without Debugging.

 21. Type 2 for the number of entries to be made.

 22. Press the Enter key.

 23. Type VP000001 for the vehicle policy number.

 24. Press the Enter key.

CHAPTer 11  ArrAyS



359

The console will now ask the user to input the vehicle odometer reading.

 25. Type 10000.

 26. Press the Enter key.

 27. Type VP000002 for the vehicle policy number.

 28. Press the Enter key.

 29. Type 20000.

 30. Press the Enter key.

Figure 11-7 shows the two iterations, and Figure 11-8 shows the array items.

Figure 11-7. Both iterations completed

Figure 11-8. Foreach iteration displays the array items

CHAPTer 11  ArrAyS



360

The array will therefore hold the string values as shown in Table 11-5.

Table 11-5. Array depiction

[0] [1] [2] [3]

VP000001 10000 VP000002 20000

 IndexOutOfBounds Exception

An array is of fixed size, and if we try to read or write a value that is outside the 

boundary of the array, we will be causing an exception. In C# the error is known as an 

IndexOutOfBounds exception because it happens when we have made the value of the 

index, the counter, larger than the size of the array. Remember that the index starts at 

0, not 1.

We will now make the iteration go one more than it currently does, by adding 1 to the 

Boolean condition at the end of the do while construct.

 31. Amend the code, as in Listing 11-24, to add 1 to the end of the 

do while.

Listing 11-24. Adding +1 to the end of the do while loop

  /* Increment the loop counter by 1 */

  numberOfEntriesEntered++;

} while(numberOfEntriesEntered < numberOfEntriesBeingMade + 1);

 32. Click the File menu.

 33. Choose Save All.

 34. Click the Debug menu.

 35. Choose Start Without Debugging.

 36. Type 2 for the number of entries to be made.

 37. Press the Enter key.

 38. Type VP000001 for the vehicle policy number.

 39. Press the Enter key.

The console will now ask the user to input the vehicle odometer reading.

CHAPTer 11  ArrAyS



361

 40. Type 10000.

 41. Press the Enter key.

 42. Type VP000002 for the vehicle policy number.

 43. Press the Enter key.

 44. Type 20000.

 45. Press the Enter key.

 46. Type VP000003 for the vehicle policy number.

 47. Press the Enter key.

Our array was made to have a size of

2 entries multiplied by the 2 values in each entry = 4

This means that the positions available in the array are

odometerReadings[0]

odometerReadings[1]

odometerReadings[2]

odometerReadings[3]

Our variable is 4, and we are therefore trying to write to position

odometerReadings[4]

This means our index of 4 is out of bounds, as 3 is the maximum boundary limit. 

Figure 11-9 shows the resulting runtime error.

Figure 11-9. Array out-of-bounds exception

We will now change the test back to its original value, no +, as in Listing 11-25.

Listing 11-25. Removing the +1 from the end of the do while loop

    /* Increment the loop counter by 1 */

    numberOfEntriesEntered++;

  } while(numberOfEntriesEntered < numberOfEntriesBeingMade);

CHAPTer 11  ArrAyS



362

 48. Click the File menu.

 49. Choose Save All.

 Ranges and Indices: C# 8 and Above
Add a new class to hold the code for this example.

 1. Right-click the project Chapter11 in the Solution Explorer panel.

 2. Choose Add.

 3. Choose Class.

 4. Name the class IndicesAndRanges.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not produced 

automatically, and delete the unwanted imports.

Remember the shortcut to create the Main() method is to type svm and then press 

the Tab key twice.

Now we need to set this class as the startup class.

 7. Right-click the Chapter11 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the IndicesAndRanges.cs class in the Startup object  

drop-down list.

 10. Close the Properties window.

C# 8 introduced the concept of ranges to collections along with two new operators. 

When using ranges, we now have the index and the range, which can be used to index 

and slice the collection. Both index and range are part of the System namespace. When 

we think about what we have done so far with arrays, we have worked from the start of 

the zero-indexed array and never really thought about starting from the end of the array, 

and we use the index of the element or elements when we need access to them. Now, 

in C# 8 we have been given an index expression that allows us to access the collection 

from the end. The hat operator, ^, means “index from end,” so ^2 would give us the 

second element from the end. The syntax is the ^ followed by an integer value or a 

CHAPTer 11  ArrAyS



363

variable that can be converted to an integer, and we should still be aware that we can still 

get an IndexOutOfRange exception if we use an incorrect integer value.

Also, in C# there was no easy way to access a range or a slice of the collection, but we 

could use commands like Skip() and Take(), which belong to the Language-Integrated 

Query (LINQ) library. An example of these would be

string[] policyType = { "Home", "Auto", "Life", "Boat" };

var policies = policyType.Skip(2).Take(1);

Console.WriteLine("Skip 2 and take 4 gives the values");

foreach (var category in policies)

{

  Console.WriteLine(category);

}

Running this code would mean Home and Auto are skipped and then Life is taken 

and it is displayed within the foreach construct. But interestingly if we are to code either 

of these two lines

var policies = policyType.Skip(12).Take(1);

var policies = policyType.Skip(2).Take(10);

the fact that we have tried to skip 12 on line 1 when there are only 4 items 

and take 12 on line 2 when there are only 2 items remaining does not cause an 

out-of-range exception. However, if the source was null, we would get a System.

ArgumentNullException: Value cannot be null error.

C# 8 however changes things, and we are now able to use the new range operator, 

start..howmany, and we can leave out the start or the end. The .. syntax is called the 

range operator.

Let's code some C# and build our programming muscle.

 11. Amend the code, as in Listing 11-26, to declare and initialize 

the array.

Listing 11-26. Declare and create the array

namespace Chapter11

{

  internal class IndicesAndRanges

CHAPTer 11  ArrAyS



364

  {

    static void Main(string[] args)

    {

     Console.WriteLine("**** C# 8 Indices and Ranges ****");

     Console.WriteLine("Ranges and indices provide a succinct ");

     Console.WriteLine("syntax for accessing single elements ");

     Console.WriteLine("or ranges in a sequence ");

     Console.WriteLine("*******************");

     /*

     Declare and initialise the array of employees

     and their salary

     */

      String[] employeeAndSalary = { "Gerry Byrne", "20000.55",

        "Peter Johnston", "30000.00", "Ryan Jones", "50000.00" };

    } // End of Main() method

  } // End of IndicesAndRanges class

} // End of Chapter11 namespace

We will amend the code to iterate the array and use the index from end within the 

console output. In this example we use ^(employeeAndSalary.Length – (counter)), 
which means

• Find the length of the array.

• Subtract the counter value from it, for example, 6 – 0 = 6.

• But with the ^ it becomes ^6, which means from the end take the 

sixth element, which we know is really the first item in the array or 

index zero.

 12. Add the new code within the Main() method, as in Listing 11-27.

Listing 11-27. Iterate the array and use the hat operator, index from end

/*

 Using the index from end operator ^ indicates we wish

 to start at the end of the sequence

 Counting from the beginning means we start at 0

 Counting from the end means we start at 1

CHAPTer 11  ArrAyS



365

 */

  for (int counter = 0; counter < employeeAndSalary.Length;

   counter++)

  {

   Console.WriteLine($"The element positioned {counter} from the end of the 

array is {employeeAndSalary[^(counter+1)]}");

  }

} // End of Main() method

 13. Click the File menu.

 14. Choose Save All.

 15. Click the Debug menu.

 16. Choose Start Without Debugging.

Figure 11-10 shows the array has been read using the ^ operator. We see the index 
from end value and the value stored at that position.

Figure 11-10. Using the hat operator ^, “index from end”

 17. Press the Enter key to close the console window.

 18. Amend the code, as in Listing 11-28, to use the index from end to 

display the second element from the end of the array.

CHAPTer 11  ArrAyS



366

Listing 11-28. Using the index from end, ^, to display the second element

      for (int counter = 0; counter < employeeAndSalary.Length;

           counter++)

      {

   Console.WriteLine($"The element positioned {counter} from the end of the 

array is {employeeAndSalary[^(counter+1)]}");

      }

      Console.WriteLine();

      Console.WriteLine("* ^ index from the end operator *");

      /*

      Using the index feature.

      ^ indicates we wish to start at the end

      In the first example we use the traditional position index

      In the second example we use the index from

      */

       Console.WriteLine($"Element index 2 is {employeeAndSalary[2]} and the 

second item from the end is {employeeAndSalary[4]}");

       Console.WriteLine($"Element index 2 is {employeeAndSalary[^4]} and 

the second item from the end is {employeeAndSalary[^2]}");

      Console.WriteLine();

    } // End of Main() method

  } // End of IndicesAndRanges class

} // End of Chapter11 namespace

 19. Click the File menu.

 20. Choose Save All.

 21. Click the Debug menu.

 22. Choose Start Without Debugging.

The console will show the array elements as shown in Figure 11-11. We see the 

output line repeated as we have used the traditional method and the equivalent ^, index 
from end.

CHAPTer 11  ArrAyS



367

Figure 11-11. Traditional index and the hat operator

 23. Press the Enter key to close the console window.

 24. Amend the code, as in Listing 11-29, to use the length and index 

from end to display the last element of the array.

Listing 11-29. Using the length and index from end, ^

      Console.WriteLine($"Element index 2 is " +

        $"{employeeAndSalary[^4]} and the second item from" +

        $" the end is {employeeAndSalary[^2]}");

      Console.WriteLine();

      Console.WriteLine("* Length and ^ index from end operator*");

      /*

      Using the index feature. ^ indicates we wish to start

      at the end. In the first example we use the length to

      help find the last item. In the second example we use the

      indices to find the last item

      */

       Console.WriteLine($"The last item of the array is {employeeAndSalary[

employeeAndSalary.Length - 1]}");

       Console.WriteLine($"The last item of the array is 

{employeeAndSalary[^1]}");

      Console.WriteLine();

    } // End of Main() method

 25. Click the File menu.

 26. Choose Save All.

CHAPTer 11  ArrAyS



368

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

Figure 11-12 shows the console with the last item of the array.

Figure 11-12. Length and the hat operator

 29. Press the Enter key to close the console window.

 Range

In this code we will look at the traditional method GetRange(), from the LINQ library, to 

get a sequence of values from the array. We will also use the Skip() and Take() methods, 

which are also from the LINQ library. We will then use the new range operator .. to 

locate elements.

We will amend the code to use the ToList() and GetRange() methods to display 

the items from the list within the given range. Read the comments to help with 

understanding the code.

 30. Amend the code as in Listing 11-30.

Listing 11-30. Using the ToList() and GetRange() methods

      Console.WriteLine($"The last item of the array " +

        $"is {employeeAndSalary[^1]}");

      Console.WriteLine();

      /*

      Using the range feature. Range represents a sub range of

      a sequence. A range specifies the start and end of a range.

      Ranges are exclusive, meaning the end isn't included in

      the range. The range [0..^0] represents the entire range.

      Equally [0..sequence.Length] represents the entire range.

      In the first example we use the traditional method to find

CHAPTer 11  ArrAyS



369

      the length. In the second example we use the indices to

      find the last item

      */

      Console.WriteLine(" GetRange and ToList *");

      Console.WriteLine("Range represents a sub range of a sequence");

      var employees = employeeAndSalary.ToList().GetRange(2, 4);

      foreach (var item in employees)

      {

         Console.WriteLine($"After using GetRange() the array item is 

{item}");

      }

      Console.WriteLine();

    } // End of Main() method

 31. Click the File menu.

 32. Choose Save All.

 33. Click the Debug menu.

 34. Choose Start Without Debugging.

Figure 11-13 shows the console displaying the array elements starting at element 2, 

the third item, and taking four items, which is up to element 5, the sixth item.

Figure 11-13. GetRange() and ToList() methods start at the third item for 
four items

 35. Press the Enter key to close the console window.

CHAPTer 11  ArrAyS



370

 36. Amend the code, as in Listing 11-31, to use the Skip() and Take() 

methods and display the items.

Listing 11-31. Using the Skip() and Take() methods 

      Console.WriteLine();

      Console.WriteLine("* Skip and Take * ");

      /*

      Using the skip and take features.

      In the first example we use the traditional method to

      find the length. In the second example we use the indices

      to find the last item

      */

      var someemployees = employeeAndSalary.Skip(2).Take(4);

      foreach (var item in someemployees)

      {

         Console.WriteLine($"After using Skip() and Take() the array item is 

{item}");

      }

      Console.WriteLine();

    } // End of Main() method

  } // End of IndicesAndRanges class

} // End of Chapter11 namespace

 37. Click the File menu.

 38. Choose Save All.

 39. Click the Debug menu.

 40. Choose Start Without Debugging.

The console, as shown in Figure 11-14, will show the array elements.

CHAPTer 11  ArrAyS



371

Figure 11-14. Skip() and Take() methods

 41. Amend the code to use the range operator and display the items.

Listing 11-32. Using the range operator [2..^2]

      foreach (var item in someemployees)

      {

        Console.WriteLine($"After using Skip() and " +

          $"Take() the array item is {item}");

      }

      Console.WriteLine();

      Console.WriteLine("* Range operator *");

      /*

      Using the range operator .., specifies the start and end

      of a range as its operands. A range specifies the start

      and end of a range. Ranges are exclusive, meaning the

      end isn't included in the range.

      The range [0..^0] represents the entire range.

      In this example we use start at index 2 and

      stop at the element 2 from the end

      */

      var someemployeeswithindices = employeeAndSalary[2..^2];

      foreach (var item in someemployeeswithindices)

      {

         Console.WriteLine($"Starting at index 2 and stopping at the element 

before 2 from the end the array item is { item }");

      }

    } // End of Main() method

CHAPTer 11  ArrAyS



372

 42. Click the File menu.

 43. Choose Save All.

 44. Click the Debug menu.

 45. Choose Start Without Debugging.

The console, as shown in Figure 11-15, shows the result from using the range 

operator.

Figure 11-15. Range operator [2.. ^2] 

 Chapter Summary
In this chapter we have learned about the particularly important programming concept 

called arrays. We have learned that in C#

• Arrays are used to hold a collection of items all of the same data type.

• An array is homogeneous.

• Arrays are of fixed size. Once we declare the size of the array, it 

cannot be altered.

• Arrays hold the data for the duration that the program runs.

• There are single-dimensional arrays, which we have used in this 

chapter, but there are also multidimensional arrays.

• Items in an array are referenced by their index, also called the 

subscript.

• The indexes start at 0, not 1 – arrays are zero indexed.

CHAPTer 11  ArrAyS



373

• The foreach loop is an ideal iterator to use with arrays; however, it is 

not suitable if we need to reference a counter since no counter exists 

in the foreach construct.

• If we try to exceed the maximum index of the array, we will get an 

IndexOutOfBounds exception.

• There are different ways to access the elements of the array using the 

range features like the hat operator, ^, which means “index from end,” 

and the range operator .., which effectively lets us “slice” the array.

• We can have more than one class in a project.

We are making great progress in our programming of C# applications and we should 

be proud of our achievements. In finishing this chapter and increasing our knowledge, 

we are advancing to our target.

 

CHAPTer 11  ArrAyS



375

CHAPTER 12

Methods

 Methods: Modularization
We learned in Chapter 11 that arrays are a very important programming structure when 

we need to “store” a collection of data, variables or objects, of the same data type. We 

saw that arrays in C# are of a fixed size. Once we declare the size of the array, it cannot 

be altered. Each item in an array can be referenced using its index, which is also called 

its subscript, and we can use the foreach loop to iterate the array items. With the 

foreach iteration, we do not need to use a counter as the foreach construct handles the 

indexing for us. If we wish to reference an index in an iteration, we can use the more 

traditional for, while, or do while iteration. We also learned that we could cause an 

IndexOutOfBounds exception if we are not careful in our coding.

 Methods: Concepts of Methods and Functions
Most commercial programs will involve large amounts of code, and from a maintenance 

and testing perspective, it is essential that the program has a good structure. Well-written 

and organized programs allow those who maintain or test them to

• Follow the code and the flow of events easier.

• Find things quicker.

Just look at Figure 12-1 and think which image fits with the description of finding 

things easier.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_12

https://doi.org/10.1007/978-1-4842-8619-7_11
https://doi.org/10.1007/978-1-4842-8619-7_12#DOI


376

Figure 12-1. Organized or not?

Would we say the right-hand image? We might say that in the right-hand image, 

there is a sense of organization, there is space to see things, and there is a sense of calm. 

The left-hand image, we might say, gives a sense of confusion, clutter, and not caring. We 

do not want our code to look or feel like the left-hand image.

One way to help structure the program code is to break it into small functional parts 

with each part performing only one task. When we have a functional part, which does 

one specific thing, it may be possible for that functional part to be used by other parts 

of the program. These small functional parts can be thought of as subprograms or 

methods or functions, or sometimes they are called procedures. The words function 

and method are often used interchangeably. If we think about functions in mathematics, 

for example, we can have mathematical functions such as square root, sin, cos, and tan, 

as shown in Figure 12-2.

Figure 12-2. Method or function?

Chapter 12  Methods



377

According to the Microsoft site

A method is a code block that contains a series of statements. A program 
causes the statements to be executed by calling the method and specifying 
any required method arguments.

In C#, every executed instruction is performed in the context of a method. The 

Main() method is the entry point for every C# application, and it is called by the 

Common Language Runtime (CLR) when the program is started.

 Some Points Regarding Methods
• A method begins with an access modifier. The access modifier will 

determine the visibility of the method from another class. If we set 

the access modifier as

• public, the method is accessible inside the class it is created in 

and is available from outside this class

• private, the method is only accessible inside the class it is 

created in

• protected, the method is only accessible inside the class it is in or 

in a class that is derived from the class

• internal, the method is only accessible inside the same assembly 

but not from another assembly

• A method access modifier is followed by the method return type. 

The return type means the data type of the object that is being 

returned by the method. We can return any of the data types we have 

looked at, for example, int, float, double, char, string, or bool. 

Or we can return a type that we have defined. If the method will not 

return a value, then the return type is said to be void – the keyword 

void still needs to appear .

• The return type is followed by the method name. The method name 

should follow good coding principles and let the reader know what 

the method is doing, simply by reading the name.

• The method name is followed by open and close brackets ().

Chapter 12  Methods



378

• Inside the brackets () there may be a list of parameters. The 

parameters are variables that will hold any values passed to the 

method. The parameters will have a data type, which will be stated 

in front of the parameter name. The list of parameters is enclosed in 

parentheses (). Not every method will accept parameters; they are 

optional. So the method can contain no parameters – they can be 

referred to as parameterless methods.

• The parentheses () are followed by opening and closing curly braces 

{}. Inside the curly braces is where the code, business logic, goes.

• Methods are coded inside the class but outside the Main method, if 

there is a Main method in the class.

Figure 12-3 shows the general format of a method with a specific method also shown.

Figure 12-3. General format for a method, with a specific example

Examples
We will go into the structure more as we progress, but for now, we will look at three 

examples that fit the preceding rules:

 1. public void CalculateCommission()

• Here the access modifier is public.

• The method will not return a value; it therefore returns void.

• The method name is CalculateCommission.

• The method has no parameters, so it takes in no values, no 

variables or objects.

 2. private double CalculateCommission()

• Here the access modifier is private.

• The method will return a value, which is of data type double.

Chapter 12  Methods



379

• The method name is CalculateCommission.

• The method has no parameters, so it takes in no variables or 

objects – it is parameterless.

 3. private double CalculateCommission(double salesAmount, 

double commissionRate)

• Here the access modifier is private.

• The method will return a value, which is of data type double.

• The method name is CalculateCommission.

• The method accepts, takes in, two parameters. The first 

parameter is called salesAmount, which has a data type of 

double; and the second parameter is called commissionRate, 
which has a data type of double.

Some Other Important Points

• A method can contain one or more statements.

• A method name can use any valid identifier that we want.

• A method name should not be a C# keyword.

• The method name is used to call the method, and when we call 

the method, we are asking the method to execute its code and then 

return to the code that made the call.

• There is a very important method called Main( ) and it is reserved 

for the method that begins execution of your program.

In Figure 12-4, MethodOne() is called from within the Main() method. The 

application code will look outside the Main() method for a method with the name 

MethodOne(). When it finds MethodOne(), it executes the lines of code within it and 

then returns to the code within the Main() method.

Chapter 12  Methods



380

Figure 12-4. Main() method that calls two methods

After returning from MethodOne(), the next lines of code, indicated as some 

business logic in the code in Figure 12-4, are executed until the second method, 

MethodTwo(), is called. When MethodTwo() is called, the application code will 

again look outside the Main() method, but this time for a method with the name 

MethodTwo(). When it finds MethodTwo(), it executes the lines of code within it and 

then returns to the code within the Main() method.

Even looking at this simplified flow diagram, we get a sense that

• Methods can be kept separate from the main code and called as 

required.

• The methods are coded outside the Main() method.

• Methods are small blocks of code, as we can see from the dotted 

areas in Figure 12-4.

Modern programming style dictates that a method should do one thing and one 

thing only. Methods that do more than one thing should be split into further methods. As 

a caveat we need to be mindful that creating every method to do one thing can actually 

make the code less readable and possibly harder to maintain, so we have to strike a 

balance and be realistic, and that is part of being a developer. Essentially, we have 

three types of methods, and we will look at these now to see how they are used, their 

similarities, and their differences.

Chapter 12  Methods



381

 Three Types of Methods
• Void method

Listing 12-1. Void method

public void CalculateCommission();

The code in Listing 12-1 is what we looked at earlier, and we saw that 

this type of method executed code and did not return any value – it is 

a void method.

• Value method

Listing 12-2. Value method

private double CalculateCommission();

The code in Listing 12-2 is what we looked at earlier, and we saw that 

this type of method executed code and then returned a value. The 

value it returns is a variable, and the variable must have a data type 

that matches the return type stated after the access modifier and 

before the method signature. In this example we are returning a value 

of type double – it is a value method.

• Parameter method

Listing 12-3. Parameter method

private double CalculateCommission(double salesAmount, double 

commissionRate);

The code in Listing 12-3 is what we looked at earlier, and we saw 

that this type of method accepted one or more parameters. The 

parameters are just variables or objects, so they have a data type, 

and we give them a name of our choosing. The method executes 

code, which will probably use the variables passed in as parameters. 

Otherwise, why would we accept the parameters? The method can 

also return a value, in which case it is also a value method, or it may 

not return a value, in which case it is also a void method. This is a 

parameter method.

Chapter 12  Methods



382

In Listing 12-2 the return type is a double, so the method is a 

value method, but it accepts, takes in, no value, so it is also a 

parameterless method.

In Listing 12-3 the return type is a double, so the method is a value 

method, and it accepts, takes in, two values of data type double, so it 

is also a parameter method.

In Listing 12-4 the return type is a void, so the method is a void 

method, and it accepts, takes in, one value of data type double, so it is 

also a parameter method.

Listing 12-4. Void/parameter method

private void CalculateCommission(double salesAmount);

Interestingly all the methods in Listings 12-1, 12-2, 12-3, and 12-4 have the same 

name, CalculateCommission, but they return different types or accept different 

parameters. We will talk about this later when we discuss method overloading.

 Void Methods
When we call a method, the lines of code within the method are implemented. In 

Figure 12-4 we saw that when MethodOne() was called, the program looked for 

MethodOne(), the lines of code were executed, and control of the program was returned 

to the main program.

When a method does not return a value, it is said to be a void method. The 

declaration void indicates that the function returns no value to the caller. It is important 

to realize that every function declaration specifies a return type, even if it’s void.

An example of a void method is shown in Listing 12-5.

Listing 12-5. Void method

  public void OdometerReading()

  {

      /// Ask the user to input the value on the odometer

      Console.WriteLine("What is the odometer reading");

Chapter 12  Methods



383

      // Read the value entered by the user

      odometerReadingEntered = int.Parse(Console.ReadLine());

  }

Code Analysis

• The method has an access modifier of public so the method will be 

available to all code inside the class or from outside the class.

• The return type is void so the method will not return any value, and 

we will therefore not see the last line of code in the method saying 

return, but we should be aware that the return is still there and the 
compiler infers it. We can also have the return statement at any 
position in the method, but code following it will not be executed.

• The name of the method is OdometerReading.

• The open and close parentheses follow the name and are empty, 

which means that the method has no parameters, accepts no values.

• The open and close curly braces follow the parentheses, and it is 

between these braces that the business logic, the code, goes.

• The business logic code is very simple as it displays a message to the 

user through the Console.WriteLine() method.

• It reads the user input from the console using the Parse() method.

• The Parse() method accepts a parameter, which in this case is 

Console.ReadLine() - in other words, whatever is entered at the 

console.

• The input is converted to an int, as we have used int.Parse() to 

convert.

The format for calling the method, using it, is by using the method name followed by 

the open and close parentheses as shown in Listing 12-6.

Listing 12-6. Calling the void method

      OdometerReading();

Chapter 12  Methods



384

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter12 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter12 project within the solution called CoreCSharp.

 10. Right-click the project Chapter12 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter12 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to MethodsVoid.cs.

 15. Press the Enter key.

 16. Double-click the MethodsVoid.cs file to open it in the 

editor window.

Now we can set up the code structure with a namespace, and inside it will be the 

MethodsVoid class, and inside the class will be the Main() method. The shortcut for 

creating the Main() method is to type svm and press the Tab key twice.

 17. In the editor window, add the code in Listing 12-7.

Chapter 12  Methods



385

Listing 12-7. Class template when adding a class

namespace Chapter12

{

  internal class MethodsVoid

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

We are now going to use the same code that we created for the Arrays.cs program, 

but we will make the code more maintainable by creating methods. Our methods for this 

example will be void methods.

Listing 12-8 is the code from the Arrays.cs program but with the original comments 

removed and a new comment added for each block of code that will become a method in 

our new program. This is an example to illustrate that methods can be used to modularize 

our code, but remember the caveat we mentioned earlier about striking a balance 

between all methods doing one thing and having readable and maintainable code.

Do not type the following code; it is for reference only and is the same as we 
coded in the last chapter. It is here merely to show which blocks of code will become 
methods.

Listing 12-8. Program code

static void Main(string[] args)

{

  /******************* METHOD ONE ******************/

  Console.WriteLine("How many claims are being made?\n");

  numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

  do

  {

    /*******************METHOD TWO ******************/

    Console.WriteLine("The current value of the " +

      "counter is :" + numberOfClaimsEntered + "\n");

Chapter 12  Methods



386

    /*******************METHOD THREE ******************/

    Console.WriteLine("What is your repair shop id?\n");

    repairShopID = Console.ReadLine();

    /*******************METHOD FOUR ******************/

    repairShopClaims[arrayPositionCounter] = repairShopID;

    arrayPositionCounter++;

    /*******************METHOD FIVE ******************/

    Console.WriteLine("What is the vehicle policy number?\n");

    vehiclePolicyNumber = Console.ReadLine();

    /*******************METHOD SIX ******************/

    repairShopClaims[arrayPositionCounter] = vehiclePolicyNumber;

    arrayPositionCounter++;

    /*******************METHOD SEVEN ******************/

    Console.WriteLine("What is the amount being claimed " +

      "for the repair?\n");

    claimAmount = Convert.ToDouble(Console.ReadLine());

    /*******************METHOD EIGHT ******************/

    repairShopClaims[arrayPositionCounter] = claimAmount.ToString();

    arrayPositionCounter++;

    /*******************METHOD NINE ******************/

    Console.WriteLine("What was the date of the repair?\n");

    claimDate = Convert.ToDateTime(Console.ReadLine());

    /*******************METHOD TEN ******************/

    repairShopClaims[arrayPositionCounter] =

                              claimDate.ToString();

    arrayPositionCounter++;

    /* Increment the loop counter by 1 */

    numberOfClaimsEntered++;

  } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

Chapter 12  Methods



387

  /*******************METHOD ELEVEN ******************/

  foreach (var itemInTheClaimsArray in repairShopClaims)

  {

    Console.WriteLine("The item in the array is:" +

      "\t" + itemInTheClaimsArray + "\n");

  } // End of foreach iteration

} // End of Main() method

For this application

• We will start by creating the variables to be used in the code. The 

variables will be created at the class level, inside the class and outside 

any methods. Later we will make local variables rather than class 

variables.

• In creating the class-level variables, we will use the keyword static 

before each variable data type, because our Main() method is 

static, but when we study classes and objects in Chapter 13, we will 

have class-level variables that are not static, but that’s for a later 

discussion.

• In terms of the word static, we will see more about it in Chapter 13, 

but for now just accept that static means belonging to this class.

• Creating variables at the class level means that all the methods of the 

class will have access to them.

• As we are on a chapter about creating and using methods, we will 

want to have easy access to the variables, but once we understand a 

bit more about methods, we will change the approach of using class- 

level variables and make use of local variables instead.

Note
We still have the code from the Arrays.cs class so we can copy and paste the code into 

this MethodsVoid.cs class, as we need it.

 18. Amend the code, as in Listing 12-9, to declare and create the array 

at the class level, remembering to use the keyword static.

Chapter 12  Methods

https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_13


388

Listing 12-9. Declare and create the array

using System;

namespace Chapter12

{

  internal class MethodsVoid

  {

   /*

   The array is going to hold the data for 2 claims.

   Each claim has four pieces of information. The number of

   data items is therefore 2 multiplied by 4 = 8.

   So, we will make the array for this example of size 8.

   Not the best way to do things but fine for now.

   */

    static string[] repairShopClaims = new string[8];

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 19. Amend the code, as in Listing 12-10, to create the variables at the 

class level. We must add the word static in front of the data type.

Listing 12-10. Create the variables using the static keyword

    static string[] repairShopClaims = new string[8];

    /*

    We will setup our variables that will be used in the

    quote application. The details will be:

    •   the repair shop unique id (string)

    •   the vehicle insurance policy number (string)

    •   the claim amount (double)

    •   the date of the claim (date)

    */

Chapter 12  Methods



389

    static string repairShopId;

    static string vehiclePolicyNumber;

    static double claimAmount;

    static DateTime claimDate;

    static int numberOfClaimsBeingMade;

    static int numberOfClaimsEntered = 0;

    static int arrayPositionCounter = 0;

    static void Main(string[] args)

    {

    } // End of Main() method

Note
Methods are created outside the Main() method but inside the class. We can add the 

methods above the Main() method or below it. Here we will add the methods below the 

Main() method, so we need to be careful and make sure to add the methods below the 

Main() method but still inside the class, which is indicated by the second last curly  

brace }. The last curly brace } represents the end of the namespace.

We will now create the first method that will hold the code asking the user how many 

claims will be made and then collecting the user input from the console.

 20. Amend the code, as in Listing 12-11, to create the first method, 

which will be called HowManyClaimsAreBeingMade().

Listing 12-11. Create method 1 outside the Main() method

  } // End of Main() method

  /*****************************************************

  All the methods will be located here.

  They are outside the main but inside the class

  *****************************************************/

  /******************* METHOD ONE ******************/

  public static void HowManyClaimsAreBeingMade()

  {

    /*

    Read the user input for the number of claims being made

    and convert the string value to an integer data type

    */

Chapter 12  Methods



390

  Console.WriteLine("How many claims are being made?\n");

  numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

  } // End of HowManyClaimsAreBeingMade() method

} // End of MethodsVoid class

} // End of Chapter12 namespace

Remember to add the rest of the methods below the Main method and just above the 

class curly brace }.

 21. Amend the code, as in Listing 12-12, to create the second method, 

which will be called CurrentValueOfCounter().

Listing 12-12. Create method 2 outside the Main() method

    /******************* METHOD TWO ******************/

    public static void CurrentValueOfCounter()

    {

      Console.WriteLine("The current value of the counter " +

        "is :" +numberOfClaimsEntered + "\n");

    } // End of CurrentValueOfCounter() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 22. Amend the code, as in Listing 12-13, to create the third method, 

which will be called ReadTheRepairShopId().

Listing 12-13. Create method 3 outside the Main() method

    /******************* METHOD THREE ******************/

    public static void ReadTheRepairShopId()

    {

      Console.WriteLine("What is your repair shop id?\n");

      repairShopId = Console.ReadLine();

    }// End of ReadTheRepairShopId() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

Chapter 12  Methods



391

 23. Amend the code, as in Listing 12-14, to create the fourth method, 

which will be called WriteRepairShopIdToTheArray().

Listing 12-14. Create method 4 outside the Main() method

    /******************* METHOD FOUR ******************/

    public static void WriteRepairShopIdToTheArray()

    {

      repairShopClaims[arrayPositionCounter] = repairShopId;

      arrayPositionCounter++;

    } // End of WriteRepairShopIdToTheArray() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 24. Amend the code, as in Listing 12-15, to create the fifth method, 

which will be called ReadTheVehiclePolicyNumber().

Listing 12-15. Create method 5 outside the Main() method

    /******************* METHOD FIVE ******************/

    public static void ReadTheVehiclePolicyNumber()

    {

      Console.WriteLine("What is the vehicle policy number?\n");

      vehiclePolicyNumber = Console.ReadLine();

    } // End of ReadTheVehiclePolicyNumber() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 25. Amend the code, as in Listing 12-16, to create the sixth method, 

which will be called WriteVehiclePolicyNumberToTheArray().

Listing 12-16. Create method 6 outside the Main() method

    /******************* METHOD SIX ******************/

    public static void WriteVehiclePolicyNumberToTheArray()

    {

      repairShopClaims[arrayPositionCounter]=vehiclePolicyNumber;

      arrayPositionCounter++;

Chapter 12  Methods



392

    } // End of WriteVehiclePolicyNumberToTheArray() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 26. Amend the code, as in Listing 12-17, to create the seventh method, 

which will be called ReadTheAmountBeingClaimed().

Listing 12-17. Create method 7 outside the Main() method

    /******************* METHOD SEVEN ******************/

    public static void ReadTheAmountBeingClaimed()

    {

      Console.WriteLine("What is the amount being " +

        "claimed for the repair?\n");

      claimAmount = Convert.ToDouble(Console.ReadLine());

    } // End of ReadTheAmountBeingClaimed() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 27. Amend the code, as in Listing 12-18, to create the eighth method, 

which will be called WriteClaimAmountToTheArray().

Listing 12-18. Create method 8 outside the Main() method

    /******************* METHOD EIGHT ******************/

    public static void WriteClaimAmountToTheArray()

    {

      repairShopClaims[arrayPositionCounter]

                  = claimAmount.ToString();

      arrayPositionCounter++;

    } // End of WriteClaimAmountToTheArray() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 28. Amend the code, as in Listing 12-19, to create the ninth method, 

which will be called ReadTheRepairDate().

Chapter 12  Methods



393

Listing 12-19. Create method 9 outside the Main() method

    /******************* METHOD NINE ******************/

    public static void ReadTheRepairDate()

    {

      Console.WriteLine("What was the date of the repair?\n");

      claimDate = Convert.ToDateTime(Console.ReadLine());

    } // End of method ReadTheRepairDate() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 29. Amend the code, as in Listing 12-20, to create the tenth method, 

which will be called WriteRepairDateToTheArray().

Listing 12-20. Create method 10 outside the Main() method

    /******************* METHOD TEN ******************/

    public static void WriteRepairDateToTheArray()

    {

      repairShopClaims[arrayPositionCounter]

                  = claimDate.ToString();

      arrayPositionCounter++;

    } // End of method WriteRepairDateToTheArray() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

 30. Amend the code, as in Listing 12-21, to create the eleventh 

method, which will be called DisplayAllItemsInTheArray().

Listing 12-21. Create method 11 outside the Main() method

    /******************* METHOD ELEVEN ******************/

    public static void DisplayAllItemsInTheArray()

    {

      foreach (var itemInTheClaimsArray in repairShopClaims)

      {

        Console.WriteLine("The item in the array " +

Chapter 12  Methods



394

          "is:\t" + itemInTheClaimsArray + "\n");

      }

    } // End of method DisplayAllItemsInTheArray() method

  } // End of MethodsVoid class

} // End of Chapter12 namespace

Now we have created the methods, each executing a small amount of code. We can 

call any method, at any time, from within the Main() method in the program class or 

indeed from any method. In the next chapter, we will see how we could call the methods 

from within a different class.

We will now

• Call method 1 from within the Main() method.

• Add a do while iteration in the Main() method.

• Call methods 2–10 from within the do while iteration.

• Call method 11 from outside the do while iteration but within the 

Main() method.

 31. Amend the code, as in Listing 12-22.

Listing 12-22. Create the method calls from within the Main() method

  static void Main(string[] args)

  {

    // Call the method that asks how many claims will be entered

    HowManyClaimsAreBeingMade();

    do

    {

      // Call the methods as required

      CurrentValueOfCounter();

      ReadTheRepairShopId();

      WriteRepairShopIdToTheArray();

      ReadTheVehiclePolicyNumber();

      WriteVehiclePolicyNumberToTheArray();

      ReadTheAmountBeingClaimed();

      WriteClaimAmountToTheArray();

Chapter 12  Methods



395

      ReadTheRepairDate();

      WriteRepairDateToTheArray();

      /* Increment the loop counter by 1 */

      numberOfClaimsEntered++;

    } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

    } // End of Main() method

 32. Amend the code, as in Listing 12-23, by adding, within the 

Main() method and outside the do while iteration, a call to the 

display method.

Listing 12-23. Call method 11 to display the data

      /* Increment the loop counter by 1 */

      numberOfClaimsEntered++;

    } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

      DisplayAllItemsInTheArray();

    } // End of Main() method

 33. Click the File menu.

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

 37. Click in the console window.

The console window will appear and ask the user how many claims are being made.

 38. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 39. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 40. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

Chapter 12  Methods



396

 41. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 42. Type 2021/10/01 and press the Enter key.

The console window will now ask the user to input the repair shop id.

 43. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 44. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 45. Type 2500.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 46. Type 2021/10/01 and press the Enter key.

Iteration 2 is now completed; the block of code has been executed for the second 

time. The claims counter will now be incremented by 1 and become a 2. The comparison 

is made to see if the claims counter value is less than 2, and as it is not, the iterations will 

end. Figure 12-5 shows the output from the application.

Figure 12-5. Application output using void methods to modularize the code 

Chapter 12  Methods



397

The output shown in Figure 12-5 verifies that the array actually does hold the data 

entered by the user as we have iterated the array and displayed the eight values. Our 

array is a single-dimensional array holding items of data type string.

 47. Press any key to close the console window.

So now we have refactored our original arrays code and created methods that have 

small amounts of code. The code is much neater as all we have in the Main() method 

are a series of calls to the methods. The methods sit outside the Main() method, but 

still inside the class. This is now a good example of modern programming where 

methods are an essential feature of maintainable code – it is modularization. With 

the code being decomposed into small methods, it is a relatively easy process to test 

these small code blocks. We could improve the code, but this is a great starting point for 

modularized code.

 Value Methods
In the previous example when we called a method, the lines of code within the method 

were implemented and then control of the program was returned to the main program, 

to the calling statement. When a method is required to return a value to the calling 

statement, it is said to be a value method. When we return a value, we have learned 

from the start of our programming the applications in this book that all variables have 

a data type – for example, int, double, or string – and these data types are part of the 

C# programming language. In the last chapter we looked at arrays, and the arrays we 

created held objects that had a data type. So a value method could return a built-in data 

type such as int or double, or it could return our own data type such as an array that we 

have created. In looking at void methods, we used the return type void in front of the 

method signature as in Listing 12-24.

Listing 12-24. Void method

      public void GetScoreDetails();

But when we have a value method that returns a variable or object of a specific data 

type, we must state the data type in front of the method signature as in Listing 12-25.

Chapter 12  Methods



398

Listing 12-25. Value methods

      public int GetScoreDetails();

      public double GetScoreDetails();

      public string GetScoreDetails();

Every method declaration specifies a return type, even if it’s void.

Listing 12-26. Value method sample code

public int GetScoreDetails()

{

  // Ask the user to input the Score for Game One

  Console.WriteLine("What is the Score for Game One");

  // Read the Score for Game One

  scoreInGameOne = int.Parse(Console.ReadLine());

  return scoreInGameOne

}

Listing 12-26 Code Analysis

• The method has an access modifier of public so the method will be 

available to all code inside the class or from outside the class.

• The return type is int so the method will return a variable that must 

be of data type int, and the last line of code in the method, usually, 

says return followed by the variable or object name, but remember 

we read earlier that we can return from anywhere in the method.

• The name of the method is GetScoreDetails.

• The open and close parentheses () follow the name and are empty, 

indicating that the method accepts no parameters.

• The open and close curly braces follow the parentheses and it is 

between these braces that the business logic goes.

• The code uses the Console.WriteLine() method to display a message 

for the user.

Chapter 12  Methods



399

• The user input is then read from the console using the 

int.Parse() method.

• The Parse() method accepts a parameter, which in this case is 

Console.ReadLine() – in other words, whatever is entered at the 

console.

• The input is converted to an int as we have used int.Parse() to 

convert.

• In the final line of code, the variable is returned, and it is of data 

type int.

The format for calling the method is by using the method name followed by the open 

and close parentheses, GetScoreDetails();.

Before we start coding an example of a value method, let us pause to think about the 

difference between a void method and value method as shown in Table 12-1.

Table 12-1. Difference between void and value methods

Void method Value method

signature Will contain the keyword void Will contain the keyword belonging to the data type 

being returned

Code Will not contain a return keyword in 

the code

Will contain a return keyword in the code

Create and Use Value Methods

 1. Right-click the class called MethodsVoid.cs within the Chapter12 

project in the Solution Explorer panel.

 2. Choose Copy.

 3. Right-click the Chapter12 project in the Solution Explorer panel.

 4. Choose Paste.

 5. Right-click the MethodsVoid – Copy.cs file, which is the 

copied file.

 6. Choose Rename.

Chapter 12  Methods



400

 7. Name the class MethodsValue.cs.

 8. Ensure that the MethodsValue.cs file is open in the editor window.

 9. Rename the class in the open editor window from MethodsVoid to 

MethodsValue.

 10. Right-click the Chapter12 project in the Solution Explorer panel.

 11. Choose Properties from the pop-up menu.

 12. Choose the MethodsValue.cs class in the Startup object drop-

down list.

 13. Close the Properties window.

We will now amend the code using some ordered steps:

• In the required methods, change the keyword void to the data type 

that is to be returned.

• In the required methods, add a return statement followed by the 

variable name being returned as the last line of the method.

We should be aware that if a method returns a value to a calling statement, then the 

returned value should be used for something. In other words, what use would the line of 

code in Listing 12-27 be if we called the method and it returned a value of 2?

Listing 12-27. Value method called and returned value not assigned to a variable

    HowManyClaimsAreBeingMade();

The answer to our question is no use at all. We need to assign the returned value to a 

variable or use it in some other way, and we will do this from within the Main() method 

where the call is made.

Now we will change the void methods to value methods by adding the return type on 

the first line and then returning the value as the last line of the method.

 14. Amend method 1, HowManyClaimsAreBeingMade(), as in 

Listing 12-28.

Chapter 12  Methods



401

Listing 12-28. Method 1 return type changed and a return statement added

  /******************* METHOD ONE ******************/

  public static int HowManyClaimsAreBeingMade()

  {

   /*

   Read the user input for the number of claims being made

   and convert the string value to an integer data type

   */

   Console.WriteLine("How many claims are being made?\n");

   numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

   return numberOfClaimsBeingMade;

  } // End of HowManyClaimsAreBeingMade() method

 15. Amend the calling statement in the Main() method to assign the 

returned value to a variable as in Listing 12-29.

Listing 12-29. Call the method and assign the returned value to a variable

  static void Main(string[] args)

  {

    // Call the method that asks how many claims will be entered

    numberOfClaimsBeingMade = HowManyClaimsAreBeingMade();

    do

Looking at this line, we will see there is room for improvement in the code: 

• The variable numberOfClaimsBeingMade is the class-level variable 

and we are assigning it the value returned from the method 

HowManyClaimsAreBeingMade().

• The HowManyClaimsAreBeingMade() method uses the same 

numberOfClaimsBeingMade class-level variable and has assigned it 

the value entered by the user.

• Therefore, we could make the method code better by simply 

returning the value read in from the console as entered by the user 

rather than assigning it to the variable. This simple change helps 

Chapter 12  Methods



402

illustrate good coding. We should also understand that variables 

should be declared, scoped, only where they are required, that is, 

local scope rather than “global.”

 16. Amend the method 1 code to comment the assignment statement 

and return the converted input as in Listing 12-30.

Listing 12-30. Comment the assignment and amend the return statement

  /******************* METHOD ONE ******************/

  public static int HowManyClaimsAreBeingMade()

  {

  /*

  Read the user input for the number of claims being made

  and convert the string value to an integer data type

  */

  Console.WriteLine("How many claims are being made?\n");

  //numberOfClaimsBeingMade =Convert.ToInt32(Console.ReadLine());

  return Convert.ToInt32(Console.ReadLine());

  } // End of HowManyClaimsAreBeingMade() method

The original line of code has been commented out, but it could be completely 

removed as shown in Listing 12-31. Remember YAGNI – You Ain’t Going to Need It. It’s 

all part of the clean code ethos.

 17. Remove the commented line so the method has the code as in 

Listing 12-31.

Listing 12-31. Commented assignment removed

  /******************* METHOD ONE ******************/

  public static int HowManyClaimsAreBeingMade()

  {

  /*

  Read the user input for the number of claims being made

  and convert the string value to an integer data type

  */

Chapter 12  Methods



403

  Console.WriteLine("How many claims are being made?\n");

  return Convert.ToInt32(Console.ReadLine());

  } // End of HowManyClaimsAreBeingMade() method

Amending the method to return the input is a good example of refactoring our code 

with the aim of making the code better. We will now follow the same process for some 

of the other methods, making them value methods and removing the line of code that is 

not required.

 18. Amend method 3, ReadTheRepairShopId(), as in Listing 12-32.

Listing 12-32. Method 3 return type changed and a return statement added

    /******************* METHOD THREE ******************/

    public static string ReadTheRepairShopId()

    {

      Console.WriteLine("What is your repair shop id?\n");

      return Console.ReadLine();

    }// End of ReadTheRepairShopId() method

 19. Amend the calling statement in the Main() method to assign the 

returned value to a variable as in Listing 12-33.

Listing 12-33. Call the method and assign the returned value to a variable

    do

    {

    // Call the methods as required

    CurrentValueOfCounter();

    repairShopId = ReadTheRepairShopId();

    WriteRepairShopIdToTheArray();

 20. Amend method 5, ReadTheVehiclePolicyNumber(), as in 

Listing 12-34.

Chapter 12  Methods



404

Listing 12-34. Method 5 return type changed and a return statement added

    /******************* METHOD FIVE ******************/

    public static string ReadTheVehiclePolicyNumber()

    {

      Console.WriteLine("What is the vehicle policy number?\n");

      return Console.ReadLine();

    } // End of ReadTheVehiclePolicyNumber() method

 21. Amend the calling statement in the Main() method to assign the 

returned value to a variable as in Listing 12-35.

Listing 12-35. Call the method and assign the returned value to a variable

    do

    {

    // Call the methods as required

    CurrentValueOfCounter();

    repairShopID = ReadTheRepairShopId();

    WriteRepairShopIdToTheArray();

    vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

    WriteVehiclePolicyNumberToTheArray();

 22. Amend method 7, ReadTheAmountBeingClaimed (), as in 

Listing 12-36.

Listing 12-36. Method 7 amended to return a value

    /******************* METHOD SEVEN ******************/

    public static double ReadTheAmountBeingClaimed()

    {

      Console.WriteLine("What is the amount being " +

        "claimed for the repair?\n");

      return Convert.ToDouble(Console.ReadLine());

    } // End of ReadTheAmountBeingClaimed() method

 23. Amend the calling statement in the Main() method to assign the 

returned value to a variable as in Listing 12-37.

Chapter 12  Methods



405

Listing 12-37. Call the method and assign the returned value to a variable

    do

    {

    // Call the methods as required

    CurrentValueOfCounter();

    repairShopID = ReadTheRepairShopId();

    WriteRepairShopIdToTheArray();

    vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

    WriteVehiclePolicyNumberToTheArray();

    claimAmount = ReadTheAmountBeingClaimed();

    WriteClaimAmountToTheArray();

 24. Amend method 9, ReadTheRepairDate(), to return the user input 

value as shown in Listing 12-38.

Listing 12-38. Method 9 return type changed and a return statement added

/******************* METHOD NINE ******************/

 public static DateTime ReadTheRepairDate()

 {

   Console.WriteLine("What was the date of the repair?\n");

   return Convert.ToDateTime(Console.ReadLine());

 }// End of method ReadTheRepairDate()

 25. Amend the calling statement in the Main() method to assign the 

returned value to a variable as in Listing 12-39.

Listing 12-39. Call the method and assign the returned value to a variable

    claimAmount = ReadTheAmountBeingClaimed();

    WriteClaimAmountToTheArray();

    claimDate = ReadTheRepairDate();

    WriteRepairDateToTheArray();

    /* Increment the loop counter by 1 */

    numberOfClaimsEntered++;

    } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

Chapter 12  Methods



406

 26. Click the File menu.

 27. Choose Save All.

 28. Click the Debug menu.

 29. Choose Start Without Debugging.

 30. Click in the console window.

The console window will appear and ask the user how many claims are being made.

 31. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 32. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 33. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 34. Type 1999.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 35. Type 2021/10/01 and press the Enter key.

The console window will now ask the user to input the repair shop id.

 36. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 37. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 38. Type 2500.99 and press the Enter key.

The console will now ask the user to input the date of the repair.

 39. Type 2021/10/01 and press the Enter key.

The number of claims entered is 2, and this is all that the user requested, so the do 

while loop is complete, and the next lines of code are the foreach iteration. As a result 

of the foreach iteration, the console will display all the items in the array as shown in 

Figure 12-6.

Chapter 12  Methods



407

Figure 12-6. Application output using value methods to modularize the code 

 40. Press any key to close the console window.

So now we have changed some of the methods to make them value methods. A 

value method means a value, which has a data type, is returned from the method. When 

creating a value method and we talk about a method signature, the method signature 
does not contain the data type being returned, but the data type being returned 
appears before the method name.

This is great. We now have void and value methods within our code, and we will 

continue with the last main method type, the parameter method, which will also be a 

void or a value method.

 Parameter Methods
It is possible to have our methods accept a value or multiple values and then use these 

values within the body of the method as part of the business logic processing. We could 

have a method that accepts two integer values and uses them in a multiplication or a 

method that accepts a string value and a quote amount and displays the two values. In 

using a parameter method, we pass it actual values, as arguments, when we call the 

method. When we are creating the parameter method, the parameters, and their data 

type, are enclosed as part of the method signature. When the arguments, actual values, 

are passed to the method, the method accepts these arguments, and their values are 

assigned to the parameters in the accepting method.

Chapter 12  Methods



408

Note

• A parameter is a variable or object in a method declaration and 

should be thought of as a placeholder that will hold the actual value 

when it is passed to the method from the calling statement.

• An argument is the actual value passed to the method, which 

accepts it.

• Think of the a of arguments as actual values.

• We say that the method defines the parameters and accepts the 

arguments.

In using parameter methods, the calling method needs only to know what data type 

needs to be passed; it does not need to know what the method does with these values in 

its business logic. Figure 12-7 depicts the black box idea for a method that accepts values 

and outputs a result.

Figure 12-7. Method is passed values and uses these in its business logic

By providing the method with the required input data, the method produces the 

required answer, the value to be returned. To obtain the correct answer, we must ensure 

that the correct input arguments are provided:

• The right number of input arguments

• The correct type of arguments

• The correct order of the arguments

Example
By setting up the input data as the

• Number of items

• Cost per item

Chapter 12  Methods



409

the result of a multiplication can be produced. The method will use the input data, 

perform its business logic and calculations, and produce a result.

The values passed into the method are known as arguments. The method is said to 

take them as its parameters, as shown in Figure 12-8.

Figure 12-8. Method accepting arguments as its parameters

An example of a value method is shown in Listing 12-40.

Listing 12-40. Parameter method that accepts one parameter

public double AccumulateClaimAmount(double totalOfAllClaims, double 

claimAmount)

{

  double newTotal = totalOfAllClaims + claimAmount;

  return newTotal;

}

Listing 12-40 Code Analysis

• The method has an access modifier of public so the method will be 

available to all code inside the class or from outside the class.

• The return type is double so the method will return a variable 

that must be of data type double, and therefore the last line of code 

in the method will contain the keyword return followed by the 

variable name.

• The name of the method is AccumulateClaimAmount.

Chapter 12  Methods



410

• The open and close parentheses () follow the name and hold 

two arguments passed to the method, and they are called 

totalOfAllClaims and claimAmount, which are of data type double.

• The open and close curly braces follow the parentheses, and it is 

between these braces that the business logic is coded.

• The business logic adds the variable values that have been passed in 

and assigns the value to a new local variable called newTotal.

• In the final line of code, the newTotal variable is returned to the 

calling statement and it is of data type double.

The format for calling the parameter method is by using the method name followed 

by the open and close parentheses, and inside the parentheses are the arguments, the 

values. In our example there is only one value accepted by the parameter method so we 

will be passing one argument, as in Listing 12-41.

Listing 12-41. Calling the parameter method and passing it a value

AccumulateClaimAmount(1000);

Now before we start coding an example of a parameter method, pause, and think 

about how a parameter method is associated with a void method and a value method. 

Table 12-2 shows the association.

Table 12-2. Parameter method association with void and value methods

Parameter method

signature May contain the keyword void May contain the keyword belonging to the 

data type being returned

Code May not contain a return keyword on 

the last line of code

May contain a return keyword on the last line 

of code

arguments Will contain one or more arguments

Chapter 12  Methods



411

Before we start adding new parameter methods to complete our code, let us think 

back to what we said earlier:

As we are on a chapter about creating and using methods, we will want to 
have easy access to the variables, but once we understand a bit more about 
methods, we will change the approach of using class-level variables and 
make use of local variables instead.

So now we have come to the stage where we can tidy our code and make more use 

of local variables and discard the class-level variables. The general steps we will use to 

create local variables when we can will be as follows:

• In the do while construct where we call the method, we are assigning 

the value returned from the value method to a class-level variable, 

so we will move the class-level variable to within the do while so it 

is local.

• Change the newly moved variable from having static in front of 

it, as the do while and therefore this variable are inside a static 

Main() method.

• Next, we will pass the variable to the value method used to write the 

value to the array; we pass the value as an argument when we call 

the method.

• We then need to make the value method used to write to the array 

into a parameter method so it can accept the argument being 

passed to it.

• We then will use the parameter of the parameter method in writing to 

the array rather than using the class-level variable.

We will start with fixing the call to the ReadTheRepairShopId() method, and the 

other fixes will follow the same process.

 1. Highlight the line of code declaring the class-level variable 

repairShopId, as in Listing 12-42.

Chapter 12  Methods



412

Listing 12-42. Highlight the static variable – repairShopId

    static string repairShopId;

    static string vehiclePolicyNumber;

    static double claimAmount;

    static DateTime claimDate;

 2. Right-click and choose Cut.

 3. Paste the copied code into the line within the do while construct 

so we are assigning this copied variable to the value returned from 

the method ReadTheRepairShopId(), as shown in Listing 12-43.

Listing 12-43. Static variable is assigned the returned value from the method

      do

      {

        // Call the methods as required

        CurrentValueOfCounter();

        static string repairShopId = ReadTheRepairShopId();

        WriteRepairShopIdToTheArray();

Notice that the keyword static is underlined as an error, and if we hover over the red 

underline or look in the Error List window, we will see that it tells us that “The modifier 

‘static’ is not valid for this.” We need to remove the keyword static as we are inside the 

static Main() method.

 4. Remove the keyword static as in Listing 12-44.

Listing 12-44. Static has been removed from the variable

      do

      {

        // Call the methods as required

        CurrentValueOfCounter();

        string repairShopId = ReadTheRepairShopId();

        WriteRepairShopIdToTheArray();

Chapter 12  Methods



413

 5. Within the do while construct, call the 

WriteRepairShopIdToTheArray() method but pass the variable 

repairShopId as an argument, as in Listing 12-45.

Listing 12-45. Pass the value as an argument to the method

      do

      {

        // Call the methods as required

        CurrentValueOfCounter();

        string repairShopId = ReadTheRepairShopId();

        WriteRepairShopIdToTheArray(repairShopId);

Notice that the WriteRepairShopIdToTheArray() method name is underlined as an 

error, and if we hover over the red underline or look in the Error List window, we will see 

that it tells us that “No overload for method ‘ReadTheRepairShopId’ takes 1 arguments.” 

So the WriteRepairShopIdToTheArray() method, method 4, currently does not accept 

any values. It is not a parameter method; it is just a void method. We need to make the 

method into a parameter method that accepts one string value.

 6. Amend method 4 so that is accepts a string parameter, which we 

will call repairShopId. Method 4 is now as in Listing 12-46.

Listing 12-46. Make the method a parameter method

    /******************* METHOD FOUR ******************/

    public static void WriteRepairShopIdToTheArray(string repairShopId)

    {

      repairShopClaims[arrayPositionCounter] = repairShopId;

      arrayPositionCounter++;

    } // End of WriteRepairShopIdToTheArray() method

With these steps completed, we have now removed a class-level variable and used 

a local variable instead, and we have created a parameter method, which is called and 

passed the value of the local variable. We will now repeat this process for the policy 

number, claim amount, and claim date.

 7. Highlight the line of code declaring the class-level variable 

vehiclePolicyNumber, as in Listing 12-47.

Chapter 12  Methods



414

Listing 12-47. Highlight the static variable – vehiclePolicyNumber

    static string vehiclePolicyNumber;

    static double claimAmount;

    static DateTime claimDate;

 8. Right-click and choose Cut.

 9. Paste the copied code into the line within the do while construct 

so we are assigning this copied variable to the value returned from 

the method ReadTheVehiclePolicyNumber() and remove the 

static, as shown in Listing 12-48.

Listing 12-48. Static variable is assigned the returned value from the method

     do

     {

       // Call the methods as required

       CurrentValueOfCounter();

       string repairShopId = ReadTheRepairShopId();

       WriteRepairShopIdToTheArray(repairShopId);

       string vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

       WriteVehiclePolicyNumberToTheArray();

 10. Within the do while construct, call the 

WriteVehiclePolicyNumberToTheArray() method but pass the 

variable vehiclePolicyNumber as an argument, as in Listing 12-49.

Listing 12-49. Pass the value as an argument to the method

     do

     {

       // Call the methods as required

       CurrentValueOfCounter();

       string repairShopId = ReadTheRepairShopId();

       WriteRepairShopIdToTheArray(repairShopId);

       string vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

       WriteVehiclePolicyNumberToTheArray(vehiclePolicyNumber);

Chapter 12  Methods



415

 11. Amend method 6 so that is accepts a string parameter, which we 

will call vehiclePolicyNumber. Method 6 is now as in Listing 12-50.

Listing 12-50. Make the method a parameter method

    /******************* METHOD SIX ******************/

     public static void WriteVehiclePolicyNumberToTheArray(string 

vehiclePolicyNumber)

    {

      repairShopClaims[arrayPositionCounter] = vehiclePolicyNumber;

      arrayPositionCounter++;

    } // End of WriteVehiclePolicyNumberToTheArray() method

We will now repeat this process for the claim amount.

 12. Highlight the line of code declaring the class-level variable 

claimAmount, as in Listing 12-51.

Listing 12-51. Highlight the static variable – claimAmount

    static double claimAmount;

    static DateTime claimDate;

 13. Right-click and choose Cut.

 14. Paste the copied code into the line within the do while construct 

so we are assigning this copied variable to the value returned from 

the method ReadTheAmountBeingClaimed() and remove the 

static, as shown in Listing 12-52.

Listing 12-52. Static variable is assigned the returned value from the method

    do

    {

      // Call the methods as required

      CurrentValueOfCounter();

      string repairShopId = ReadTheRepairShopId();

      WriteRepairShopIdToTheArray(repairShopId);

Chapter 12  Methods



416

      string vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

      WriteVehiclePolicyNumberToTheArray(vehiclePolicyNumber);

      double claimAmount = ReadTheAmountBeingClaimed();

      WriteClaimAmountToTheArray();

 15. Within the do while construct, call the 

WriteClaimAmountToTheArray() method but pass the variable 

claimAmount as an argument, as in Listing 12-53.

Listing 12-53. Pass the value as an argument to the method

    do

    {

      // Call the methods as required

      CurrentValueOfCounter();

      string repairShopId = ReadTheRepairShopId();

      WriteRepairShopIdToTheArray(repairShopId);

      string vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

      WriteVehiclePolicyNumberToTheArray(vehiclePolicyNumber);

      double claimAmount = ReadTheAmountBeingClaimed();

      WriteClaimAmountToTheArray(claimAmount);

 16. Amend method 8 so that is accepts a parameter of type double, 

which we will call claimAmount. Method 8 is now as in 

Listing 12-54.

Listing 12-54. Make the method a parameter method

    /******************* METHOD EIGHT ******************/

    public static void WriteClaimAmountToTheArray(double claimAmount)

    {

      repairShopClaims[arrayPositionCounter]

                  = claimAmount.ToString();

      arrayPositionCounter++;

    } // End of WriteClaimAmountToTheArray() method

Chapter 12  Methods



417

We will now repeat this process for the claim date.

 17. Highlight the line of code declaring the class-level variable 

claimDate as in Listing 12-55.

Listing 12-55. Highlight the static variable – claimDate

    static DateTime claimDate;

 18. Right-click and choose Cut.

 19. Paste the copied code into the line within the do while construct 

so we are assigning this copied variable to the value returned 

from the method ReadTheRepairDate() and remove the static, as 

shown in Listing 12-56.

Listing 12-56. Static variable is assigned the returned value from the method

    do

    {

      // Call the methods as required

      CurrentValueOfCounter();

      string repairShopId = ReadTheRepairShopId();

      WriteRepairShopIdToTheArray(repairShopId);

      string vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

      WriteVehiclePolicyNumberToTheArray(vehiclePolicyNumber);

      double claimAmount = ReadTheAmountBeingClaimed();

      WriteClaimAmountToTheArray(claimAmount);

      DateTime claimDate = ReadTheRepairDate();

      WriteRepairDateToTheArray();

 20. Within the do while construct, call the 

WriteRepairDateToTheArray() method but pass the variable 

claimDate as an argument, as in Listing 12-57.

Chapter 12  Methods



418

Listing 12-57. Pass the value as an argument to the method

    do

    {

      // Call the methods as required

      CurrentValueOfCounter();

      string repairShopId = ReadTheRepairShopId();

      WriteRepairShopIdToTheArray(repairShopId);

      string vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

      WriteVehiclePolicyNumberToTheArray(vehiclePolicyNumber);

      double claimAmount = ReadTheAmountBeingClaimed();

      WriteClaimAmountToTheArray(claimAmount);

      DateTime claimDate = ReadTheRepairDate();

      WriteRepairDateToTheArray(claimDate);

 21. Amend method 10 so that it accepts a parameter of type double, 

which we will call claimDate. Method 10 is now as in Listing 12-58.

Listing 12-58. Make the method a parameter method

    /******************* METHOD TEN ******************/

    public static void WriteRepairDateToTheArray(DateTime claimDate)

    {

      repairShopClaims[arrayPositionCounter]

                  = claimDate.ToString();

      arrayPositionCounter++;

    } // End of method WriteRepairDateToTheArray() method

These changes have made a real difference to our code because we have reduced the 

number of class-level variables, made good use of local variables, and used parameter 

methods. Yes, we could go further and get rid of the other three class-level variables, 

but for now this is excellent progress, and we can progress with some more parameter 

methods.

Chapter 12  Methods



419

We will now add some parameter methods to the existing code where

• The parameter method will accept two arguments, both of 

type double.

• The values passed in will be the values of the claim being made and 

the existing total of all claims.

• The method will use the values passed into it to find the new total of 

all the claims being made.

• We will create a method that accepts the accumulated total of the 

claims and works out how much of the accumulated total is value- 

added tax (VAT).

• The VAT amount will be included in the accumulated total, and the 

formula for the calculation is shown in Listing 12-59.

Listing 12-59. Formula for calculating value-added tax

      vatamount = accumulated total passed in / 1.20;

We will add a parameter method called AccumulateClaimAmount(), which has two 

parameters, one called claimAmountPassedIn and the other called totalOfAllClaims of 

data type double.

 22. Add method 12, a new parameter method, as in Listing 12-60.

Listing 12-60. Add a new parameter method

    /******************* METHOD TWELVE ******************/

    public static double AccumulateClaimAmount(double

    claimAmountPassedIn, double totalOfAllClaims)

    {

      totalOfAllClaims += claimAmountPassedIn;

      return totalOfAllClaims ;

    }// End of method AccumulateClaimAmount()

  } // End of MethodsValue class

} // End of Chapter12 namespace

Chapter 12  Methods



420

The method accumulates the total of all repair claims being entered by the user, so 

we also need to create the variable to hold this total. Here we have named the variable 

totalOfAllClaims, and we will declare this as a method-level variable assigning it an 

initial value of 0.00, as shown in Listing 12-61.

Listing 12-61. Add the new method-level variable

   static void Main(string[] args)

   {

    // Call the method that asks how many claims will be entered

     numberOfClaimsBeingMade = HowManyClaimsAreBeingMade();

     double totalOfAllClaims = 0.00;

     do

     {

Now we need to call the AccumulateClaimAmount() method, which we have just 

created, and pass it the claim amount, which has been entered, and the current total of 

all claims. This method just adds the value to the existing total value of all claims.

 23. Amend the code to call the method, passing the claim amount 

and the current claims total as the arguments, as in Listing 12-62.

Listing 12-62. Call the parameter method from within the do while construct

do

 {

 // Call the methods as required

 CurrentValueOfCounter();

 string repairShopId = ReadTheRepairShopId();

 WriteRepairShopIdToTheArray(repairShopId);

 string vehiclePolicyNumber = ReadTheVehiclePolicyNumber();

   WriteVehiclePolicyNumberToTheArray(vehiclePolicyNumber);

   double claimAmount = ReadTheAmountBeingClaimed();

   WriteClaimAmountToTheArray(claimAmount);

   totalOfAllClaims = AccumulateClaimAmount(claimAmount, totalOfAllClaims);

Chapter 12  Methods



421

   DateTime claimDate = ReadTheRepairDate();

   WriteRepairDateToTheArray(claimDate);

   /* Increment the loop counter by 1 */

   numberOfClaimsEntered++;

  } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

Now we need to create

• A value method that accepts the total of all claims as a parameter and 

then determines the VAT based on this value

• A method-level variable to hold the VAT value

• A void method that accepts the total of all claims and the VAT amount 

and displays a confirmation invoice showing the

• Total of the claims without VAT

• Total amount of VAT

• Total of the claims including VAT

 24. Amend the code, as in Listing 12-63, to include the method-level 

variable.

Listing 12-63. Add an additional local variable to hold the VAT amount

    static void Main(string[] args)

    {

     // Call the method that asks how many claims will be entered

      numberOfClaimsBeingMade = HowManyClaimsAreBeingMade();

      double totalOfAllClaims = 0.00;

      double vatAmount =0.00;

      do

      {

 25. Amend the code to add the value and parameter method, method 

13, as in Listing 12-64.

Chapter 12  Methods



422

Listing 12-64. Add additional method to determine the VAT amount

    /******************* METHOD THIRTEEN ******************/

     public static double DetermineVATAmount(double 

totalValueOfClaimsPassedIn, double vatAmount)

    {

      vatAmount = totalValueOfClaimsPassedIn -

                         (totalValueOfClaimsPassedIn / 1.20);

      return vatAmount;

    } // End of method DetermineVATAmount()

  } // End of MethodsValue class

} // End of Chapter12 namespace

 26. Amend the code in the Main() method to call the newly created 

VAT method, passing it the total value of the claims and the VAT 

amount, as in Listing 12-65.

Listing 12-65. Call the new method passing it the two arguments

   } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

   vatAmount = DetermineVATAmount(totalOfAllClaims, vatAmount);

   DisplayAllItemsInTheArray();

 } // End of Main() method

 27. Amend the code in the Main() method, as in Listing 12-66, to 

display the total of all claims.

Listing 12-66. Display the total of all claims

  } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

  vatAmount = DetermineVATAmount(totalOfAllClaims, vatAmount);

  DisplayAllItemsInTheArray();

  Console.WriteLine("The total amount claimed is:\t" + totalOfAllClaims);

    } // End of Main() method

Chapter 12  Methods



423

Now we can create the void method that accepts the total of all claims and the VAT 

amount and displays the invoice receipt.

 28. Amend the code to add the new void method, method 14, which 

accepts the two arguments – it’s a parameter method, as in 

Listing 12-67.

Listing 12-67. Create the new method to display the invoice details

    /******************* METHOD FOURTEEN ******************/

    public static void DisplayInvoiceReceipt(double

           totalValueOfClaimsPassedIn, double vatPassedIn)

    {

      Console.WriteLine("\nInvoice for vehicle repairs\n");

       Console.WriteLine("Nett claim\t" + (totalValueOfClaimsPassedIn - 

vatPassedIn) + "\n");

      Console.WriteLine("VAT amount\t" + vatPassedIn + "\n");

       Console.WriteLine("Total amount\t" + totalValueOfClaimsPassedIn 

+ "\n");

    } // End of method DisplayInvoiceReceipt()

  } // End of MethodsValue class

} // End of Chapter12 namespace

 29. Amend the Main() method code to call the method as in 

Listing 12-68.

Listing 12-68. Call the method to display the total of all claims

    } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

     vatAmount = CalculateVATAmount(totalOfAllClaims);

     DisplayAllItemsInTheArray();

      Console.WriteLine("The total amount claimed is:\t" + 

totalOfAllClaims);

      DisplayInvoiceReceipt(totalOfAllClaims, vatAmount);

    } // End of Main() method

Chapter 12  Methods



424

Now we will run the code and use claim values that will make it easy to test if the 

code works properly. If we make two claim values, as shown in Table 12-3, we can check 

that our output matches.

Table 12-3. Test data

Net amount VAT amount Total amount

1000 200 1200

2000 400 2400

totals 3000 600 3600

 30. Click the File menu.

 31. Choose Save All.

 32. Click the Debug menu.

 33. Choose Start Without Debugging.

 34. Click in the console window.

The console window will appear and ask for the number of entries being made.

 35. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 36. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 37. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 38. Type 1200.00 and press the Enter key.

The console will now ask the user to input the date of the repair.

 39. Type 2021/10/01 and press the Enter key.

The console window will now ask the user to input the repair shop id.

 40. Type RS000001 and press the Enter key.

Chapter 12  Methods



425

The console will now ask the user to input the vehicle policy number.

 41. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 42. Type 2400.00 and press the Enter key.

The console will now ask the user to input the date of the repair.

 43. Type 2021/10/01 and press the Enter key.

The invoice receipt will be displayed as shown in Figure 12-9.

Figure 12-9. Application output 

 44. Press any key to close the console window.

So now we have added parameter methods. Some of the parameter methods – 

methods 4, 6, 8, 10, 12, and 13 – are also value methods because they return a value, but 

method 14 is a void method and a parameter method.

We now have the trio of methods – void, value, and parameter – within our code. 

Now we are really beginning to see how code modularization works and how it can help 

by making the methods do one thing, which can be tested. We are also learning to think 

about using local variables rather than class-level variables.

 Method Overloading
In C# we can have more than one method with the same name if we follow a few 

essential rules:

• The number of arguments must be different.

For example, vatAmount(double claimAmount, double vatRate)

vatAmount(double claimAmount, double vatRate, string vatCode)

Chapter 12  Methods



426

• The types of arguments are different.

For example, vatAmount(double claimAmount, double vatRate)

vatAmount(double claimAmount, float vatRate)

• The order of arguments is different.

For example, vatAmount(double claimAmount, double vatRate)

vatAmount(double vatRate, double claimAmount)

Method overloading is a form of polymorphism, different forms of the same object. 

We will now code a new overloaded method to display a different invoice receipt. The 

new method, method 15, will accept three arguments. It is a parameter method and it is 

almost the same code as the last display method.

 45. Amend the code to add method 15, as in Listing 12-69.

Listing 12-69. Method with three parameters to display a receipt

  /******************* METHOD FIFTEEN ******************/

  public static void DisplayInvoiceReceipt(double

  totalValueOfClaimsPassedIn, double vatPassedIn, string

  messagePassedIn)

  {

  Console.WriteLine("********************************");

  Console.WriteLine("\nInvoice for vehicle repairs\n");

   Console.WriteLine("Nett claim\t" + (totalValueOfClaimsPassedIn - 

vatPassedIn) + "\n");

  Console.WriteLine("VAT amount\t" + vatPassedIn + "\n");

  Console.WriteLine("Total amount\t" + totalValueOfClaimsPassedIn + "\n");

  Console.WriteLine(messagePassedIn);

  Console.WriteLine("********************************");

 } // End of method DisplayInvoiceReceipt

  } // End of MethodsValue class

} // End of Chapter12 namespace

Chapter 12  Methods



427

 46. Amend the Main() method code to call the method as in 

Listing 12-70.

Listing 12-70. Call the method to display the new invoice format

DisplayInvoiceReceipt(totalOfAllClaims, vatAmount);

DisplayInvoiceReceipt(totalOfAllClaims, vatAmount, "\t" +

 "Thank you for your claims\n\tthey will be processed today");

} // End of Main() method

 47. Click the File menu.

 48. Choose Save All.

 49. Click the Debug menu.

 50. Choose Start Without Debugging.

 51. Click in the console window.

The console window will appear and ask for the number of entries being made.

 52. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 53. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 54. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 55. Type 1200.00 and press the Enter key.

The console will now ask the user to input the date of the repair.

 56. Type 2021/10/01 and press the Enter key.

The console window will now ask the user to input the repair shop id.

 57. Type RS000001 and press the Enter key.

The console will now ask the user to input the vehicle policy number.

Chapter 12  Methods



428

 58. Type VP001234 and press the Enter key.

The console will now ask the user to input the claim amount.

 59. Type 2400.00 and press the Enter key.

The console will now ask the user to input the date of the repair.

 60. Type 2021/10/01 and press the Enter key.

The invoice receipt will be displayed as shown in Figure 12-10.

Figure 12-10. Application output

 61. Press any key to close the console window.

So now we have added an overloaded method, method 15. It is overloaded because

• It has the same name as the DisplayInvoiceReceipt method, 

method 14.

• It has three arguments, whereas the other DisplayInvoiceReceipt 

method, method 14, has two arguments.

Now for something a little different, and I mean different!

Chapter 12  Methods



429

 C# 7 Local Function
The local function is a feature introduced in C# 7. What we have covered in terms of 

methods, and methods being created outside the Main() method, applies not just to C# 

but other languages like Java. We have also seen that it is good practice to modularize our 

code and use methods that are small and do one thing. This is all part of the concept of 

clean code and the concept of separation of concern (SOC). There is also a concept in 

programming called the SOLID principles, where the S stands for single responsibility, 

for a class. But maybe we should also think about single responsibility for a method. 

When we use a Test-Driven Development approach to programming, we are expected 

to test methods, and we expect those methods to do one thing.

Now, when it comes to methods in C# 7 and above, we can have what is called a local 

function, which is a function within a method. Sorry. What happened to the “a method 

should do one thing and we should have separation of concern and clean code that is 

easy to maintain”? Well, as the developer, we can decide if it is appropriate to use the 

local function, and we may choose to use it, but we might choose not to use it.

One thing we should remember is that the methods we have used all exist inside 

a class. We have learned that methods and fields or properties belong to classes and 

alongside this we can have local variables, which are only accessible within a method 

and do not need to be accessed in the class or from other classes. “Traditionally,” 

the method itself is accessible within the class and from outside the class, but C# 7 

introduced us to local functions, and C# 8 introduced us to the static local function, 
both of which we will look at and explore.

A local function is a function declared within an existing method. The local function, 

as we might deduct from the name “local,” is only accessible within the method, 

ensuring tight control. Or, if we want to use some “fancy” terminology, the method 

encapsulates the functionality of the function. We can think of it like this: the local 

function is a private function to the method it is encapsulated in. When we see the local 

function, we should immediately associate it with the context of the method. The local 

function will not have an access modifier, like public, as this would be irrelevant since 

the local function is only available within the method. An uncomplicated example of a 

local function is shown in Listing 12-71.

Chapter 12  Methods



430

Listing 12-71. Local function

void simpleLocalFunction()

{

  Console.WriteLine($"A local function inside a method");

}

 1. Right-click the Chapter12 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class LocalFunctions.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not 

produced automatically, and delete the unwanted imports, as in 

Listing 12-72.

Remember the shortcut to create the Main() method is to type svm and then press 

the Tab key twice.

Listing 12-72. Add the Main() method to the class template

namespace Chapter12

{

  internal class LocalFunctions

  {

    static void Main(string[] args)

    {

    }// End of Main() method

  } // End of LocalFunctions class

} // End of Chapter12 namespace  

 7. Right-click the Chapter12 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

Chapter 12  Methods



431

 9. Choose the LocalFunctions class in the Startup object drop-down list.

 10. Close the Properties window.

We will now create a static method called CalculateRepairCostIncludingVAT() 

that will

• Accept a repair cost.

• Return a value based on

• The repair cost

• The value that will be returned from the local function 

CalculateVATAmount(), which we will create and which will be 

passed the variable holding the repair amount.

 11. Amend the code to add a CalculateRepairCostIncludingVAT() 

static method, as in Listing 12-73.

Listing 12-73. Add the static method CalculateRepairCostIncludingVAT()

    }// End of Main() method

    /*

    Method that takes in the pre-VAT amount and calculates

    the post VAT amount

    */

    public static double CalculateRepairCostIncludingVAT(double

    repairAmountPassedIn)

    {

       return repairAmountPassedIn + CalculateVATAmount(repairAmount

PassedIn);

    } // End of calculateRepairCostIncludingVAT method

  } // End of LocalFunctions class

} // End of Chapter12 namespace

We will now create the local function called CalculateVATAmount, which 

accepts a value representing the repair cost of type double. Remember this is a local 

function and is therefore created in an existing method, which in our example is the 

CalculateRepairCostIncludingVAT() method.

Chapter 12  Methods



432

 12. Amend the CalculateRepairCostIncludingVAT() method to 

include our local function, as in Listing 12-74.

Listing 12-74. Create the local function called CalculateVATAmount

    public double CalculateRepairCostIncludingVAT(double

            repairAmountPassedIn)

    {

      return repairAmountPassedIn +

            CalculateVATAmount(repairAmountPassedIn);

      /*

      FUNCTION that takes in the pre-VAT amount and

      calculates the VAT amount. This is a local function, a

      function within a method.

      */

      double CalculateVATAmount(double repairAmount)

      {

        double vatamount = repairAmount * 20 / 100;

        return vatamount;

      } // End of local function CalculateVATAmount

    } // End of calculateRepairCostIncludingVAT method

We will now amend the Main() method to

• Add the method-level variables we need.

• Call the CalculateRepairCostIncludingVAT() method, passing it the 

cost of repair value.

• Display a message to show the total cost.

 13. Now add code within the Main() method to add the variables we 

need, as in Listing 12-75.

Chapter 12  Methods



433

Listing 12-75. Add the method-level variables within the Main() method

static void Main(string[] args)

{

  double costOfRepair = 350.00;

  double vatRate = 20;

}// End of Main() method

 14. Now call the CalculateRepairCostIncludingVAT method, as 

in Listing 12-76, passing it the variable for the repair cost and 

assigning the returned value to a new local variable called 

costOfRepairWithVAT.

Listing 12-76. Call the CalculateRepairCostIncludingVAT method and assign it

double costOfRepair = 350.00;

double vatRate = 20;

double costOfRepairWithVAT =  CalculateRepairCostIncludingVAT(costOf 

Repair);

    }// End of Main() method

 15. Now display the value returned from the method call, as in 

Listing 12-77.

Listing 12-77. Display a message to include the total cost

   static void Main(string[] args)

    {

      double costOfRepair = 350.00;

      double vatRate = 20;

       double costOfRepairWithVAT = CalculateRepairCostIncludingVAT(cost

OfRepair);

       Console.WriteLine($"For a repair costing ${costOfRepair:0.00} 

the cost including VAT at {vatRate}% will be 

${costOfRepairWithVAT:0.00}");

    }// End of Main() method

Chapter 12  Methods



434

 16. Click the File menu.

 17. Choose Save All.

 18. Click the Debug menu.

 19. Choose Start Without Debugging.

Figure 12-11 shows the console window displaying the total cost with the VAT 

included.

Figure 12-11. Application output having used the local function

 C# 8 Static Local Function
While C# 7 introduced the local function, it was further developed in C# 8 with the 

introduction of the static local function. The concept of a static local function is to ensure 

that it cannot reference variables from the enclosing method, and if it does, the compiler 

will complain, throw an error. To make the method static, we add the keyword static to 

the method “signature.” We will now amend our last code example to

• Demonstrate a static local function.

• Show that a class-level static variable can be accessed from within a 

static local function.

• Show that outer method variables are not accessible within a static 

local function.

The steps to show this will be as follows:

• Move the vatRate variable to the class level and make it private static.

• Make the Main() method private.

• Make the CalculateRepairCostIncludingVAT() method private.

• Make the local function CalculateVATAmount static.

The code shown in the Listing 12-78 has additional and amended comments to help 

us understand the changes.

Chapter 12  Methods



435

 20. Amend the code as in Listing 12-78, which applies the steps set 

out previously.

Listing 12-78. Static local function accessing static class variable

namespace Chapter12

{

  internal class LocalFunctions

  {

    /*

     Make a static class level variable

     We are able to use a static class level variable within

     our local functions and within our static local functions

    */

    private static double vatRate = 20;

    // Make the Main() method private

    private static void Main(string[] args)

    {

      double costOfRepair = 350.00;

       double costOfRepairWithVAT = CalculateRepairCostIncludingVAT(cost

OfRepair);

       Console.WriteLine($"For a repair costing ${costOfRepair:0.00} 

the cost including VAT at {vatRate}% will be 

${costOfRepairWithVAT:0.00}");

    }// End of Main() method

    /*

     Now we have a private method that takes in private variable

     holding the pre-private VAT amount and the calculates

     the post-private VAT amount

     */

Chapter 12  Methods



436

     private static double CalculateRepairCostIncludingVAT(double 

repairAmountPassedIn)

    {

       return repairAmountPassedIn + CalculateVATAmount(repairAmount

PassedIn);

      /*

      FUNCTION that takes in the pre-VAT amount and

      calculates the VAT amount. This is a local function, a

      function within a method.

      This local function is static and we have access to the

      static class level variable vatAmount

      We do not have access to the outer method, in this case

      the Main() method, variables as we would see if we tried

      to use the variable costOfRepair in our formula

      */

      static double CalculateVATAmount(double repairAmount)

      {

        double vatamount = repairAmount * 20 / 100;

        return vatamount;

      } // End of local function CalculateVATAmount

    } // End of calculateRepairCostIncludingVAT method

  } // End of LocalFunctions class

} // End of Chapter12 namespace

Running the code again gives us the same output, as in Figure 12-11, but we have 

applied the use of static local functions and shown how they can access static class-level 

variables. The other thing to demonstrate is that static local functions cannot access 

outer method variables.

 21. Amend the code, as in Listing 12-79, to make the formula use the 

variable costOfRepair, which exists in the Main() method, the 

outer method.

Chapter 12  Methods



437

Listing 12-79. Amend the formula to use the outer method variable

   static double CalculateVATAmount(double repairAmount)

    {

     double vatamount = repairAmount * costOfRepair * 20 / 100;

      return vatamount;

    } // End of local function CalculateVATAmount

 22. Hover over the red underline on the costOfRepair and note that 

we are being told that this variable does not exist in the current 

context, as in Figure 12-12.

Figure 12-12. Static local function cannot access outer method variable

 23. Change the formula back to its original format.

 C# 10 Null Parameter Checking
We have seen how a method can accept parameters, but what would happen if a 

parameter was null? Well, C# 10 helps us handle this with the introduction of the null 

parameter checking.

Add a new class to hold the code for this example.

 1. Right-click the project Chapter12 in the Solution Explorer panel.

 2. Choose Add.

 3. Choose Class.

 4. Name the class NullParameterChecking.cs.

 5. Click the Add button.

 6. Create a Main() method within the class, as this was not 

produced automatically, and delete the unwanted imports, as in 

Listing 12-80.

Chapter 12  Methods



438

The shortcut to create the Main() method is to type svm and then press the Tab 

key twice.

Listing 12-80. Create the Main() method

namespace Chapter12

{

  internal class NullParameterChecking

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of NullParameterChecking class

} // End of Chapter12 namespace

Now we need to set this class as the startup class.

 7. Right-click the Chapter12 project in the Solution Explorer panel.

 8. Choose Properties from the pop-up menu.

 9. Choose the NullParameterChecking.cs class in the Startup object 

drop-down list.

 10. Close the Properties window.

 11. Amend the code to add a variable to hold a string value 

representing a vehicle registration and assign it a value, as in 

Listing 12-81.

Listing 12-81. Add a variable to hold the vehicle registration

    static void Main(string[] args)

    {

      string vehicleRegistration = "ABC 1234";

    } // End of Main() method

Chapter 12  Methods



439

We will now amend the code to

• Create a method called DisplayInvoice(), which will accept three 

values and check if the first value is null:

• If the value is null, display an error message.

• If it is not null, display a “receipt.”

• Call the DisplayInvoice() method and pass it the three values.

 12. Amend the code, as in Listing 12-82, to call the DisplayInvoice() 

method, which we will create next, and pass it three values, the 

first of which is the variable we set up for the vehicle registration.

Listing 12-82. Call the DisplayInvoice() method passing in three values

    static void Main(string[] args)

    {

      string vehicleRegistration = "ABC 1234";

      DisplayInvoice(vehicleRegistration, 10000, 2000);

    } // End of Main() method

 13. Amend the code to create the DisplayInvoice() method outside 

the Main() method, as in Listing 12-83.

Listing 12-83. Create the DisplayInvoice() method accepting three values

    } // End of Main() method

    public static void DisplayInvoice(string vehicleRegistration,

      double repairTotal, double vatAmount)

    {

      if (vehicleRegistration == null)

      {

        Console.WriteLine("\nNull value error message\n");

      } // End of if block

      else

Chapter 12  Methods



440

      {

        Console.WriteLine("\nInvoice for vehicle repairs\n");

        Console.WriteLine("Vehicle registration\t" +

                            vehicleRegistration + "\n");

        Console.WriteLine("Repair amount\t\t$" +

                                    repairTotal + "\n");

        Console.WriteLine("VAT amount\t\t$" +

                                  vatAmount + "\n");

      } // End of else block

    } // End of DisplayInvoice() method

  } // End of NullParameterChecking class

} // End of Chapter12 namespace

 14. Click the File menu.

 15. Choose Save All.

 16. Click the Debug menu.

 17. Choose Start Without Debugging.

Figure 12-13 shows the console window, which displays the receipt.

Figure 12-13. Application output receipt

 18. Press the Enter key to close the console window.

But now let us see what happens when a null value is used.

Chapter 12  Methods



441

 19. Amend the code to assign null to the variable holding the vehicle 

registration, as in Listing 12-84.

Listing 12-84. Make the variable have a null value

    static void Main(string[] args)

    {

      string vehicleRegistration = null;

      //string vehicleRegistration = "ABC 1234";

      DisplayInvoice(vehicleRegistration, 10000, 2000);

 20. Click the File menu.

 21. Choose Save All.

 22. Click the Debug menu.

 23. Choose Start Without Debugging.

Figure 12-14 shows the console window displaying the null error message.

Figure 12-14. Application showing that the value is null

 24. Press the Enter key to close the console window.

 C# 10 Null Parameter Checking Approach
In C# 10.0 we can use the ArgumentNullException.ThrowIfNull() method instead of 

using the if selection construct.

 25. Amend the code to use the ArgumentNullException.ThrowIfNull() 

method on the vehicle registration variable, as in Listing 12-85.

Chapter 12  Methods



442

Listing 12-85. Use the ArgumentNullException.ThrowIfNull() method

namespace Chapter12

{

  internal class NullParameterChecking

  {

    static void Main(string[] args)

    {

      // string vehicleRegistration = "ABC 1234";

      string vehicleRegistration = null;

      DisplayInvoice(vehicleRegistration, 10000, 2000);

    } // End of Main() method

     public static void DisplayInvoice(string vehicleRegistration, double 

repairTotal, double vatAmount)

    {

      ArgumentNullException.ThrowIfNull(vehicleRegistration);

      Console.WriteLine("\nInvoice for vehicle repairs\n");

       Console.WriteLine("Vehicle registration\t" + vehicleRegistration 

+ "\n");

      Console.WriteLine("Repair amount\t\t$" + repairTotal + "\n");

      Console.WriteLine("VAT amount\t\t$" + vatAmount + "\n");

    } // End of DisplayInvoice() method

  } // End of NullParameterChecking class

} // End of Chapter12 namespace

 26. Click the File menu.

 27. Choose Save All.

 28. Click the Debug menu.

 29. Choose Start Without Debugging.

The console window will appear, as shown in Figure 12-15, and display the exception 

message specifying the parameter causing the problem.

Chapter 12  Methods



443

Figure 12-15. Exception message received when attempting to display the receipt

 Chapter Summary
So, finishing this chapter on methods, we now have coded our own

• Void methods

• Value methods

• Parameter methods

• Overloaded methods

However, we have also used methods in this code that we did not write. In fact, we 

have been using methods that we did not write from the first program we wrote in this 

course. The first real line of code we entered was WriteLine();.

WriteLine() is a method. In this line of code, there is no text in the () brackets so no 

text is written to the console, but a new line is taken. So the WriteLine() method will 

move to a new line once it prints its content. How does it work? Well, we do not have 

to worry because we did not write the code and will not have to maintain the method 

code – it is part of the C# framework. When we go to answer the question, “How does 

it work?” simply answer it like this: don’t know, don’t care. What this really means is 

as developers we should not get involved with methods that are developed to help us 

and have been tested and proved reliable. They work. We just use them to build our 

application code.

Chapter 12  Methods



444

Other examples of methods we did not write but have used in our code include

Write() – Does not move to a new line once it prints its content

ReadLine() – Accepts no arguments

Parse() – Accepts no arguments

nextDouble() – Accepts no arguments

WriteLine("Message") – A parameter method that accepts one argument

Now, thinking about the methods we have created and the methods we have not 

created but have used, they all have one thing in common, and this commonality will 

lead us into the next chapter. The common thing about them is that they all live inside 
a class; they are part of a class. When we code an example like this

     public class MethodsV2

    {

    }

it says that the code contained between the opening curly brace { and the closing 

curly brace } is within the class. All our code is inside the class, apart from the import 

statements. So a takeaway from this chapter is that a class contains

• Methods

• Variables

We also saw that we can have a local function, a function within a method, and 

we can even make the function a static function. Finally, we looked at the concept of 

handling a null parameter being passed to a method by using the ThrowIfNull() method, 

which accepts the parameter being checked.

Chapter 12  Methods



445

We are making great progress in our programming of C# applications and we should 

be proud of our achievements. In finishing this very important chapter, we are ready to 

look at classes, and while we have increased our knowledge further, we are advancing to 

our target.

 

Chapter 12  Methods



447

CHAPTER 13

Classes

 Classes and Objects in OOP
We learned in Chapter 12 that methods belong inside classes and classes consist of 

variables and methods. We saw that there are a number of different method types that 

can be used in our code. The method types we can create or use are

• Void methods that return no value and simply execute code

• Value methods that return a value of a specific data type after 

executing

• Parameter methods that take actual values as their parameters 

and that may or may not return a value of a specific data type after 

executing

• Overloaded methods, which are methods with the same name but 

different parameters

There are many methods used in our code, which are not written by us, for example, 

WriteLine(), Write(), ReadLine(), ToDouble(), ToInt32(), and ToDateTime(). The 

methods we have created and the methods we have not created but have used all have 

one thing in common:

They all live inside a class; they are part of a class.
It is the commonality of classes that this chapter will be concentrating on. The 

crucial takeaway from the last chapter and a vital thing to remember in this chapter is 

that a class contains

• Methods

• Variables

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_13

https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_13#DOI


448

When we create our own classes, they act in the same way as the classes in .NET or 

any other classes in that they can be reused, usually by creating instances of them, to 

create one or more objects.

 A Class Is a Data Structure
In the software development world, there are many programming languages and many 

different types of program. Some languages and programs are what can be called legacy 

languages and legacy programs. COBOL is one such legacy programming language, but 

it is still a very powerful language that widely exists in many commercial applications. 

On the other hand, other languages are popular and use the latest methods or features 

in object-oriented programming (OOP). With traditional languages like COBOL, 

developers often coded the programs as a set of instructions that followed a sequence, 

and hence it was called sequential programming. With object-oriented programming 

(OOP), there is now a focus on structuring the code more and using objects. This is 

achieved by organizing or capturing the code in logically related methods and data 

objects called classes. This process of organizing or capturing the data and methods is 

called encapsulation.1

Our classes will contain fields, and sometimes these fields, as we have read before, 

can be referred to as members or variables or properties or instance variables. For 

simplicity we should just think of them as variables. In this chapter we are now going to 

elaborate on what can be held within a class, and we can categorize these as either:

• Data members that store data associated with the class or data 

associated with an instance of the class, the object. We can simply 

think of them as a variable if they are private or protected and as a 

field if they are public.

• Function members that are used to execute code. They are the 

methods we use to hold our code.

In a class we can have different types, and when trying to learn about classes and 

objects, it is very important that we understand what the types are and what their role is, 

so we will look at these in more detail now.

1 Encapsulation is the concept of making packages that hold all the things we need. In object- 
oriented programming, we can create classes that store all the variables and methods. The 
methods will be used to manipulate the data we have stored.

Chapter 13  Classes



449

 Type 1: Fields

A field is a variable of any data type that is declared directly in our class. A field will 

usually store data that needs to be accessible to more than one method in the class and 

must be stored for longer than the lifetime of any single method. In relation to some of 

the examples we have used so far, we have had:

• A class called QuoteArithmetic that held details about an insurance 

quote and had fields that represented the

• Age of the vehicle in terms of years. It was called 

vehicleAgeInYears.

• Current mileage of the vehicle. It was called 

vehicleCurrentMileage.

• A class called MethodsV1 that held details about an insurance claim 

and had fields that represented the

• id of the repair shop making the claim. It was called 

repairShopID.

• Claim amount. It was called claimAmount.

When we declare these fields at the class level, they can be used by more than one 

method of our class. The variables are said to have a class scope within the class. On the 

other hand, when the field will be used by only one method within the class, we should 

ensure that the variable is declared inside the method, and therefore it is said to have a 

method scope. A field is declared within the class block by identifying

• The access level of the field, for example, public or private

• The type of the field, for example, double, string, etc.

• The name of the field, for example, premium

Examples of the fields are shown in Tables 13-1 and 13-2.

Chapter 13  Classes



450

Table 13-1. A class with a public field

Example Explanation

public class QuoteArithmetic

{

  public int vehicleAgeInYears;

}

• access modifier is public.

• type is int.

• Name is vehicleageInYears.

Table 13-2. A class with a private field

Example Explanation

public class MethodsV1

{

  private String repairShopID;

}

• access modifier is private.

• type is string.

• Name is repairshopID.

 Type 2: Constants

The value of a variable can change throughout the lifetime of the application. In C# when 

a variable is declared using the const keyword, the value cannot be modified. In essence, 

it is a constant value, and a constant value will therefore not change during the lifetime 

of the application and is always known to the compiler at runtime. A constant is declared 

within the class block by

• Identifying the access level of the field, for example, public or private.

• Adding the const modifier.

• Identifying the type of the field, for example, double, String, etc.

• Identifying the name of the field. In C# the naming convention may 

be to use PascalCase for class names, method names, and constants 

or readonly variables, whereas in Java the naming convention could 

be to use capital letters for the name of a constant, for example, 

BASEINSURANCEAMOUNT. Ultimately it is a convention, rather 

than a must-do.

• Setting its fixed value.

Chapter 13  Classes



451

Examples of constant values are shown in Tables 13-3 and 13-4.

Table 13-3. A class with a constant field with public access

Example Explanation

public class QuoteArithmetic

{

   public const int 

maximumDriverAge=100;

}

• access modifier is public.

• Modifier const makes it a constant value.

• type is int.

• Name is maximumDriverage.

• Value is fixed to 100.

Table 13-4. A class with a constant field with private access

Example Explanation

public class MethodsV1

{

   private const double 

minimumQuote=100.00;

}

• access modifier is private.

• Modifier const makes it a constant value.

• type is double.

• Name is minimumQuote.

• Value is fixed at 100.00.

 Type 3: Methods

Methods form a large part of the C# language. Our C# application will start its execution 

from within the Main() method, so in our code the Main() method will exist in one of 

our classes and forms the entry point for the application being developed. As developers 

we use methods to modularize our code and make it easier to read and maintain. 

More importantly, methods form the basis for the vitally important concept of Test- 

Driven Development (TDD), where the idea is to test a unit of code, which is usually 

a method. In Test-Driven Development we write tests first before we write our classes 

and methods – yes, that is strange. With Test-Driven Development the tests themselves 

are methods, which are inside a class, called the test class. So once again we see the 

importance of classes with methods and variables.

Chapter 13  Classes



452

When we create methods, we are really developing blocks of code that perform 

an action, and we can say that methods hold our business logic. A method is declared 

within the class block by identifying

• The access level of the method

• Optional modifiers such as abstract, sealed, static, override, 

and virtual

• The return type of the method

• The name of the method

• Any parameters that are passed into the method

Listing 13-1. Example method code snippet

// Method 1

public static void HowManyClaimsAreBeingMade()

{

  /*

  Read the user input for the number of claims being made

  and convert the string value to an integer data type*/

  Console.WriteLine("How many claims are being made?\n");

  numberOfClaimsBeingMade = Convert.ToInt32(Console.ReadLine());

} // End of HowManyClaimsAreBeingMade() method

Analysis of the Method Code in Listing 13-1

• Access level of the method is public.

• The static modifier has been applied to the method, and we will 

learn more about static in this chapter.

• The return type of the method is void – it does not return anything.

• The name of the method is HowManyClaimsAreBeingMade.

• No parameters are passed into the method – it is parameterless.

Chapter 13  Classes



453

 Type 4: Properties

As we saw in Tables 13-1, 13-2, 13-3, and 13-4, it is possible to set the field access 

modifier as public or private. Private fields are referred to as variables and public fields 

are referred to as fields. The reason for setting the field as private is to ensure that it 

cannot be accessed directly from outside the class, by another class. We may therefore 

wonder how we can read the value of a variable or write a value to a variable from 

outside its class if it is set as private. Well, the answer is by using a property, which is a 

mechanism that allows for reading and writing, getting or setting, of the variable.

Properties are declared in the class block by specifying the access level of the 

variable, followed by the type of the property, followed by the name of the property, and 

followed by a code block that can declare a get accessor and/or a set accessor.

• Get accessor, getter

A get accessor method used to read the value of a private field is 

called a getter. The method is used to return a value to outside 

classes; it is a read method and the method will be used as shown 

in Listing 13-2.

Listing 13-2. Example code snippet for a getter

public class Methods

{

  double totalOfAllClaims;

  public double TotalOfAllClaims

  {

    get

    {

      return totalOfAllClaims;

    }

  }

} //End of class

So, in essence, the getter method gets the value of a field, variable, and returns the 

value to the calling statement. In Listing 13-2 we can see that the getter is used to get the 

value of the field totalOfAllClaims. The get accessor returns this value to the statement 

that calls it.

Chapter 13  Classes



454

• Set accessor, setter

A set accessor method used to write a value to a private field is called a setter. The 

method is used to accept a value from outside the class and the method will be used as 

shown in Listing 13-3.

Listing 13-3. Example code snippet for a setter

public class Methods

{

  double totalOfAllClaims;

  public double TotalOfAllClaims

  {

    get

    {

      return totalOfAllClaims;

    }

    set

    {

       totalOfAllClaims = value;

    }

  }

} //End of class

So, in essence, the setter method sets the value of a field. In Listing 13-3 we can see 

that the setter is used to set the value of the field totalOfAllClaims. The set accessor 

assigns the new value to the field.

 Type 5: Constructor

We now know that fields with an access modifier of private can have their value 

amended using a setter. There is also a very special method that can exist in a class and 

can be used for the purpose of initializing the values of the fields or writing some code. 

This special method is called a constructor and will be created by the developer.

Default Constructor
If we do not want to initialize the fields, they will have the default value for the data 

type of the particular field, for example, the int data type has a default of 0 and the 

double data type has a default of 0.00. When we choose not to develop a constructor and 

Chapter 13  Classes



455

therefore leave the default values for the fields, there is still a constructor in the class; it is 

called a default constructor and it will not be visible.

Analysis of the Constructor Code in Figure 13-1

• Here we have created an instance of the class MethodsV1 – we are 

instantiating the class.

• This instantiation passes in no values, arguments, to the class called 

MethodsV1, as there are no values between the open and close 

brackets ().

• This means that the default constructor has been used and the fields 

of the class will have the default value for their data type.

Figure 13-1. Instantiate the class using the default constructor, no values

Custom Constructor
If we want to initialize the fields so they do not have their default values, we need to 

create our own constructor. Once we create our own constructor method, the default 

constructor no longer exists, but we could still manually add a default constructor. 

Figure 13-2 shows the custom constructor.

Chapter 13  Classes



456

Figure 13-2. Creating the custom constructor

The constructor “method” is used to initialize the value of the fields in the class. 

It may be used to initialize all the fields or just some of them. A constructor has the 

following features (we will refer to Figure 13-2):

• It must have the same name as the class – in this example it is 

MethodsV1.

• It must have an access modifier of public.

• It has no return type, not even void.

• It has parameters, and they are of the same type as the fields that are 

to be initialized. Here we have a string followed by a double.

The constructor, method, is “activated” when the class is created. We will see more 

about this as we code the examples in this chapter. The way a class is “activated” is by 

creating an instance of the class. The reason we use an instance of the class is because 

the class itself is a template and should not be used directly.

In the code shown in Figure 13-2, we could have used the keyword this to refer to 

the fields of the class, and we would do this to differentiate between the field of the 

class and the parameter of the method. But wait a minute! Could we not have named 

the parameters of the method different from the field names of the class and then 

avoided using the this keyword? Yes, of course we could, but in terms of clean code 

and convention, using the same name for the variables can be seen as preferential, and 

therefore we use the this keyword. We can think of this as referring to the current object, 

the field of the class we are in.

Chapter 13  Classes



457

Analysis of the Constructor Code in Figure 13-3

• This instantiation passes in two values, arguments, to the constructor 

of the MethodsV1 class.

• As we can see from the two values between the open and close 

brackets (), we are passing in one string, “RS1234”, followed by one 

double, 2999.50, to the constructor of the class called MethodsV1.

• The values, arguments, are passed to the constructor, which has 

been created, and the constructor accepts these arguments as its 

parameters.

• The values are of types string and double in this specific order.

• Remember, the default constructor accepts no values.

• Since we are using a custom constructor, we know that the default 

constructor does not exist.

Figure 13-3. Instantiate the class using a custom constructor, values passed.

The class code to go with this instantiation could be as shown in Figure 13-2 and 

reproduced here as Listing 13-4.

Listing 13-4. Class with custom constructor

public class MethodsV1

{

  String repairShopId;

  double claimAmount;

  public MethodsV1(string repairShopId, double claimAmount)

Chapter 13  Classes



458

  {

    this.repairShopId = repairShopId;

    this.claimAmount = claimAmount;

  } // End of constructor

} // End of class

Analysis of the Constructor Code in Listing 13-4 and Figure 13-3

• Figure 13-3 shows that when the class is instantiated, the first 

argument is the value “RS1234”.

• This argument is accepted by the repairShopId parameter, as in 

Listing 13-4, and the default value of the repairShopId field is 

overwritten. The value becomes “RS1234”.

• Figure 13-3 shows that when the class is instantiated, the second 

argument is the value 2999.50.

• This argument is accepted by the claimAmount parameter, as in 

Listing 13-4, and the default value of the claimAmount field is 

overwritten. The value becomes 2999.50.

• The constructor, as in Listing 13-4, therefore uses the arguments 

passed to it to initialize the fields.

• this.repairShopId, in Listing 13-4, refers to the field repairShopID of 

the class.

• The field repairShopID, in Listing 13-4, is therefore assigned the 

value “RS1234”.

• this.claimAmount, in Listing 13-4, refers to the field claimAmount of 

the class.

• The field claimAmount, in Listing 13-4, is therefore assigned the 

value 2999.50.

Since there is a constructor method in this example, it means that the default 

constructor no longer exists – it has been overwritten.

Chapter 13  Classes



459

 Constructor Overloading

In C# it is possible to use overloading of constructors, and the concept of overloading 

constructors is the same as the method overloading that exists in the C# language, which 

we looked at in the previous chapter. Overloading means that it is possible for us to have 

constructors with the same name, the name of the class, but which take a different set 

of input parameters. This is comparable to the overloading of methods that we looked 

at in the last chapter. Listing 13-5 shows code where we have three constructors. The 

first constructor has two parameters of type string followed by a double. The second 

constructor has only one parameter of type string. The third constructor has only one 

parameter of type double. Remember a constructor has the same name as the class, so 

all three constructors are called MethodsV1. Constructors also have no return type.

Listing 13-5. Constructor overloading – more than one custom constructor

public class MethodsV1

{

 String repairShopId;

 double claimAmount;

 public MethodsV1(string repairShopId, double claimAmount)

 {

   this.repairShopId = repairShopId;

   this.claimAmount = claimAmount;

 }// End of constructor with parameters of type String and double

 public MethodsV1(string repairShopId)

 {

   this.repairShopId = repairShopId;

 }// End of constructor with a parameter of type String

public MethodsV1(double claimAmount)

 {

   this.claimAmount = claimAmount;

 }// End of constructor with a parameter of type double

} // End of class MethodsV1

Chapter 13  Classes



460

As we read earlier, many commercial programs will involve large amounts of code, 

and from a maintenance and testing perspective, it is essential that the program has 

a good structure. Well-written and organized programs allow those who maintain or 

test them to

• Follow the code and the flow of events easier.

• Find things quicker.

Let’s recap what we have seen in Chapter 12:

To structure the program code better, we could break the code into small 
functional parts, each part performing one task. When we have a func-
tional part, which does one particular thing, it may be possible for that 
functional part to be used by other parts of the program.

In the last chapter on methods, we created methods that performed one task, and 

then the methods were called as required. Well, this section will develop this concept 

even further.

Suppose we have developed a program with the following methods:

• AgentCommission()

• AgentBonus()

• CustomerPersonalDetails()

• CustomerVehicleDetails()

Suppose all the methods are inside a class and outside the Main() method. Now, this 

would be fine, and the code could work, and it’s similar to what we did when coding in 

Chapter 12. But, looking closely at the method names, we might suggest that they relate 
to two distinct categories or groups, an Agent and a Customer.

If this is the case, we should think, Would it not be better if each method was placed 

inside a class that related to its category? This would mean that our code could now look 

something like the three classes shown in Listings 13-6, 13-7, and 13-8.

Class 1
The class in Listing 13-6 is the main entry point into the application and is used to 

start the program as it has the Main() method.

Chapter 13  Classes

https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_12


461

Listing 13-6. Class with the Main() entry point

public class Insurance

{

  public static void Main(String[] args)

  {

    //Some code to call the methods in the other class(es)

  } // End of Main() method

} // End of Insurance class

Class 2
The class in Listing 13-7 has the methods and fields associated with an Agent; it does 

not have a Main() method as only one class in our application can have the entry point.

Listing 13-7. Class for the Agent

public class Agent

{

  public static void AgentCommission()

  {

    //Some business logic code to calculate the commission

  } // End of AgentCommission method

  public static void AgentBonus()

  {

    //Some business logic code to calculate the bonus

  }// End of AgentBonus method

}// End of Agent class

Class 3
This class in Listing 13-8 has the methods and fields associated with a Customer; 

it does not have a Main() method as only one class in our application can have the 

entry point.

Chapter 13  Classes



462

Listing 13-8. Class for the Customer

public class Customer

{

  public static void CustomerPersonalDetails()

  {

      //Some code to read in the customer personal details

  }// End of CustomerPersonalDetails method

  public static void CustomerVehicleDetails()

  {

      //Some code to read in the customers vehicle details

  }// End of CustomerVehicleDetails method

}// End of Customer class

Our code is now organized into classes and into methods within the classes. More 

importantly, the distinct classes hold methods and fields that have a similar purpose. 

This is a good starting point, and we might, even at this stage, think we could have 

completed the separation process in a different way. We could, and that is part of the 

“joy” of programming, as developers think in different ways, and no one way is the 

right way.

While coding the examples in each of the previous chapters, we have seen at least 

one property of a class, and we have used methods that belonged to different classes. 

Listing 13-9 shows the Length property of the Arrays class, and we should notice that 

the Length property does not contain the opening and closing parentheses () – it is not 

a method.

Listing 13-9. Length property of the Arrays class

for (int counter = 0; counter < employeeAndSalary.Length; counter++)

{

   Console.WriteLine($"The element positioned at {counter} is 

{^(employeeAndSalary.Length - (counter))} from the end of the array");

}

Listing 13-10 shows the Parse() method of the Int32 class, and we should notice that 

the method does contain the opening and closing parentheses () – it is a method.

Chapter 13  Classes



463

Listing 13-10. Parse method of the Int32 class – also the ReadLine() method

    return Int32.Parse(Console.ReadLine());

When using the method called Parse(), some things to note are as follows:

• When the line of code in Listing 13-10 is entered into the Integrated 

Development Environment (IDE) and the full stop is typed after the 

word Int32, a pop-up window appears.

• The pop-up window displays the methods and fields that are part of 

the Int32 class.

• The methods have the cube icon.

• The fields have the spanner icon, but there are no fields for Parse.

• The constants have the rectangle with lines icon.

• However, some Integrated Development Environments use the 

symbols M for a method and F for a field.

• The Int32 class has only methods that are associated with 32-bit 

integers.

In Figure 13-4 we can see the methods, in particular the Parse() method. We can also 

see that the Int32 class has methods and constants – it has no fields.

Figure 13-4. Int32 class with its methods and constants

Chapter 13  Classes



464

Listing 13-11. Sqrt() method from the Math class

double answer = Math.Sqrt(9.00);

In Listing 13-11 we have used the method called Sqrt(), which belongs to the class 

called Math:

• When the code in Listing 13-11 is entered into the Integrated 

Development Environment (IDE) and the full stop is typed after the 

word Math, a pop-up window appears.

• The pop-up window displays any methods and fields that are part of 

the Math class.

• The methods have the cube icon.

• The fields would have the spanner icon, but Math has no fields.

• The constants have the rectangle with the lines, for example, PI 

and Tau.

• The Math class has only methods that are associated with 

mathematics.

In Figure 13-5 we can see the methods, cube icon, in particular the Sqrt() method 

that accepts a double as an argument.

Figure 13-5. Math class with its methods

Chapter 13  Classes



465

Great, now we can think of methods that come with C# and from the imports, not 

just being coded in one class but in numerous classes. With these classes there is a high 

degree of code separation. We call it separation of concern (SoC), where associated 

methods are kept together, and this is what we can do – we have done this in Chapter 12. 

Think about separation of concern using these real-world examples.

In a school there are different roles:

• The head teacher

• The senior teachers

• The teachers

• The administration staff

• The facilities staff

• The canteen staff

All roles have separate concerns, but all concerns serve one purpose, to keep the 

school working.

In a hospital there are different roles:

• The consultants

• The doctors

• The nurses

• The care assistants

• The administration staff

• The facilities staff

• The catering staff

All roles have separate concerns, but all concerns serve one purpose, to keep the 

hospital functioning.

Let's code some C# and build our programming muscle.
Now it is time for us to code some classes with methods and show the separation 

of concern working in our application. We will be programming the same application 

that we have just completed in Chapter 12, so we can choose to copy and paste code as 

required, but the following instructions assume that we are starting again with no code.

Chapter 13  Classes

https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_12


466

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter13 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter13 project within the solution called CoreCSharp.

 10. Right-click the project Chapter13 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter13 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to ClaimApplication.cs.

 15. Press the Enter key.

 16. Double-click the ClaimApplication.cs file to open it in the 

editor window.

Now we can set up the code structure with a namespace, and inside it will be the 

ClaimApplication class, and inside the class will be the Main() method. The shortcut for 

creating the Main() method is to type svm and press the Tab key twice.

 17. In the editor window, add the code in Listing 13-12.

Chapter 13  Classes



467

Listing 13-12. Class with the Main() method

namespace Chapter13

{

  internal class ClaimApplication

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of ClaimApplication class

} // End of Chapter13 namespace

Now we have a class with a Main() method. We can follow points 18–21 in the 

following to set it as the Startup object, but as this is the only class with a Main() method 

in this startup project, it will automatically be used as the Startup object.

 18. Right-click the Chapter13 project in the Solution Explorer panel.

 19. Choose Properties from the pop-up menu.

 20. Choose the Chapter13.ClaimApplication class in the Startup 

object drop-down list.

 21. Close the Properties window.

Add the ClaimDetails class, which has no Main() method.

 22. Right-click the Chapter13 project in the Solution Explorer window.

 23. Choose Add.

 24. Choose New Item.

 25. Choose Class.

 26. Change the name to ClaimDetails.cs.

 27. Click the Add button.

The ClaimDetails class code will appear in the editor window and will be similar to 

Listing 13-13.

Chapter 13  Classes



468

Listing 13-13. ClaimDetails class with no Main() method

namespace Chapter13

{

  internal class ClaimDetails

  {

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

We are now going to use the same code, with some small changes, that we created for 

the MethodsValue program, but the methods will be contained within the ClaimDetails 

class and will be called from within the ClaimApplication class, which contains 

the Main() method. This will now ensure that we have some degree of separation. 

Remember that the methods were numbered, so the following instructions will reference 

the methods by their number. We will then code further classes to reinforce the concept 

of classes and objects.

 28. Amend the code, as in Listing 13-14, to create the required class-

level variable.

Listing 13-14. Add the class-level variable

namespace Chapter13

{

  internal class ClaimDetails

  {

    int numberOfClaimsEntered;

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

REMEMBER
We have the code for the methods in the MethodsValue.cs class, so copy and paste 

and remove the static keyword.

 29. Amend the ClaimDetails code, as in Listing 13-15, to add method 

1. Notice that static has been removed.

Chapter 13  Classes



469

Listing 13-15. Add method 1

  internal class ClaimDetails

  {

    int numberOfClaimsBeingMade;

    /******************* METHOD ONE ******************/

    public int HowManyClaimsAreBeingMade()

    {

      /*

      Read the user input for the number of claims being made

      and convert the string value to an integer data type

      */

      Console.WriteLine("How many claims are being made?\n");

      return Convert.ToInt32(Console.ReadLine());

    } // End of HowManyClaimsAreBeingMade() method

  }  // End of ClaimDetails class

 30. Click the File menu.

 31. Choose Save All.

Now that we have the method, we should be able to refer to it from the other class 

called ClaimApplication. We should take note that the full name of the method will 

have to contain the class name, but as we said earlier, to use the ClaimDetails class, 

we make an instance of it. We do not use the original class as it is the template. We 

will therefore create an instance of the class from within the Main() method of the 

ClaimApplication class.

 32. Amend the ClaimApplication class, as in Listing 13-16, to create 

an instance of the ClaimDetails class.

Listing 13-16. Create an instance of the ClaimDetails class

  internal class ClaimApplication

  {

    static void Main(string[] args)

Chapter 13  Classes



470

    {

      ClaimDetails myClaimDetailsInstance = new ClaimDetails();

    } // End of Main() method

  } // End of ClaimApplication class

 33. Amend the Main() method to call the 

HowManyClaimsAreBeingMade() method, method 1, and assign 

it to the numberOfClaimsBeingMade variable, as in Listing 13-17.

Listing 13-17. Call the HowManyClaimsAreBeingMade() method

    static void Main(string[] args)

    {

      ClaimDetails myClaimDetailsInstance = new ClaimDetails();

       int numberOfClaimsBeingMade = myClaimDetailsInstance.

HowManyClaimsAreBeingMade();

    } // End of Main() method

This clearly shows the concept of classes:

• A class without a Main() method has been created to hold methods 

and fields.

• From another class, which has a Main() method, an instance of the 

class containing the methods is created.

• Using the instance of the class, we have access to the methods 

and fields of the class that have the public access modifier and are 

not static, that is, they belong to the instance of the class, not the 

class itself.

• Adding the full stop after the instance name means those methods 

and fields that are accessible will be displayed. This is called the dot 

notation.

This means that we could create as many methods as we like in the class and 

create as many classes as we like. This idea of separating our code into methods and 

our methods into classes is exactly what a C# application should look like when it is 

being coded.

Chapter 13  Classes



471

Let us just emphasize a few points that are crucial if we are to fully understand and 

use classes and objects:

• The word static in front of a method or field of a class means that the 

method or field belongs to the class it is declared in.

• When we make an instance of the class, we will not be able to access 

the static fields or the static methods using the instance name.

• Static fields and methods are available directly inside the class they 

are declared in.

• To access a static field or a static method, we use the class name, not 

the name of the instance of the class.

Now check that the method is being read correctly.

 34. Click the File menu.

 35. Choose Save All.

 36. Click the Debug menu.

 37. Choose Start Without Debugging.

The console window will appear, as shown in Figure 13-7, and ask the user to input 

the number of claims to be made. The method from the class without the Main() method 

has been called from the class with the Main() method.

 38. Type 2 and press the Enter key.

 39. Press the Enter key.

Figure 13-6. Static fields and methods not accessible from a class instance

Chapter 13  Classes



472

Figure 13-7. Method called from another class

This is excellent! Our method has been called from another class. We will now add 

more fields and methods to the ClaimDetails class.

 40. Amend the ClaimDetails class, as in Listing 13-18, to add the 

additional fields we require and initialize the existing variable to 0.

Listing 13-18. Add the additional class-level variables and array we will use

namespace Chapter13

{

  internal class ClaimDetails

  {

    int numberOfClaimsEntered = 0;

    static int arrayPositionCounter = 0;

    /*

   The array is going to hold the data for 2 claims.

   Each claim has four pieces of information. The number of

   data items is therefore 2 multiplied by 4 = 8.

   So, we will make the array for this example of size 8.

   Not the best way to do things but fine for now.

   */

    static string[] repairShopClaims = new string[8];

    /******************* METHOD ONE ******************/

    public int HowManyClaimsAreBeingMade()

    {

 41. Amend the ClaimDetails code, as in Listing 13-19, to add method 2 

after method 1. Notice that static has been removed.

Chapter 13  Classes



473

Listing 13-19. Add method 2

    /******************* METHOD TWO ******************/

    public void CurrentValueOfCounter()

    {

       Console.WriteLine("The current value of the counter is :" + 

numberOfClaimsEntered + "\n");

    } // End of CurrentValueOfCounter() method

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 42. Amend the ClaimDetails code, as in Listing 13-20, to add method 

3 after method 2. Notice that static has been removed.

Listing 13-20. Add method 3

    /******************* METHOD THREE ******************/

    public string ReadTheRepairShopId()

    {

      Console.WriteLine("What is your repair shop id?\n");

      return Console.ReadLine();

    }// End of ReadTheRepairShopId() method

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 43. Amend the ClaimDetails code, as in Listing 13-21, to add method 

4 after method 3. Notice that static has been removed.

Listing 13-21. Add method 4

    /******************* METHOD FOUR ******************/

    public void WriteRepairShopIdToTheArray(string repairShopId)

    {

      repairShopClaims[arrayPositionCounter] = repairShopId;

      arrayPositionCounter++;

    } // End of WriteRepairShopIdToTheArray() method

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

Chapter 13  Classes



474

 44. Amend the ClaimDetails code, as in Listing 13-22, to add method 

5 after method 4. Notice that static has been removed.

Listing 13-22. Add method 5

    /******************* METHOD FIVE ******************/

    public string ReadTheVehiclePolicyNumber()

    {

      Console.WriteLine("What is the vehicle policy number?\n");

      return Console.ReadLine();

    } // End of ReadTheVehiclePolicyNumber() method

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 45. Amend the ClaimDetails code, as in Listing 13-23, to add method 

6 after method 5. Notice that static has been removed.

Listing 13-23. Add method 6

    /******************* METHOD SIX ******************/

     public void WriteVehiclePolicyNumberToTheArray(string 

vehiclePolicyNumber)

    {

      repairShopClaims[arrayPositionCounter] = vehiclePolicyNumber;

      arrayPositionCounter++;

    } // End of WriteVehiclePolicyNumberToTheArray() method

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 46. Amend the ClaimDetails code, as in Listing 13-24, to add 

method 7 after method 6. Notice that static has been removed.

Chapter 13  Classes



475

Listing 13-24. Add method 7

    /******************* METHOD SEVEN ******************/

    public double ReadTheAmountBeingClaimed()

    {

       Console.WriteLine("What is the amount being claimed for the 

repair?\n");

      return Convert.ToDouble(Console.ReadLine());

    } // End of ReadTheAmountBeingClaimed() method

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 47. Amend the ClaimDetails code, as in Listing 13-25, to add 

method 8 after method 7. Notice that static has been removed.

Listing 13-25. Add method 8

    /******************* METHOD EIGHT ******************/

    public void WriteClaimAmountToTheArray(double claimAmount)

    {

      repairShopClaims[arrayPositionCounter] = claimAmount.ToString();

      arrayPositionCounter++;

    } // End of WriteClaimAmountToTheArray() method

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 48. Amend the ClaimDetails code, as in Listing 13-26, to add method 

9 after method 8. Notice that static has been removed.

Listing 13-26. Add method 9

    /******************* METHOD NINE ******************/

    public DateTime ReadTheRepairDate()

    {

      Console.WriteLine("What was the date of the repair?\n");

      return Convert.ToDateTime(Console.ReadLine());

    }// End of method ReadTheRepairDate() method

Chapter 13  Classes



476

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 49. Amend the ClaimDetails code, as in Listing 13-27, to add method 

10 after method 9. Notice that static has been removed.

Listing 13-27. Add method 10

    /******************* METHOD TEN ******************/

    public void WriteRepairDateToTheArray(DateTime claimDate)

    {

      repairShopClaims[arrayPositionCounter] = claimDate.ToString();

      arrayPositionCounter++;

    } // End of method WriteRepairDateToTheArray() method

}  // End of ClaimDetails class

}  // End of Chapter13 namespace

 50. Amend the ClaimDetails code, as in Listing 13-28, to add method 

11 after method 10. Notice that static has been removed.

Listing 13-28. Add method 11

    /******************* METHOD ELEVEN ******************/

    public void DisplayAllItemsInTheArray()

    {

      foreach (var itemInTheClaimsArray in repairShopClaims)

      {

         Console.WriteLine("The item in the array is:\t" + 

itemInTheClaimsArray + "\n");

      }

    } // End of method DisplayAllItemsInTheArray()

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 51. Amend the ClaimDetails code, as in Listing 13-29, to add method 

12 after method 11. Notice that static has been removed.

Chapter 13  Classes



477

Listing 13-29. Add method twelve

    /******************* METHOD TWELVE ******************/

    public double AccumulateClaimAmount(double

    claimAmountPassedIn, double totalOfAllClaims)

    {

      totalOfAllClaims += claimAmountPassedIn;

      return totalOfAllClaims;

    }// End of method AccumulateClaimAmount()

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 52. Amend the ClaimDetails code, as in Listing 13-30, to add method 

13 after method 12. Notice that static has been removed.

Listing 13-30. Add method 13

   /******************* METHOD THIRTEEN ******************/

     public double DetermineVATAmount(double totalValueOfClaimsPassedIn, 

double vatAmount)

    {

       vatAmount = totalValueOfClaimsPassedIn - (totalValueOfClaimsPassedIn 

/ 1.20);

      return vatAmount;

    } // End of method DetermineVATAmount()

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 53. Amend the ClaimDetails code, as in Listing 13-31, to add method 

14 after method 13. Notice that static has been removed.

Listing 13-31. Add method 14

    /******************* METHOD FOURTEEN ******************/

    public void DisplayInvoiceReceipt(double

           totalValueOfClaimsPassedIn, double vatPassedIn)

    {

      Console.WriteLine("\nInvoice for vehicle repairs\n");

Chapter 13  Classes



478

       Console.WriteLine("Nett claim\t" + (totalValueOfClaimsPassedIn - 

vatPassedIn) + "\n");

      Console.WriteLine("VAT amount\t" + vatPassedIn + "\n");

       Console.WriteLine("Total amount\t" + totalValueOfClaimsPassedIn 

+ "\n");

    } // End of method DisplayInvoiceReceipt()

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

 54. Amend the ClaimDetails code, as in Listing 13-32, to add method 

15 after method 14. Notice that static has been removed.

Listing 13-32. Add method 15

    /******************* METHOD FIFTEEN ******************/

    public void DisplayInvoiceReceipt(double

    totalValueOfClaimsPassedIn, double vatPassedIn, string

    messagePassedIn)

    {

      Console.WriteLine("********************************");

      Console.WriteLine("\nInvoice for vehicle repairs\n");

       Console.WriteLine("Nett claim\t" + (totalValueOfClaimsPassedIn - 

vatPassedIn) + "\n");

      Console.WriteLine("VAT amount\t" + vatPassedIn + "\n");

       Console.WriteLine("Total amount\t" + totalValueOfClaimsPassedIn 

+ "\n");

      Console.WriteLine(messagePassedIn);

      Console.WriteLine("********************************");

    } // End of method DisplayInvoiceReceipt

}  // End of ClaimDetails class

}  // End of Chapter13 namespace

Code Analysis
Now, let’s stop and think what we have just done:

Chapter 13  Classes



479

• We have created a new class without a Main() method – it is called 

ClaimDetails.

• We have added the fields that we will use in the methods of the class.

• We have added the original methods we had in the MethodsValue 

class in the last chapter.

• We have created a class called ClaimApplication with a 

Main() method.

• In the Main() method we have

• Created an instance of the ClaimDetails class

• Accessed the method called HowManyClaimsAreBeingMade() by 

using the name of the class instance we created, followed by a full 

stop (dot notation), and then selecting the method

We will now continue with the code in the ClaimApplication class.

 55. Amend the code, as in Listing 13-33, in the ClaimApplication 

class, to add the rest of the fields we will need in this class.

Listing 13-33. Add the two additional fields we need in the Main() method class

    static void Main(string[] args)

    {

      double vatAmount = 0.00, totalOfAllClaims = 0.00;

      ClaimDetails myClaimDetailsInstance = new ClaimDetails();

      int numberOfClaimsBeingMade

        = myClaimDetailsInstance.HowManyClaimsAreBeingMade();

    } // End of Main() method

 56. Now add the do while loop within the Main() method, as in 

Listing 13-34.

Chapter 13  Classes



480

Listing 13-34. Add the do while construct

      int numberOfClaimsBeingMade

        = myClaimDetailsInstance.HowManyClaimsAreBeingMade();

      /*

      As we are using a variable in the loop our code is

      flexible and can be used for any number of claims.

      An ideal situation and good code.

      */

      do

      {

      } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

    } // End of Main() method

Now we will call the method that will read the repair shop id, remembering that the 

method does not exist in the class we are in. We will need to call it using the instance 

of the class that we created, myClaimDetailsInstance. Remember, after we enter the 

instance name and type the dot, the list of fields and methods of the class will appear if 

they are accessible, so we should select the method rather than typing it.

If the list of fields and methods of the class do not appear, then there is 
something wrong with the code. Go back and check it.

 57. Add the code in Listing 13-35, to call the repair shop id method.

Listing 13-35. Call the ReadTheRepairShopId() method from the other class

      do

      {

        /*

         Call the methods as required assigning returned

         values to method level variables

        */

        string repairShopId = myClaimDetailsInstance.ReadTheRepairShopId();

      } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

Chapter 13  Classes



481

This once again clearly shows the concept of classes. Using the instance of the class, 

we have access to the methods and fields of the class that have the public access modifier 

and are not static. The dot notation, a full stop after the instance name of the class, shows 

us those methods and fields that are accessible, as shown in Figure 13-8.

Figure 13-8. Methods in the ClaimDetails class that are accessible

 58. Add the code in Listing 13-36, to call the method to write the 

repair shop id to the array.

Listing 13-36. Call the WriteRepairShopIdToTheArray() method

  do

  {

    /*

     Call the methods as required assigning returned

     values to method level variables

    */

    string repairShopId = myClaimDetailsInstance.ReadTheRepairShopId();

    /*

    Call the WriteRepairShopIdToTheArray method passing it

    the value to be written

    */ myClaimDetailsInstance.WriteRepairShopIdToTheArray(repairShopId);

Chapter 13  Classes



482

  } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

 59. Add the code in Listing 13-37, to call the two methods we require 

to read the policy number and then write it to the array.

Listing 13-37. Call the read and write policy number methods

   /*

   Call the WriteRepairShopIdToTheArray method passing it

   the value to be written

   */

myClaimDetailsInstance.WriteRepairShopIdToTheArray(repairShopId);

    string vehiclePolicyNumber = myClaimDetailsInstance.

ReadTheVehiclePolicyNumber();

    myClaimDetailsInstance.WriteVehiclePolicyNumberToTheArray(vehiclePoli

cyNumber);

 } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

 60. Add the code in Listing 13-38, to call the two methods we require 

to read the amount being claimed and then write it to the array 

and then call the method that accumulates the total for all claims.

Listing 13-38. Call the read and write claim amount methods

    string vehiclePolicyNumber = myClaimDetailsInstance.

ReadTheVehiclePolicyNumber();

    myClaimDetailsInstance.WriteVehiclePolicyNumberToTheArray(vehiclePoli

cyNumber);

   double claimAmount = myClaimDetailsInstance.ReadTheAmountBeingClaimed();

   myClaimDetailsInstance.WriteClaimAmountToTheArray(claimAmount);

    totalOfAllClaims = myClaimDetailsInstance.AccumulateClaimAmount(claimAmo

unt, totalOfAllClaims);

 } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

Chapter 13  Classes



483

 61. Add the code in Listing 13-39, to call the two methods we require 

to read the repair date and then write it to the array.

Listing 13-39. Call the read and write claim date methods

     totalOfAllClaims = myClaimDetailsInstance.AccumulateClaimAmount(claimAm

ount, totalOfAllClaims);

    DateTime claimDate = myClaimDetailsInstance.ReadTheRepairDate();

    myClaimDetailsInstance.WriteRepairDateToTheArray(claimDate);

  } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

Now we have the bulk of the work done because we have our methods in one class 

and we have called the methods from the other class with the Main() method to get the 

user input and store the details in an array.

The numberOfClaimsEntered variable in the ClaimDetails class is private and 

cannot be accessed from the ClaimApplication class so we will need to make it available 

through its property accessor.

 62. The start of the Main() method should be as shown in 

Listing 13-40.

Listing 13-40. Remove the method-level variable

    static void Main(string[] args)

    {

      double vatAmount = 0.00, totalOfAllClaims = 0.00

      ClaimDetails myClaimDetailsInstance = new ClaimDetails();

 63. Add the code in Listing 13-41, to increment the number of 

claims that have been entered by one using the static field in the 

other class.

Chapter 13  Classes



484

Listing 13-41. Increment the number of claims entered counter

    DateTime claimDate = myClaimDetailsInstance.ReadTheRepairDate();

    myClaimDetailsInstance.WriteRepairDateToTheArray(claimDate);

    /* Increment the loop counter by 1 */

    myClaimDetailsInstance.numberOfClaimsEntered++;

  } while (numberOfClaimsEntered < numberOfClaimsBeingMade);

We will see an error message under the numberOfClaimsEntered, and if we hover 

over it, we see that the protection level is making it inaccessible, as in Figure 13-9.

Figure 13-9. Field not accessible 

We will now code a property with the getter and setter, which we looked at earlier.

 64. Open the ClaimDetails class.

 65. Right-click the numberOfClaimsEntered field.

 66. Choose Quick Actions and Refactorings as shown in Figure 13-10.

Figure 13-10. Right-click the field and choose Quick Actions and Refactorings

 67. Choose Encapsulate field: numberOfClaimsEntered (but still use 

field) as shown in Figure 13-11.

Chapter 13  Classes



485

Figure 13-11. Encapsulate the field

The accessor is created for us in our code, and we can move it from the position it 

has been placed in if we wish to do so or reformat it so it is not all coded on one line, as 

in Listing 13-42.

Listing 13-42. The accessor for numberOfClaimsEntered is added to the class

    static string[] repairShopClaims = new string[8];

    public int NumberOfClaimsEntered

    {

      get => numberOfClaimsEntered;

      set => numberOfClaimsEntered = value;

    }

    /******************* METHOD ONE ******************/

    public int HowManyClaimsAreBeingMade()

    {

 68. Open the ClaimApplication class.

Chapter 13  Classes



486

We will see that the error still exists because we are still trying to use the private 

field, numberOfClaimsEntered, directly instead of using its accessor, which is called 

NumberOfClaimsEntered. Notice the capital N as the first letter of the accessor. 

Figure 13-12 shows how the property, get and set, would appear when we use the dot 

notation.

Figure 13-12. NumberOfClaimsEntered property

 69. Amend the call to use the NumberOfClaimsEntered accessor. 

Inside the while() remove the old method variable and replace it 

with the instance variable NumberOfClaimsEntered accessor, as 

in Listing 13-43.

Listing 13-43. The accessor NumberOfClaimsEntered is used (capital N)

        DateTime claimDate = myClaimDetailsInstance.ReadTheRepairDate();

        myClaimDetailsInstance.WriteRepairDateToTheArray(claimDate);

    /* Increment the loop counter by 1 */

    myClaimDetailsInstance.NumberOfClaimsEntered++;

   } while (myClaimDetailsInstance.NumberOfClaimsEntered < 

numberOfClaimsBeingMade);

    } // End of Main() method

  } // End of ClaimApplication class

} // End of Chapter13 namespace

Chapter 13  Classes



487

Now we will

• Call the DetermineVATAmount() method, passing it the 

totalOfAllClaims and the vatAmount.

• Call the DisplayAllItemsInTheArray() method.

• Write the total of all claims to the console.

• Call one of the DisplayInvoiceReceipt() methods, passing it the 

totalOfAllClaims and the vatAmount.

• Call one of the DisplayInvoiceReceipt() methods, passing it the 

totalOfAllClaims, the vatAmount, and a message.

The two DisplayInvoiceReceipt methods have the same name but have different 

parameters, and this is referred to as method overloading.

 70. Add the ClaimApplication code in Listing 13-44, to call the 

method that will display the invoice receipt based on the total of 

the claims, the VAT amount, and the message string.

Listing 13-44. Call the method that will display the invoice

    } while (myClaimDetailsInstance.NumberOfClaimsEntered < 

numberOfClaimsBeingMade);

    vatAmount = myClaimDetailsInstance.DetermineVATAmount(totalOfAllClaims, 

vatAmount);

   myClaimDetailsInstance.DisplayAllItemsInTheArray();

   Console.WriteLine("The total amount claimed is:\t" + totalOfAllClaims);

    myClaimDetailsInstance.DisplayInvoiceReceipt(totalOfAllClaims, 

vatAmount);

    myClaimDetailsInstance.DisplayInvoiceReceipt(totalOfAllClaims, 

vatAmount, "\t" + "Thank you for your claims\n\tthey will be processed 

today");

    } // End of Main() method

  } // End of ClaimApplication class

} // End of Chapter13 namespace

Chapter 13  Classes



488

Great. All the methods have been placed in one class, and then they are called from 

another class that has the Main() method. We could have made other classes and moved 

some of the methods to these classes, but we are just trying to appreciate that we can 

have separate classes with one class having its methods called from the main class. This 

is plenty to understand for now. We now need to test the structure.

 71. Click the File menu.

 72. Choose Save All.

 73. Click the Debug menu.

 74. Choose Start Without Debugging.

The console window will appear and ask the user to input the number of claims to 

be made.

 75. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 76. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 77. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 78. Type 1200 and press the Enter key.

The console will now ask the user to input the date of the repair.

 79. Type 2021/10/01 and press the Enter key.

The questions are asked again for the second claim.

 80. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 81. Type VP000002 and press the Enter key.

The console will now ask the user to input the claim amount.

 82. Type 3600 and press the Enter key.

The console will now ask the user to input the date of the repair.

Chapter 13  Classes



489

 83. Type 2021/10/01 and press the Enter key.

The invoice receipt will be displayed as shown in Figure 13-13.

Figure 13-13. Receipt, having used classes

 84. Press the Enter key to close the console window.

This is the same application as MethodsValue() and the same invoice receipt, with 

different amounts. The big difference is the separation of the methods from the class that 

contains the Main() method.

This is just an example to show how classes work. It certainly is not a “polished” 

application, and it can be improved upon, but the important things to take away from 

what we have done so far are as follows:

• A class can contain fields.

• A class can contain methods.

• To use a class from within another class, we create an instance of the 

class – this is called instantiation.

• The instantiated class gives us access to the fields and methods of 

the class.

Chapter 13  Classes



490

 Constructor
In the ClaimApplication class, we made an instance of the ClaimDetails class so we 

could access the fields and methods of the class as shown in Listing 13-45.

Listing 13-45. Creating an instance of the class

  ClaimDetails myClaimDetailsInstance = new ClaimDetails();

The new ClaimDetails() section of the code means we are not passing in any 

arguments to the class; this is why there are no values between the brackets (). This 

means we are calling the default constructor, and we read earlier that the constructor 

“method” can be used to initialize the value of the fields in the class. It may be used to 

initialize all the fields or some of them, or in the case of a default constructor, none of the 

fields are initialized – they just have their default values.

Refreshing what we read earlier, a constructor has the following features:

• It must have the same name as the class. We will therefore use the 

name ClaimDetails.

• It must have an access modifier of public.

• It does not have a return type, not even void.

• It takes in arguments of the same type as the fields being initialized.

Next

• We will create a constructor that has a DateTime parameter.

• The new constructor will therefore overwrite the default constructor.

• We will use a DateTime field with a readonly keyword, which means 

the field can only be assigned a value as part of the declaration or in 

a constructor in the same class. The readonly field can be assigned 

and reassigned multiple times within the field declaration and 

constructor.

• By setting the date field to the date read from the computer, we will 

not need to have the method that asks the user to input the date 

of the claim, method 9, so this method will not be called from the 

Main method.

Chapter 13  Classes



491

• When we then write the date to the array, we will use the new 

DateTime field we are setting up in the class and initializing with the 

computer date.

• For now, we will leave the method in the ClaimDetails class.

 1. In the ClaimDetails amend the code to add the readonly 

DateTime field and a constructor that will set the date field to the 

current computer date, as in Listing 13-46.

Listing 13-46. Add a new constructor that has a DateTime parameter

  internal class ClaimDetails

  {

    int numberOfClaimsEntered;

    readonly DateTime claimDate;

    static int arrayPositionCounter = 0;

    /*

   The array is going to hold the data for 2 claims.

   Each claim has four pieces of information. The number of

   data items is therefore 2 multiplied by 4 = 8.

   So, we will make the array for this example of size 8.

   Not the best way to do things but fine for now.

   */

    static string[] repairShopClaims = new string[8];

    /*

    The constructor has the same name as the class, it has an

    access modifier of public, it takes an argument of data

    type DateTime as this is the same data type as the field,

    claimDate, that is being initialised, and it does not

    return a value so there is no return type

    */

    public ClaimDetails(DateTime claimDate)

    {

      this.claimDate = Convert.ToDateTime(claimDate);

    } // End of constructor that takes in a date

Chapter 13  Classes



492

Now that we have created the constructor, we can use it when creating the instance 

of the class from within the Main() method. If we look in the ClaimApplication class, we 

will now see that there is an error in the line that instantiates the ClaimDetails class. This 

is because there is no default constructor, and the new constructor expects a DateTime 

value to be passed to it. This can be seen in the message box that appears when we 

hover over the red underscore. We will do the fix “manually” so do not click Create 

constructor fix.

 2. Amend the ClaimApplication code, as in Listing 13-47, to read the 

date from the computer.

Listing 13-47. Read the date from the computer

    static void Main(string[] args)

    {

      double vatAmount = 0.00, totalOfAllClaims = 0.00;

      // Read the date from the computer clock

      DateTime localDate = DateTime.Now;

      ClaimDetails myClaimDetailsInstance = new ClaimDetails();

 3. Amend the code, as in Listing 13-48, to pass the DateTime to the 

constructor.

Listing 13-48. Use the custom constructor, passing in the DateTime

    // Read the date from the computer clock

    DateTime localDate = DateTime.Now;

    ClaimDetails myClaimDetailsInstance = new ClaimDetails(localDate);

Figure 13-14. Error because we now have no default constructor

Chapter 13  Classes



493

 4. As we now have the date, we do not need to ask the user to input 

the date. The method call can be removed or commented out, as it 

is not used, as in Listing 13-49.

Listing 13-49. Comment the line where the repair date reading method is called

     totalOfAllClaims = myClaimDetailsInstance.AccumulateClaimAmount(claimAm

ount, totalOfAllClaims);

    //DateTime claimDate = myClaimDetailsInstance.ReadTheRepairDate();

    myClaimDetailsInstance.WriteRepairDateToTheArray(claimDate);

    /* Increment the loop counter by 1 */

    myClaimDetailsInstance.NumberOfClaimsEntered++;

   } while (myClaimDetailsInstance.NumberOfClaimsEntered < 

numberOfClaimsBeingMade);

Now we need to call the claimDate field from the ClaimDetails class but it is private, 

so we need to create the property with the get and set. This is the same process as we 

followed for the numberOfClaimsEntered field.

 5. Right-click the claimDate field in the ClaimDetails class.

 6. Choose Quick Actions and Refactorings.

 7. Choose Encapsulate field: claimDate (but still use field).

The accessor is created for us in our code, and we can move it from the position it 

has been placed in if we wish to do so. As the field is readonly, the accessor only allows 
us to get the date, not set the date.

 8. Now we need to call the DateTime field so we can write the date 

to the array. In the ClaimApplication, class amend the code to call 

the accessor, as in Listing 13-50.

Chapter 13  Classes



494

Listing 13-50. Call the DateTime field through its property

     totalOfAllClaims = myClaimDetailsInstance.AccumulateClaimAmount( 

claimAmount, totalOfAllClaims);

    //DateTime claimDate = myClaimDetailsInstance.ReadTheRepairDate();

     myClaimDetailsInstance.WriteRepairDateToTheArray(myClaimDetails 

Instance.ClaimDate);

    /* Increment the loop counter by 1 */

In order to see the date being displayed, we need to iterate the array and display the 

items within it. Now we can test the code to ensure the constructor works. If it does, the 

array will be populated with the current date.

 9. Click the File menu.

 10. Choose Save All.

 11. Click the Debug menu.

 12. Choose Start Without Debugging.

The console window will appear and ask the user to input the number of claims to 

be made.

 13. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 14. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 15. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 16. Type 1200 and press the Enter key.

We have removed the call to the method that asks the user to input the date of the 

repair so we will not be asked for the date of the repair.

The questions are asked again for the second claim.

 17. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

Chapter 13  Classes



495

 18. Type VP000002 and press the Enter key.

The console will now ask the user to input the claim amount.

 19. Type 3600 and press the Enter key.

The invoice receipt will be displayed as shown in Figure 13-15.

Figure 13-15. The computer date is displayed

 20. Press the Enter key to close the console window.

 Another Constructor

We will now create a second constructor, which will set the date field and a message 

field of data type String. This new constructor will therefore be different from the first 

constructor, as it has two arguments as opposed to one, This is constructor overloading.

We will need to create an additional field called message of data type string and we 

will explicitly set it as private.

 21. Amend the ClaimDetails code, as in Listing 13-51, to add the field 

called message.

Chapter 13  Classes



496

Listing 13-51. Add a String field and assign it a value

internal class ClaimDetails

  {

    int numberOfClaimsEntered = 0;

    readonly DateTime claimDate;

    private readonly string message = "";

    static int arrayPositionCounter = 0;

We will now add the second constructor, which will set the date field to the current 

computer date and the message field to whatever message is passed in when the 

ClaimDetails class is instantiated. We will use this constructor to call the first constructor 

to set the date, which illustrates the concept of constructor chaining, which helps us 

avoid code duplication. We therefore add :this(claimDate) to the constructor.

 22. Amend the ClaimDetails code, as in Listing 13-52, to add the 

second constructor.

Listing 13-52. Add the second constructor

   public ClaimDetails(DateTime claimDate)

    {

      this.claimDate = Convert.ToDateTime(claimDate);

    } // End of constructor that takes in a date

    /*

    This is a second constructor that accepts two

    arguments and the values that are passed to the constructor

    are used to set the value of the field called claimDate

    and the field called message. The constructor calls the

    first constructor to assign the value to the DateTime field

    As the constructor has two arguments it is different

    from the first constructor

    */

    public ClaimDetails(DateTime claimDate, string message):this(claimDate)

    {

      this.message = message;

    } // End of constructor that takes in a date and a message

Chapter 13  Classes



497

Now we will look back at the call to the DisplayInvoiceReceipt() method in the 

ClaimApplication class that we added, shown in Listing 13-53.

Listing 13-53. Calling the method to display the invoice receipt

myClaimDetailsInstance.DisplayInvoiceReceipt(totalOfAllClaims, vatAmount, 

"\t" + "Thank you for your claims\n\tthey will be processed today");

• Here we are calling the method DisplayInvoiceReceipt() and we have 

passed it a message, which the method uses to display the message.

• However, we have just created a constructor that accepts a message 

string and assigns this string value to the field called message.

• As we have the new constructor, we could pass our message at the 

time we instantiate the class, and the message will then exist in 

the class.

• We can then remove method 15 where we accepted the message.

• We can call method 14, which accepts only two parameters, not the 

message:

DisplayInvoiceReceipt(double totalValueOfClaimsPassedIn, 

double vatPassedIn)

• We can then add an extra line to method 14 to display the message 

field because we have direct access to the field in the other class.

As the message is initialized as “”, if there is no message created by our constructor, 

a blank line space will be written for the message. What this means is if we leave the 

original instantiation, which uses the first constructor, no message is passed in, so the 

message will use the value assigned to it, “”.

 23. Amend the ClaimDetails class code, as in Listing 13-54, to remove 

method 15 or simply comment the method code.

Listing 13-54. Comment all of method 15 (don’t worry about YAGNI!)

    ///******************* METHOD FIFTEEN ******************/

    //public void DisplayInvoiceReceipt(double

    //totalValueOfClaimsPassedIn, double vatPassedIn, string

Chapter 13  Classes



498

    //messagePassedIn)

    //{

    //  Console.WriteLine("********************************");

    //  Console.WriteLine("\nInvoice for vehicle repairs\n");

     //  Console.WriteLine("Nett claim\t" + (totalValueOfClaimsPassedIn - 

vatPassedIn) + "\n");

    //  Console.WriteLine("VAT amount\t" + vatPassedIn + "\n");

     //  Console.WriteLine("Total amount\t" + totalValueOfClaimsPassedIn 

+ "\n");

    //  Console.WriteLine(messagePassedIn);

    //  Console.WriteLine("********************************");

    //} // End of method DisplayInvoiceReceipt

  }  // End of ClaimDetails class

}  // End of Chapter13 namespace

We will now see that the ClaimApplication class has an error as it is trying to use the 

DisplayInvoiceReceipt() method that has three arguments, as shown in Figure 13-16.

Figure 13-16. Error as the method accepting three arguments does not exist

Amend the code by removing the line that has the error. We are already calling the 

DisplayInvoiceReceipt() method in the line above this one.

 24. Amend the code to delete the line of code with the error. With this 

line removed, the code should be as shown in Listing 13-55.

Listing 13-55. Remove the second call to the DisplayInvoiceReceipt() method

       vatAmount = myClaimDetailsInstance.DetermineVATAmount(totalOfAll 

Claims, vatAmount);

      myClaimDetailsInstance.DisplayAllItemsInTheArray();

Chapter 13  Classes



499

       Console.WriteLine("The total amount claimed is:\t" + 

totalOfAllClaims);

       myClaimDetailsInstance.DisplayInvoiceReceipt(totalOfAllClaims, 

vatAmount);

    } // End of Main() method

Now we need to change the instantiation code line, since it is currently using the 

constructor that accepts one parameter of type DateTime. In Listing 13-56 the new code 

line is shown above the old code line, which has been commented, and this is simply to 

help us understand what to do. If we are to stick with the YAGNI principle, we can just 

remove the commented line.

 25. Now amend the instantiation code line, in the ClaimApplication 

class, to pass the two values to the new constructor, as in 

Listing 13-56.

Listing 13-56. Add the two arguments to the method call

    static void Main(string[] args)

    {

      double vatAmount = 0.00, totalOfAllClaims = 0.00;

      // Read the date from the computer clock

      DateTime localDate = DateTime.Now;

       ClaimDetails myClaimDetailsInstance = new ClaimDetails(localDate, "\

tThank you for your claims \n\tthey will be processed today");

      // ClaimDetails myClaimDetailsInstance = new ClaimDetails(localDate);

       int numberOfClaimsBeingMade = myClaimDetailsInstance.

HowManyClaimsAreBeingMade();

 26. Amend the DisplayInvoiceReceipt() method in the ClaimDetails 

class to add the new line, which will print the message line, as in 

Listing 13-57.

Chapter 13  Classes



500

Listing 13-57. Display the message

    /******************* METHOD FOURTEEN ******************/

     public void DisplayInvoiceReceipt(double totalValueOfClaimsPassedIn, 

double vatPassedIn)

    {

      Console.WriteLine("\nInvoice for vehicle repairs\n");

       Console.WriteLine("Nett claim\t" + (totalValueOfClaimsPassedIn - 

vatPassedIn) + "\n");

      Console.WriteLine("VAT amount\t" + vatPassedIn + "\n");

       Console.WriteLine("Total amount\t" + totalValueOfClaimsPassedIn + "\n");

      Console.WriteLine(message);

    } // End of method DisplayInvoiceReceipt()

 27. Open the ClaimApplication class.

 28. Click the File menu.

 29. Choose Save All.

 30. Click the Debug menu.

 31. Choose Start Without Debugging.

The console window will appear and ask the user to input the number of claims to 

be made.

 32. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 33. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 34. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 35. Type 1200 and press the Enter key.

We have removed the call to the method that asks the user to input the date of the 

repair so we will not be asked for the date of the repair.

Chapter 13  Classes



501

The questions are asked again for the second claim.

 36. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 37. Type VP000002 and press the Enter key.

The console will now ask the user to input the claim amount.

 38. Type 3600 and press the Enter key.

The invoice receipt will be displayed as shown in Figure 13-17.

Figure 13-17. The message and the computer date are displayed

 39. Press the Enter key to close the console window.

Now we will amend the instantiation code line to pass only one value, the date, to the 

constructor. This means the first constructor will be used, and hence the message field 

will not be changed – it will have the value we entered, “”.

Chapter 13  Classes



502

 40. Amend the instantiation code line to comment out the first call 

and add the new call to the constructor, as in Listing 13-58.

Listing 13-58. Use the constructor with one parameter

static void Main(string[] args)

 {

   double vatAmount = 0.00, totalOfAllClaims = 0.00;

   // Read the date from the computer clock

   DateTime localDate = DateTime.Now;

    //ClaimDetails myClaimDetailsInstance = new ClaimDetails(localDate,  

"\tThank you for" +

   //  " your claims \n\tthey will be processed today");

   ClaimDetails myClaimDetailsInstance = new ClaimDetails(localDate);

   int numberOfClaimsBeingMade

     = myClaimDetailsInstance.HowManyClaimsAreBeingMade();

 41. Click the File menu.

 42. Choose Save All.

 43. Click the Debug menu.

 44. Choose Start Without Debugging.

The console window will appear and ask the user to input the number of claims to 

be made.

 45. Type 2 and press the Enter key.

The console window will appear and ask the user to input the repair shop id.

 46. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 47. Type VP000001 and press the Enter key.

The console will now ask the user to input the claim amount.

 48. Type 1200 and press the Enter key.

Chapter 13  Classes



503

We have removed the call to the method that asks the user to input the date of the 

repair so we will not be asked for the date of the repair.

The questions are asked again for the second claim.

 49. Type RS000001 for the repair shop id and press the Enter key.

The console will now ask the user to input the vehicle policy number.

 50. Type VP000002 and press the Enter key.

The console will now ask the user to input the claim amount.

 51. Type 3600 and press the Enter key.

The invoice receipt will be displayed as shown in Figure 13-18.

Figure 13-18. No message displayed using the constructor with one parameter

 52. Press the Enter key to close the console window.

 Additional Example for Classes and Objects
Now we will consolidate what we have learned in the previous section regarding classes. 

Here we will take another example and create a class with methods and fields and call 

them from another class with a Main() method. The example we will use will involve 

some mathematical formulae and be related to shapes.

 1. Right-click the Chapter13 project.

 2. Choose Add.

Chapter 13  Classes



504

 3. Choose Class.

 4. Name the class ShapeCalculator.cs.

 5. Click the Add button.

 6. Amend the code, as in Listing 13-59, by adding a Main() method.

Listing 13-59. Class with a Main() method as the entry point for the program

namespace Chapter13

{

  internal class ShapeCalculator

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of ShapeCalculator class

} // End of Chapter13 namespace

 7. Right-click the Chapter13 project in the Solution Explorer panel.

 8. Choose Properties.

 9. In the Startup object drop-down list, choose the 

ShapeCalculator file.

 10. Close the Properties window.

 CircleFormulae Class

 1. Right-click the Chapter13 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class CircleFormulae.cs.

 5. Click the Add button.

 6. Amend the code, as in Listing 13-60, by adding the start of a 

method that will calculate the area of a circle.

Chapter 13  Classes



505

Listing 13-60. Class with NO Main() method

namespace Chapter13

{

  internal class CircleFormulae

  {

   /*

   This is a method that will ask the user to input the length

   of the radius of the circle, calculate the area of the circle

   and display the area of the circle in the console window

   */

   public void AreaOfCircle()

   {

   } //End of AreaOfCircle method

  } // End of CircleFormulae class

} // End of Chapter13 namespace

 7. Amend the code, as in Listing 13-61, to create variables that will 

hold the radius and the area of the circle, setting their initial value 

to be 0.

Listing 13-61. Create and initialize the variables

    public void AreaOfCircle()

   {

      /*

      Create two variables of data type double to hold the

      value of the radius input by the user and the calculated

      area of the circle, initialise the two variables to zero

      */

      double radiusLength = 0;

      double areaOfCircle = 0;

    } //End of AreaOfCircle method

Chapter 13  Classes



506

 8. Amend the code, as in Listing 13-62, to ask the user to input 

the radius of the circle and assign the value to the radiusLength 

variable.

Listing 13-62. Read the radius input and convert it to type double

      double areaOfCircle = 0;

      // Read the user input for the size of the radius

      Console.WriteLine("What size is the radius?\n");

      radiusLength = Convert.ToDouble(Console.ReadLine());

    } //End of AreaOfCircle method

Remember we talked about PI before as being a constant in the Math class.

 9. Now add the code in Listing 13-63, to calculate the area of 

the circle.

Listing 13-63. Add the formula for the area of a circle

      radiusLength = Convert.ToDouble(Console.ReadLine());

      // Calculate the area of the circle with the formula

      areaOfCircle = Math.PI * radiusLength * radiusLength;

    } //End of AreaOfCircle method

We will now use the Format() method of the String class to display the output 

using two decimal places. There are other ways to display formatted data, and we will 

look at these in detail in Chapter 15. For now it is fine to use String.Format() to display 

our output.

 10. Now add the code in Listing 13-64, to display the area and radius, 

using the Format() method.

Listing 13-64. Display the radius and area of the circle

      // Calculate the area of the circle with the formula

      areaOfCircle = Math.PI * radiusLength * radiusLength;

Chapter 13  Classes

https://doi.org/10.1007/978-1-4842-8619-7_15


507

       Console.WriteLine(String.Format("\nA circle with radius {0:0.#} has 

an area of {1:0.##}",

        radiusLength, areaOfCircle));

    } //End of AreaOfCircle method

Now that we have created a class with a method in it, we will be able to call the 

method from the Main() method in the ShapeCalculator class. But remember, we will 

need to instantiate the class rather than using the class template.

 11. Open the ShapeCalculator class and create an instance of 

the CircleFormulae class, calling it myCircleFormulae, as in 

Listing 13-65.

Listing 13-65. Instantiate the CircleFormulae class using a default constructor

    static void Main(string[] args)

    {

      // Instantiate the CircleFormulae class

      CircleFormulae myCircleFormulae = new CircleFormulae();

    } // End of Main() method

Now we need to call the AreaOfCircle() method from the other class. As we type 

myCircleFormulae and add the ., as shown in Figure 13-19, we should automatically 

see any accessible fields and methods that belong in the CircleFormulae class, or more 

correctly to the myCircleFormulae instance of the class. Remember a class is made up of 

fields and methods.

Chapter 13  Classes



508

Figure 13-19. Methods accessible in the CircleFormulae class – no fields exist

 12. Now add the code in Listing 13-66, to call the 

AreaOfCircle() method.

Listing 13-66. Call the AreaOfCircle() method that is in the other class

    static void Main(string[] args)

    {

      // Instantiate the CircleFormulae class

      CircleFormulae myCircleFormulae = new CircleFormulae();

      myCircleFormulae.AreaOfCircle();

    } // End of Main() method

 13. Click the File menu.

 14. Choose Save All.

 15. Click the Debug menu.

 16. Choose Start Without Debugging.

The console window will appear and ask the user to input the radius of the circle.

 17. Type 10 and press the Enter key.

The console window will show the area of the circle, as shown in Figure 13-20.

Chapter 13  Classes



509

Figure 13-20. AreaOfCircle() method called and working

 18. Press the Enter key to close the console window.

This is excellent! Our method has been called from another class. We will now add 

another method, just after the AreaOfCircle method and inside the class, to calculate the 

circumference of the circle.

 19. Amend the code, as in Listing 13-67, in the CircleFormulae class to 

add the start of a method that will calculate the circumference of 

the circle.

Listing 13-67. Add a method to calculate the circumference of the circle

    } //End of AreaOfCircle method

    /*

    This is a method that will accept the value of the radius

    passed to it. The radius has been obtained in the

    AreaOfCircle method and then the AreaOfCircle() method

    will call this new CircumferenceOfCircle() method passing

    it the value of the radius. This method will then calculate

    the circumference and display the value in the console window

    */

    public void CircumferenceOfCircle(double radiusPassedIn)

    {

    } // End of CircumferenceOfCircle method

  } // End of CircleFormulae class

} // End of Chapter13 namespace

Chapter 13  Classes



510

 20. Amend the code, as in Listing 13-68, to create a variable to hold 

the circumference of the circle.

Listing 13-68. Create and initialize the variable for the circumference

    public void CircumferenceOfCircle(double radiusPassedIn)

    {

      /*

      Create a variable of data type double to hold the value

      calculated for the circumference of the circle.

      Initialise the variable to zero.

      We have the radius as it is passed into this method.

      */

      double circumferenceOfCircle = 0;

    } // End of CircumferenceOfCircle method

 21. Now add the code in Listing 13-69, to calculate the circumference.

Listing 13-69. Add the formula for the circumference of a circle

    public void CircumferenceOfCircle(double radiusPassedIn)

    {

      /*

      Create a variable of data type double to hold the value

      calculated for the circumference of the circle.

      Initialise the variable to zero.

      We have the radius as it is passed into this method.

      */

      double circumferenceOfCircle = 0;

      //Calculate the circumference with the formula

      circumferenceOfCircle = 2 * Math.PI * radiusPassedIn;

    } // End of CircumferenceOfCircle method

 22. Now add the code in Listing 13-70, to display the circumference 

and radius, using the Format() method.

Chapter 13  Classes



511

Listing 13-70. Display the radius and circumference of the circle

      double circumferenceOfCircle = 0;

      //Calculate the circumference with the formula

      circumferenceOfCircle = 2 * Math.PI * radiusPassedIn;

       Console.WriteLine(String.Format("\nA circle with radius {0:0.#} has a 

circumference of {1:0.##}", radiusPassedIn, circumferenceOfCircle));

    } // End of CircumferenceOfCircle method

Now that we have created the second method, we will call it from the first method, 

AreaOfCircle(), passing it the radius that has been input by the user.

 23. In the AreaOfCircle() method, call the CircumferenceOfCircle() 

method, as in Listing 13-71.

Listing 13-71. Call the CircumferenceOfCircle() method

       Console.WriteLine(String.Format("\nA circle with radius {0:0.#} has 

an area of  {1:0.##}", radiusLength, areaOfCircle));

      /*

      Now call the method which calculates the circumference

      of the circle using the radius the user has input.

      We call the method and pass the radius as a parameter.

      */

      CircumferenceOfCircle(radiusLength);

    } //End of areaOfCircle method

 24. Click the File menu.

 25. Choose Save All.

 26. Open the ShapeCalculator class.

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

The console window will appear and ask the user to input the radius of the circle, as 

shown in Figure 13-21.

Chapter 13  Classes



512

 29. Type 10 and press the Enter key.

Figure 13-21. CircumferenceOfCircle() method called and working

 30. Press the Enter key to close the console window.

We see two decimal places in the circumference as we used 0.## in the Format() 

method. This is excellent! Our two methods that contain the business logic, the 

formulae, were created in a class and have been called from another class.

We can see that we have used the principle of “separation of concern,” where we 

have kept our circle formulae separate from the class with the Main() method. We will 

now reinforce the principle of “separation of concern” by creating another class that will 

be related to a rectangle and will hold any formula related to a rectangle.

 RectangleFormulae Class

 1. Right-click the Chapter13 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class RectangleFormulae.cs.

 5. Click the Add button.

We will create a method for the area of a rectangle. The formula for the area of a 

rectangle is the length multiplied by the breadth. This formula will therefore be our 

business logic. To calculate the area of the rectangle, we will ask the user to input the 

length and breadth of the rectangle they require.

Chapter 13  Classes



513

 6. Amend the code, as in Listing 13-72, by adding the start of a 

method that will calculate the area of a rectangle.

Listing 13-72. Creating the method for the area of a rectangle

namespace Chapter13

{

  internal class RectangleFormulae

  {

    /*

    This is a method that will ask the user to input the

    length of the rectangle, then ask them for the breadth of

    the rectangle, calculate the area of the rectangle and

    display the area of the rectangle in the console window

    */

    public void AreaOfRectangle()

    {

    } // End of AreaOfRectangle method

  } // End of RectangleFormulae class

} // End of Chapter13 namespace

 7. Amend the code, as in Listing 13-73, to create variables to hold the 

length, breadth, and area of the rectangle and initialize them to 0.

Listing 13-73. Create and initialize the variables for the rectangle formulae

    public void areaOfRectangle()

    {

      /*

      Create three variables of data type double to hold the

      value of the length and breadth as input by the user and

      the calculated area of the rectangle.

      Initialise the three variables to zero.

      */

      double lengthOfRectangle = 0;

      double breadthOfRectangle = 0;

Chapter 13  Classes



514

      double areaOfRectangle = 0;

    } // End of AreaOfRectangle method

 8. Amend the code, as in Listing 13-74, to ask the user to input the 

length and breadth of the rectangle and then convert the inputs to 

type double.

Listing 13-74. Ask for user input for length and breadth

      double breadthOfRectangle = 0;

      double areaOfRectangle = 0;

      Console.WriteLine("\nWhat is the rectangle length?\n");

      lengthOfRectangle = Convert.ToDouble(Console.ReadLine());

      Console.WriteLine("\nWhat is the rectangle breadth?\n");

      breadthOfRectangle = Convert.ToDouble(Console.ReadLine());

    } // End of AreaOfRectangle method

 9. Now add the code in Listing 13-75, to calculate the area of the 

rectangle.

Listing 13-75. Add the formula for the area of a rectangle

      Console.WriteLine("\nWhat is the rectangle breadth?\n");

      breadthOfRectangle = Convert.ToDouble(Console.ReadLine());

      // Calculate the area of the rectangle with the formula

      areaOfRectangle = lengthOfRectangle * breadthOfRectangle;

    } // End of AreaOfRectangle method

 10. Now add the code in Listing 13-76, to display the length, breadth, 

and area, using the Format() method.

Chapter 13  Classes



515

Listing 13-76. Display the length, breadth, and area of the rectangle

      // Calculate the area of the rectangle with the formula

      areaOfRectangle = lengthOfRectangle * breadthOfRectangle;

      // Display the rectangle details

       Console.WriteLine(String.Format("\nA rectangle with length of {0:0.#} 

and breadth of {1:0.#} has an area of {2:0.#}", lengthOfRectangle, 

breadthOfRectangle, areaOfRectangle));

      } // End of AreaOfRectangle method

Now that we have created another class with a method in it, we will be able to call the 

method from the Main() method in the ShapeCalculator class. Remember, we do not use 

the RectangleFormulae class directly; we make an instance of it.

 11. Open the ShapeCalculator class and create an instance of the 

RectangleFormulae class, as in Listing 13-77.

Listing 13-77. Instantiate the RectangleFormulae class

    static void Main(string[] args)

    {

      // Instantiate the CircleFormulae class

      CircleFormulae myCircleFormulae = new CircleFormulae();

      myCircleFormulae.areaOfCircle();

      RectangleFormulae myRectangleFormulae = new RectangleFormulae();

    } // End of Main() method

Now we need to call the AreaOfRectangle() method from the other class. 

As we type myRectangleFormulae and add the ., as shown in Figure 13-22, we 

should automatically see any accessible fields and methods that belong in the 

RectangleFormulae class, or more correctly to the myRectangleFormulae instance of the 

class. Remember a class is made up of fields and methods.

Chapter 13  Classes



516

Figure 13-22. Methods accessible in the RectangleFormulae class

 12. Now add the code in Listing 13-78, to call the AreaOfRectangle() 

method of our new instance class.

Listing 13-78. Call the AreaOfRectangle method

      myCircleFormulae.AreaOfCircle();

      RectangleFormulae myRectangleFormulae

      = new RectangleFormulae();

      myRectangleFormulae.AreaOfRectangle();

    } // End of Main() method

 13. Click the File menu.

 14. Choose Save All.

 15. Click the Debug menu.

 16. Choose Start Without Debugging.

The console window will appear and ask the user to input the radius of the circle.

 17. Type 10 and press the Enter key.

The console window will ask the user to input the length of the rectangle.

 18. Type 10.5 and press the Enter key.

Chapter 13  Classes



517

The console window will ask the user to input the breadth of the rectangle.

 19. Type 20.5 and press the Enter key.

Figure 13-23 shows the console window with the areas of the circle and rectangle.

Figure 13-23. AreaOfRectangle() method called and working

 20. Press the Enter key to close the console window.

We see one digit after the decimal point in the area of the rectangle as we used 0.# 

in the Format() method. This is excellent! Our method for the rectangle area has been 

called from another class. Now we will extend our RectangleFormulae class by adding 

another method, just after the method AreaOfRectangle() and inside the class, to 

calculate the perimeter of the rectangle.

 21. Amend the code, as in Listing 13-79, in the RectangleFormulae 

class to add the method that will calculate the perimeter of the 

rectangle/

Listing 13-79. Add the PerimeterOfRectangle() method

      } // End of AreaOfRectangle method

    /*

    This is a method that will accept the values of the length

    and breadth passed to it. Both values have been obtained in

    the AreaOfRectangle method and then the AreaOfRectangle()

Chapter 13  Classes



518

    method will call this new PerimeterOfRectangle() method

    passing it the values of the length and breadth.

    This method will then calculate the perimeter and display

    the value in the console window

    */

     public void PerimeterOfRectangle(double lengthPassedIn,  double 

breadthPassedIn)

    {

    } // End of perimeterOfRectangle method

  } // End of RectangleFormulae class

} // End of Chapter13 namespace

 22. Amend the code, as in Listing 13-80, to create a variable to hold 

the perimeter of the rectangle.

Listing 13-80. Add a variable that will hold the perimeter

public void PerimeterOfRectangle(double lengthPassedIn, double 

breadthPassedIn)

    {

      /*

      Create a variable of data type double to hold the value

      calculated for the perimeter of the rectangle. Initialise

      the variable to zero. We have the length and breadth as

      they are passed into this method

      */

      double perimeterOfRectangle = 0;

    } // End of PerimeterOfRectangle method

 23. Now add the code in Listing 13-81, to calculate the rectangle 

perimeter.

Chapter 13  Classes



519

Listing 13-81. Add the formula for the perimeter of the rectangle

  double perimeterOfRectangle = 0;

  //Calculate the perimeter of the rectangle with the formula

  perimeterOfRectangle = 2 * (lengthPassedIn + breadthPassedIn);

} // End of PerimeterOfRectangle method

 24. Now add the code in Listing 13-82, to display the perimeter of the 

rectangle.

Listing 13-82. Display the length, breadth, and perimeter of the rectangle

 //Calculate the perimeter of the rectangle with the formula

 perimeterOfRectangle = 2 * (lengthPassedIn + breadthPassedIn);

  Console.WriteLine(String.Format("\nA rectangle with length of {0:0.##} 

and breadth of {1:0.##} has a perimeter of {2:0.##}", lengthPassedIn, 

breadthPassedIn, perimeterOfRectangle));

    } // End of PerimeterOfRectangle method

Now that we have created the second method for the rectangle, we will call it from 

the first method, AreaOfRectangle(), passing it the length and breadth.

 25. In the AreaOfRectangle() method, add the code in Listing 13-83, 

to call the PerimeterOfRectangle() method.

Listing 13-83. Call the PerimeterOfRectangle() method

  // Display the answer

   Console.WriteLine(String.Format("\nA rectangle with length of {0:0.#} 

and breadth of {1:0.#} has an area of  {2:0.#}", lengthOfRectangle, 

breadthOfRectangle, areaOfRectangle));

  /*

  Now call the method which calculates the perimeter of the

  rectangle using the length and breadth the user has input.

  We call the method and pass the radius as a parameter

  */

Chapter 13  Classes



520

  PerimeterOfRectangle(lengthOfRectangle, breadthOfRectangle);

  } // End of AreaOfRectangle method

 26. Click the File menu.

 27. Choose Save All.

 28. Click the Debug menu.

 29. Choose Start Without Debugging.

The console window will appear and ask the user to input the radius of the circle.

 30. Type 10 and press the Enter key.

The console window will ask the user to input the length of the rectangle.

 31. Type 10.5 and press the Enter key.

The console window will ask the user to input the breadth of the rectangle.

 32. Type 20.5 and press the Enter key.

The console window, as shown in Figure 13-24, displays the perimeter of the 

rectangle.

Figure 13-24. PerimeterOfRectangle() method called and working

 33. Press the Enter key to close the console window.

Chapter 13  Classes



521

 Chapter Summary
So, finishing this chapter on classes, we should remember what was covered in  

Chapter 12 on methods, because the two concepts are highly connected. Classes contain 

methods and fields, and we have created classes to hold methods and fields and have 

created separate classes when necessary, so that each class represents related items. We 

can access classes from the Main() method of another class, and in doing this we create 

a copy of the class. We use this instance, the copy of the class, to give us access to the 

methods and properties of the class.

We have come a long way from Chapter 1, and getting to this stage, where we can 

create and use our own classes, is an absolutely fantastic achievement for us in our 

learning. We are making fantastic progress in our programming of C# applications and 

we should be very proud of our achievements. In finishing this very important chapter, 

we have increased our knowledge further, and we are advancing to our target.

 

Chapter 13  Classes

https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_1


523

CHAPTER 14

Interfaces

 Interfaces and Abstract Classes
We learned in Chapter 13 that classes contain methods and fields. We also read in 

Chapter 12 on methods that

The methods we have not created but have used, they all have one thing 
in common.

They all live inside a class; they are part of a class.

We also said that

The crucial takeaway from the last chapter and a vital thing to remember 
in this chapter is that a class contains methods and variables.

So, in the last chapter, we saw that methods form a large part of the classes we 

created or that exist in the C# language. This is great as it helped us modularize our code. 

But let us think more on a larger scale than one or two classes. Let us use two examples, 

so we can think about different developers creating separate classes and methods 

around the same “topic” or “idea.”

Example 1
A number of developers are writing an ecommerce application that will work for 

different countries, and one of the methods required is to calculate the value-added tax 

for a product. Looking at the role of the developers, we see that

• Developer 1 is writing for country 1, so they develop their class called 

Billing and they create a method called VatCalculation(), where the 

business logic is to multiply the item price by 20% (0.2) and return 

the amount.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_14

https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_14#DOI


524

• Developer 2 is writing for country 2, so they develop their class called 

Billing and they create a method called TaxCalculation(), where the 

business logic is to multiply the item price by 15% (0.15) and return 

the amount.

• Developer 3 is writing for country 3, so they develop their class called 

Billing and they create a method called CalculateTax(), where the 

business logic is to multiply the item price by 10% (0.10) and return 

the amount.

Now we should ask, "Why do we have three Billing classes all doing the same thing, 

which have a common method that calculates the VAT amount, but the method names 

are not the same?" Well, the answer is because we can! But is this a good example of 

standardization or clean code? Maybe not.

Now think about the same problem but where the three developers collaborate 

and discuss what they are about to do. They might suggest the methods they will use 

and the naming conventions. Sound like a plan? Well, this is where an abstract class or 

an interface could help. By using an abstract class or an interface, we can declare the 

method signatures and return types to be used, but not the code to be used, as the 

code will be decided by the individual developers and be appropriate to their situation.

In C#, a method signature is used by the C# compiler to ensure we have unique 

methods, that is, no two methods can have the same method signature. And we saw 

this when we looked at method overloading. We can now apply the concept of method 

signatures to an abstract class or interface because, within it we only declare the method 

signatures we require, not the actual body for the method. The actual body for the 

method will be supplied by the developer when the method is coded in a class that 

makes use of the abstract class or interface. Table 14-1 shows some method signatures.

Table 14-1. Method signature examples

Method signature Description

CalculateTax(double itemPrice) Method name is CalculateTax.

Parameter is of type double.

CalculateTax(double itemPrice, int quantity) Method name is CalculateTax.

First parameter is of type double.

Second parameter is of type int.

ChaPTer 14  InTerFaCeS



525

When we talk about a method signature, we are not including the return type of 
the method. We cannot have the same method signature with different return types.

When we discussed overloaded methods, we said they were methods with the 

same name but different parameters. There was no mention of the return type. Our two 

CalculateTax() methods, in Table 14-1, show an example of method overloading.

Example 2
A number of developers are writing an application for an online insurance company 

who insures computer hardware in a country with different regions. Each developer is 

assigned to a different region, and they must have methods that calculate the regional 

rate and the hardware rate, before calculating the quote. Looking at the role of the 

developers, we see that

• Developer 1 is writing for region A, so they develop their class called 

Quote and they create a method called RegionalRateCalculation(), 
where the business logic is to look up a struct and return the rate as a 

double for this region, for example, 0.05.

• Developer 2 is writing for region B, so they develop their class called 

Quote and they create a method called RegionBRate(), where the 

business logic is to look up the same struct and return the rate as a 

double for this region, for example, 0.10.

• Developer 3 is writing for region C, so they develop their class called 

Quote and they create a method called CRate(), where the business 

logic is to look up the same struct and return the rate as a double for 

this region, for example, 0.20.

There are therefore three classes called Quote all doing the same thing and having a 

common method that looks up the regional rate amount, but the method names are not 

the same. Surely, we can do better than this!

Well, this is where an abstract class or an interface could help.

 The Interface or Abstract Class as a Manager
Example 3

Think about the abstract class or interface as being like a manager. In this scenario a 

manager gives three of their employees – Gerry, May, and June – the same request: order 

ten pizzas for the C# book launch at the “Build Your Core Programming Muscle” event 

tomorrow. So what might happen?

ChaPTer 14  InTerFaCeS



526

• Gerry orders ten margherita pizzas of size 10 inches.

• May orders five margherita and five pepperoni pizzas of size 

16 inches.

• June orders four pepperoni, two BBQ chicken, and four vegetable 

pizzas of size 16 inches.

Brilliant! All three employees have fulfilled the manager request, so they all have one 

thing in common: they have ten pizzas. However, the implementation of the request for 

ten pizzas was very different as can be seen from the different selection of pizzas each 

employee has chosen. This is perfectly acceptable as the manager request has been 

fulfilled.

When we write code or when we look back at the developers in Examples 1 and 2, 

we can see that a “manager” could be useful to set some upfront guidelines. We should 

think of the abstract class or interface as the manager giving some guidelines. Now, we 

might ask ourselves, “How can we apply the manager concept to the preceding Examples 

1 and 2?” Well, Figure 14-1 shows how we could apply the abstract class and the classes 

to the ecommerce application example. We will use the idea of the abstract class for now, 

but the same principles apply to using an interface, with some differences.

ChaPTer 14  InTerFaCeS



527

Figure 14-1. Hierarchy for the abstract and concrete classes

Now let us look at the example code that could be used to satisfy the structure 

shown in Figure 14-1. In looking at the application code, we will relate it to the manager 

scenario. The manager gives three of their staff the same instructions in following a task: 

"Use this abstract class when you write your class."

The abstract class is supplied as

public abstract class EcommerceBilling

{

  // abstract method

  public abstract double TaxCalculation(double itemPrice);

} // End of the abstract class

Now that the three developers have been given the abstract class, what might they do 

with it when they write their code?

Sealed Class

ChaPTer 14  InTerFaCeS



528

We can make a class sealed so that it cannot be inherited by another class but it can 

still be instantiated. When designing a class, we may wish to indicate that the class is 

specialized and should not therefore need to be extended. In our example we will create 

sealed classes for each of the three countries as they will not be extended.

Developer 1 writes the country 1 class, which inherits from the EcommerceBilling 

abstract class:

public sealed CountryOne : EcommerceBilling

{

  public override double TaxCalculation(double itemPrice)

  {

    return itemPrice * 0.2;

  } // End of TaxCalculation() method

} // End of CountryOne class

Developer 2 writes the country 2 class, which inherits from the EcommerceBilling 

abstract class:

public sealed CountryTwo : EcommerceBilling

{

  public override double TaxCalculation(double itemPrice)

  {

    return itemPrice * 0.15;

  } // End of TaxCalculation() method

} // End of CountryTwo class

Developer 3 writes the country 3 class, which inherits from the EcommerceBilling 

abstract class:

public sealed CountryThree : EcommerceBilling

{

  public override double TaxCalculation(double itemPrice)

  {

    return itemPrice * 0.10;

  } // End of TaxCalculation() method

} // End of CountryThree class

ChaPTer 14  InTerFaCeS



529

All three classes have been developed by inheriting the EcommerceBilling abstract 

class, and therefore they are contracted to use the method called TaxCalculation(), 

which has a parameter of type double. Here, all three developers have written their 

classes and implemented the method as contracted to do so, but they have different 

business logic appropriate for their country, that is, 20%, 15%, or 10%. This is like the 

“manager” giving the instructions and the employees implementing them but with 

different business logic.

Brilliant! We have now seen, in theory, that an abstract class can be developed to 

have method signatures with a return type stated. What we should also see from the 

example code is that we are using an abstract class, not a full class. It is not a full 

class because it is not complete; it has abstract methods, and these have no code. 

An abstract class can also have concrete methods, methods with code. We refer to the 

incomplete class as an abstract class, whereas a full class is referred to as a concrete 
class. The preceding classes, CountryOne, CountryTwo, and CountryThree, are all 

concrete classes as they are complete.

As we have seen, the information in the base class, the abstract class, has only 

general methods, methods with a return type and a signature. It is incumbent on each 

implementing class, the derived class, to add its own details. The abstract class therefore 

decides the nature of the methods that any derived classes must implement, but it will 

not provide an implementation of any of the defined methods.

Abstract classes can therefore be defined as incomplete classes. Abstract classes have 

the following characteristics:

• The class is marked with the abstract keyword.

• They contain one or more incomplete methods called abstract 
methods.

• They provide the signature or declaration of the abstract methods; 

they leave the implementation of these methods to derived or 

subclasses.

• They cannot be instantiated as they are incomplete.

• They cannot be static.

• They can contain a constructor.

• Their methods are marked with the abstract keyword, as they are 

abstract methods.

ChaPTer 14  InTerFaCeS



530

• They can have concrete methods, that is, methods with a body 

of code.

• A class inheriting an abstract class must implement all the abstract 

methods in the abstract class, or it too must be declared as an 

abstract class.

• A class inheriting an abstract class and implementing all its abstract 

methods is called the concrete class of the abstract class.

• Methods in the inheriting class, the derived class, must include the 

keyword override before the method name when they are using the 

abstract methods.

• They cannot be used for multiple inheritance. In other words, if we 

have an EcommerceBilling abstract class and an EcommercePayment 

abstract class, then a derived class such as CountryOne could not 

implement both of these abstract classes:

public class CountryOne : EcommerceBilling, EcommercePayment

This line or any format does not work. There is no multiple inheritance.

Let's code some C# and build our programming muscle.
Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter14 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter14 project within the solution called CoreCSharp.

ChaPTer 14  InTerFaCeS



531

 10. Right-click the Chapter14 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter14 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

Amend the name of the Program.cs file.
Remember the coding principle of “self-documenting” code? Of course we do. So let 

us now rename the Program.cs file.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to VATCalculator.cs.

 15. Press the Enter key.

 16. Amend the VATCalculator class, as in Listing 14-1, to have a 

namespace, class, and Main() method.

Listing 14-1. Class template with a Main() method

namespace Chapter14

{

  internal class VATCalculator

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of VATCalculator class

} // End of Chapter14 namespace

 17. Right-click the Chapter14 project in the Solution Explorer panel.

 18. Choose Add.

 19. Choose Class.

 20. Name the class as AbstractVATCalculations.cs.

ChaPTer 14  InTerFaCeS



532

 21. The AbstractVATCalculations.cs class code will appear in the 

editor window and will be similar to Listing 14-2.

Listing 14-2. Class – no methods, not yet an abstract class

namespace Chapter14

{

  internal class AbstractVATCalculations

  {

  } // End of AbstractVATCalculations class

} // End of Chapter14 namespace

 22. Amend the code, as in Listing 14-3, to make it an abstract class 

using the keyword abstract.

Listing 14-3. Abstract class – no methods

namespace Chapter14

{

  internal abstract class AbstractVATCalculations

  {

  } // End of AbstractVATCalculations class

} // End of Chapter14 namespace

 23. Amend the code, as in Listing 14-4, to add two abstract methods 

to the abstract class.

Listing 14-4. Abstract methods in the abstract class

  internal abstract class AbstractVATCalculations

  {

    /*

    Declare two incomplete methods which will be detailed in

    the inherited class. Each is an abstract method - a method

    signature and an access modifier

    */

    public abstract double CalculateVAT();

ChaPTer 14  InTerFaCeS



533

    public abstract double CalculateTotalPrice();

  } // End of AbstractVATCalculations class

} // End of Chapter14 namespace

Code Analysis
The AbstractVATCalculations class contains an abstract method CalculateVAT(), 

which could be used later to calculate the amount of VAT to be added to an item. The 

“body” of the method will be decided by the actual class that inherits the abstract class.

The CalculateVAT() method has therefore been declared as abstract so that any 

subclasses will need to provide their own criteria for calculating the VAT. We also have a 

CalculateTotalPrice() abstract method declared, and this will also need to be made into a 

concrete method that returns a value of type double.

 Instantiate the Abstract Class?
Let's look and see what happens if we try to instantiate this abstract class from within the 

Main() method. Will it be OK, or will we get an error? Well, we did read earlier that we 

cannot instantiate an abstract class, so let us code an example and prove that this is true.

 24. Open the VATCalculator class and amend the code, as in 

Listing 14-5, to try and instantiate the AbstractVATCalculations 

abstract class.

Listing 14-5. Instantiate an abstract class

internal class VATCalculator

{

 static void Main(string[] args)

 {

 Console.WriteLine("We cannot instantiate an abstract class");

 AbstractVATCalculations taxCalc = new AbstractVATCalculations();

 } // End of Main() method

} // End of VATCalculator class

ChaPTer 14  InTerFaCeS



534

 25. Hover over the red underline under the 

AbstractVATCalculations(), as shown in Figure 14-2, to reveal the 

error message that tells us we cannot create an instance of the 

abstract type or interface.

Figure 14-2. Error message – cannot create an instance of an abstract class

 26. Remove the two lines of code we added in Listing 14-5, so that 

there is no code within the Main() method.

Create a class that inherits from the abstract class.

 27. Right-click the Chapter14 project in the Solution Explorer panel.

 28. Choose Add.

 29. Choose Class.

 30. Name the class as VATCalculations.cs.

 31. The VATCalculations class code will appear and be similar to the 

code shown in Listing 14-6.

Listing 14-6. Concrete class template

namespace Chapter14

{

  internal class VATCalculations

  {

  } // End of VATCalculations class

} // End of Chapter14 namespace

 32. Amend the VATCalculations class code, as in Listing 14-7, to add 

a member.

ChaPTer 14  InTerFaCeS



535

Listing 14-7. Add a member, field

  internal class VATCalculations

  {

    private double itemPrice;

  } // End of VATCalculations class

} // End of Chapter14 namespace

 33. Amend the VATCalculations class code, as in Listing 14-8, to add a 

constructor that will set the value of the member.

Listing 14-8. Add a constructor that overrides the default constructor

  internal class VATCalculations

  {

    private double itemPrice;

    public VATCalculations(double itemPrice)

    {

      this.itemPrice = itemPrice;

    } // End of VATCalculations constructor

  } // End of VATCalculations class

} // End of Chapter14 namespace

 34. Amend the VATCalculations code to inherit the 

AbstractVATCalculations class, as in Listing 14-9.

Listing 14-9. Make the class inherit the abstract class

namespace Chapter14

{

  internal class VATCalculations : AbstractVATCalculations

  {

    private double itemPrice;

There will be an error line under the VATCalculations class name because this class 

does not implement the method that was declared in the abstract class. We now need to 

implement the required method and complete the contract.

ChaPTer 14  InTerFaCeS



536

 35. Amend the VATCalculations class code to implement the 

CalculateVAT() abstract method, as in Listing 14-10.

Listing 14-10. Add the code to implement the method CalculateVAT()

    public VATCalculations(double itemPrice)

    {

      this.itemPrice = itemPrice;

    } // End of VATCalculations constructor

    public override double CalculateVAT()

    {

      return this.itemPrice * 0.20;

    } // End of CalculateVAT() method

  } // End of VATCalculations class

} // End of Chapter14 namespace

 36. Amend the VATCalculations class code to implement the 

CalculateTotalPrice() abstract method, as in Listing 14-11.

Listing 14-11. Add the code to implement the method CalculateTotalPrice()

    public override double CalculateVAT()

    {

      return this.itemPrice * 0.20;

    } // End of CalculateVAT() method

    public override double CalculateTotalPrice()

    {

      return itemPrice + CalculateVAT();

    } // End of CalculateTotalPrice() method

  } // End of VATCalculations class

} // End of Chapter14 namespace

Now we will instantiate the VATCalculations class, which has inherited from the 

AbstractVATCalculations abstract class, passing it the item price. We will then call 

the CalculateVAT() method and assign the returned VAT value to a variable, before 

displaying the VAT and the total price.

ChaPTer 14  InTerFaCeS



537

 37. Open the VATCalculator class and amend the code, as in 

Listing 14-12.

Listing 14-12. Instantiate the VATCalculations class

static void Main(string[] args)

    {

      VATCalculations myCalculations = new VATCalculations(100);

      double vatAmount = myCalculations.CalculateVAT();

      Console.WriteLine($"{"VAT due on the item is",-30} £{vatAmount}");

       Console.WriteLine($"{"The total item cost is",-30} £{myCalculations.

CalculateTotalPrice()}\n");

    } // End of Main() method

 38. Click the File menu.

 39. Choose Save All.

 40. Click the Debug menu.

 41. Choose Start Without Debugging.

The console window will appear, as shown in Figure 14-3, displaying the total cost as 

100 plus the 20% of 100, which is 20, giving the total of 120.

Figure 14-3. Two methods have been implemented

 42. Press the Enter key to close the console window.

ChaPTer 14  InTerFaCeS



538

Once we have an abstract class, we can develop as many concrete classes as we 

wish, with each class inheriting from the base abstract class. The only stipulation is that 

each concrete class must provide a definition for each abstract method. Let’s code an 

example to demonstrate that when we create a new class that inherits the abstract class, 

we change the code in the class but the code in the Main() will be the same, except we 

instantiate the new class.

 43. Right-click the Chapter14 project in the Solution Explorer panel.

 44. Choose Add.

 45. Choose Class.

 46. Name the class as VATCalculationsFifteenPercent.cs.

 47. Amend the code as in Listing 14-13.

Listing 14-13. Add the code and use 15%, which is 0.15

namespace Chapter14

{

  internal class VATCalculationsFifteenPercent : AbstractVATCalculations

  {

    private double itemPrice;

    public VATCalculationsFifteenPercent(double itemPrice)

    {

      this.itemPrice = itemPrice;

    } // End of VATCalculations constructor

    public override double CalculateVAT()

    {

      return this.itemPrice * 0.15;

    } // End of CalculateVAT() method

    public override double CalculateTotalPrice()

    {

      return itemPrice + CalculateVAT();

    } // End of CalculateTotalPrice() method

  } // End of VATCalculationsFifteenPercent class

} // End of Chapter14 namespace

ChaPTer 14  InTerFaCeS



539

 48. Open the VATCalculator class that has the Main() 

method and add the code to instantiate the newly created 

VATCalculationsFifteenPercent and comment the first 

instantiation, as in Listing 14-14.

Listing 14-14. Change the class being instantiated

  static void Main(string[] args)

  {

    //VATCalculations myCalculations = new VATCalculations(100);

     VATCalculationsFifteenPercent myCalculations = new 

VATCalculationsFifteenPercent(100);

 49. Click the File menu.

 50. Choose Save All.

 51. Click the Debug menu.

 52. Choose Start Without Debugging.

The console window will appear, as shown in Figure 14-4, displaying the total cost as 

100 plus the 15% of 100, which is 15, giving the total of 115.

Figure 14-4. Two methods have been implemented

 53. Press the Enter key to close the console window.

 Static Members of the Abstract Class
When we have a static member in the abstract class, we can call it directly without having 

to use the instance of the class. Let's really think hard about this one sentence, because it 

is very important that we understand the meaning of static. In all the examples we have 

coded up to now, we have used static. Two examples are shown in Listings 14-15 and 14-16.

ChaPTer 14  InTerFaCeS



540

Listing 14-15. The static keyword in the Main() method

    public static void Main(string[] args)

    {

    } // End of Main() method

Listing 14-16. The static keyword with variables in program MethodsValue

internal class MethodsValue

{

    static String[] repairShopClaims = new String[8];

    static string repairShopID;

    static string vehiclePolicyNumber;

    static double claimAmount;

    static DateTime claimDate;

    static int numberOfClaimsBeingMade;

    static int numberOfClaimsEntered = 0;

    static int arrayPositionCounter = 0;

    static double totalOfAllClaims;

    static double vatAmount;

    static void Main(string[] args)

  {

So static, when related to the field, means that the field is part of the class; it does not 

belong to the instance that we make of the class. Yes, we did read earlier that an abstract 

class cannot be instantiated, but for now let us just deal with the concept of static.

In trying to understand static, let us think again of a manager scenario. The manager 

is a very busy person, so they decide to make two instances of themselves and give the 

instances their characteristics, except their mobile phone number. Looking at this we 

could represent it as shown in Table 14-2.

ChaPTer 14  InTerFaCeS



541

Table 14-2. The manager characteristic and the instance characteristics

Manager myManagerInstance1 myManagerInstance2

approve leave approve leave approve leave

attend meeting attend meeting attend meeting

answer calls

The manager has reserved the answer calls characteristic. Only they can answer 

calls; the two instances can approve leaves and attend meetings. In terms of classes, we 

would say that

• Approve leave is an instance variable; it belongs to, or is only 

associated with, the instance of the class, not the actual class.

• Attend meeting is an instance variable; it belongs to, or is only 

associated with, the instance of the class, not the actual class.

• Answer calls is a static variable; it belongs to the class and not to any 

of the two instances of the class.

This is very useful for the manager, the manager class, as it can now keep a record of 

the number of calls directly. Now, as an employee who wants to have leave approved, we 

might go to manager instance 1 or manager instance 2. And in terms of writing C# code, 

we would say something like this:

myManagerInstance1.approveLeave

or

myManagerInstance1.approveLeave

But if we wanted to phone the manager, we would have to do this directly, and in 

terms of writing C# code, we would say something like this:

Manager.answerCall

Now, going back to abstract classes and our static variable, we are saying that it 

belongs to the abstract class. Remember, we cannot make an instance of an abstract 

class. Also, when we move on to look at interfaces shortly, we will see that we cannot 

instantiate an interface. Static equals fixed, does not move; it is stuck to the class or 

interface.

ChaPTer 14  InTerFaCeS



542

 54. Amend the AbstractVATCalculations class code, as in 

Listing 14-17, to add a discount rate.

Listing 14-17. Add the variable discountRate

internal abstract class AbstractVATCalculations

 {

   public double discountRate = 0.10;

   /*

   Declare two incomplete methods which will be detailed in

   the inherited class. Each is an abstract method - a method

   signature and an access modifier

   */

   public abstract double CalculateVAT();

Now we will add a method in the AbstractVATCalculations class that contains the 

formula to calculate the discount amount, based on the field discountRate. We could add 

this method to the VATCalculations class, but if we think about this method, we will see 

that it is logic that can be shared, so we will put it into the AbstractVATCalculations class. 

This means we will be calling the abstract class method directly; there is no instance of 

an abstract class.

 55. In the AbstractVATCalculations class, add the method, as in 

Listing 14-18.

Listing 14-18. Add the code for the method CalculateDiscountedAmount()

    public abstract double CalculateVAT();

    public abstract double CalculateTotalPrice();

    public double CalculateDiscountedAmount()

    {

      return CalculateTotalPrice() * discountRate;

    } // End of CalculateDiscountedAmount() method

  } // End of AbstractVATCalculations class

} // End of Chapter14 namespace

ChaPTer 14  InTerFaCeS



543

 56. In the VATCalculator class, amend the code, as in Listing 14-19, 

to call the method from within a WriteLine() method and set the 

instantiated class back to the original VATCalculations rather than 

VATCalculationsFifteenPercent.

Listing 14-19. Add the code to call the method in the abstract class

namespace Chapter14

{

  internal class VATCalculator

  {

    static void Main(string[] args)

    {

      VATCalculations myCalculations = new VATCalculations(100);

       //VATCalculationsFifteenPercent myCalculations = new 

VATCalculationsFifteenPercent(100);

      double vatAmount = myCalculations.CalculateVAT();

      Console.WriteLine($"{"VAT due on the item is",-30} £{vatAmount}");

       Console.WriteLine($"{"The total item cost is",-30} £{myCalculations.

CalculateTotalPrice()}\n");

       Console.WriteLine($"{"The discounted amount is",-30} 

£{myCalculations.CalculateDiscountedAmount()}\n");

    } // End of Main() method

  } // End of VATCalculator class

} // End of Chapter14 namespace

 57. Click the File menu.

 58. Choose Save All.

 59. Click the Debug menu.

 60. Choose Start Without Debugging.

The console window will appear, as shown in Figure 14-5, displaying

ChaPTer 14  InTerFaCeS



544

• The total cost as 100 plus the 20% of 100, which is 20, giving the total 

item cost of 120.

• A discount of 10%, as per the static variable, of the 120, which is 12.

Figure 14-5. The static variable has been accessed and worked correctly.

 61. Press the Enter key to close the console window.

Let's code another abstract class using the countries example.
We read in the earlier example the following:

A number of developers are writing an application for an online insurance 
company who insure computer hardware in a country with different 
regions. Each developer is assigned to a different region, and they must have 
methods that calculate the regional rate and the hardware rate, before cal-
culating the quote.

Add a new folder to the Chapter 14 project to hold the code for this example.

 1. Right-click the Chapter14 project name.

 2. Choose Add.

 3. Choose New Folder.

 4. Name the folder Example2.

 5. Right-click the Example2 folder.

 6. Choose Add.

 7. Choose Class.

 8. Click the Add button.

 9. Name the class EcommerceBilling.cs.

 10. Click the Create button.

ChaPTer 14  InTerFaCeS

https://doi.org/10.1007/978-1-4842-8619-7_14


545

The EcommerceBilling.cs class code will appear in the editor window and will be 

similar to Listing 14-20.

Listing 14-20. New class template code

namespace Chapter14.Example2

{

  // abstract class

  internal class EcommerceBilling

  {

  } // End of EcommerceBilling class

} // End of Chapter14 namespace

 11. Amend the code, as in Listing 14-21, to make the class abstract 

and add an abstract method.

Listing 14-21. Make class abstract and add an abstract method

namespace Chapter14.Example2

{

  // abstract class

  internal abstract class EcommerceBilling

  {

   // abstract method

    public abstract double TaxCalculation(double itemPrice);

  } // End of EcommerceBilling class

} // End of Chapter14 namespace

This will mean that any class that uses this abstract class as its base class will have 

to implement the TaxCalculation() method by adding code to it, making it a concrete 

method in a concrete class.

Make the concrete classes, which have to inherit from the abstract class.

 12. Right-click the Example2 folder in the Solution Explorer panel.

 13. Choose Add.

 14. Choose Class.

ChaPTer 14  InTerFaCeS



546

 15. Name the class as CountryOne.cs.

 16. Amend the CountryOne class code to have it inherit the 

EcommerceBilling class, and then implement the method with 

some code specific to this country’s tax rate for the item, as in 

Listing 14-22.

Listing 14-22. Country 1 class inherits the abstract class and implements 

the method

namespace Chapter14.Example2

{

  internal class CountryOne : EcommerceBilling

  {

    public override double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.2;

    } // End of TaxCalculation() method

  } // End of CountryOne class

} // End of Chapter14.Example2 namespace

 17. Right-click the Example2 folder in the Solution Explorer panel.

 18. Choose Add.

 19. Choose Class.

 20. Name the class as CountryTwo.cs.

 21. Amend the CountryTwo class code to have it inherit the 

EcommerceBilling class, and then implement the method with 

some code specific to this country’s tax rate for the item, as in 

Listing 14-23.

Listing 14-23. Country 2 class inherits the abstract class and implements 

the method

namespace Chapter14.Example2

{

ChaPTer 14  InTerFaCeS



547

  internal class CountryTwo : EcommerceBilling

  {

    public override double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.15;

    } // End of TaxCalculation() method

  } // End of CountryTwo class

} // End of Chapter14.Example2 namespace

 22. Right-click the project Example2 folder in the Solution 

Explorer panel.

 23. Choose Add.

 24. Choose Class.

 25. Name the class as CountryThree.cs.

 26. Amend the CountryThree class code to have it inherit the 

EcommerceBilling class, and then implement the method with 

some code specific to this country’s tax rate for the item, as in 

Listing 14-24.

Listing 14-24. Country 3 class inherits the abstract class and implements 

the method

namespace Chapter14.Example2

{

  internal class CountryThree : EcommerceBilling

  {

    public override double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.10;

    } // End of TaxCalculation() method

  } // End of CountryThree class

} // End of Chapter14.Example2 namespace

ChaPTer 14  InTerFaCeS



548

Make the concrete class that will contain the Main method and use the three 
country classes, which have inherited from the abstract class.

 27. Right-click the project Example2 folder in the Solution 

Explorer panel.

 28. Choose Add.

 29. Choose Class.

 30. Name the class as EcommerceApplication.cs.

 31. Amend the EcommerceApplication class code to have it contain 

a Main() method and one member of type double that will hold a 

price for an item, as in Listing 14-25.

Listing 14-25. Class with a Main() method and one member

namespace Chapter14.Example2

{

  internal class EcommerceApplication

  {

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

    } // End of Main() method

  } // End of EcommerceApplication class

} // End of Chapter14.Example2 namespace

 32. Right-click the Chapter14 project in the Solution Explorer panel.

 33. Choose Properties from the pop-up menu.

 34. Choose the Chapter14.Example2.EcommerceApplication class in 

the Startup object drop-down list, as shown in Figure 14-6.

ChaPTer 14  InTerFaCeS



549

Figure 14-6. Changing the startup class in the C# project

 35. Amend the EcommerceApplication class code to have it 

instantiate the CountryOne class, as in Listing 14-26.

Listing 14-26. Instantiate the CountryOne class using the default constructor

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

      CountryOne myCountryOne = new CountryOne();

    } // End of Main() method

 36. Amend the EcommerceApplication class code to have it display 

a message that includes a call to the method in the CountryOne 

class, as in Listing 14-27.

Listing 14-27. Display details of the item for CountryOne class

static void Main(string[] args)

{

  double itemPrice = 100.00;

  CountryOne myCountryOne = new CountryOne();

   Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryOne.TaxCalculation(itemPrice)}");

 } // End of Main() method

ChaPTer 14  InTerFaCeS



550

 37. Click the File menu.

 38. Choose Save All.

 39. Click the Debug menu.

 40. Choose Start Without Debugging.

Figure 14-7 shows the console window with the item price and the tax amount for 

country 1.

Figure 14-7. CountryOne output from the method

 41. Press the Enter key to close the console window.

 42. Amend the EcommerceApplication class code to have it 

instantiate the CountryTwo and CountryThree classes, as in 

Listing 14-28.

Listing 14-28. Instantiate the CountryTwo and CountryThree classes

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

      CountryOne myCountryOne = new CountryOne();

      CountryTwo myCountryTwo = new CountryTwo();

      CountryThree myCountryThree = new CountryThree();

 43. Amend the EcommerceApplication class code to have it display 

messages that include calls to the methods in the CountryTwo 

and CountryThree classes, as in Listing 14-29.

ChaPTer 14  InTerFaCeS



551

Listing 14-29. Display details of the item for CountryTwo and CountryThree

 CountryOne myCountryOne = new CountryOne();

 CountryTwo myCountryTwo = new CountryTwo();

 CountryThree myCountryThree = new CountryThree();

 Console.WriteLine($"The tax on an item of price " +

 $"£{itemPrice} is £{ myCountryOne.TaxCalculation(itemPrice)}");

    Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryOne.TaxCalculation(itemPrice)}");

    Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryTwo.TaxCalculation(itemPrice)}");

    Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryThree.TaxCalculation(itemPrice)}");

    } // End of Main() method

 44. Click the File menu.

 45. Choose Save All.

 46. Click the Debug menu.

 47. Choose Start Without Debugging.

The console window will appear, as Figure 14-8, and show the item price and the tax 

amount for each of the three countries.

 48. Press the Enter key to close the console window.

Figure 14-8. All three methods, one from each class, have run.

ChaPTer 14  InTerFaCeS



552

 Concept of an Interface
We have just used abstract classes, and we will now see that an interface is similar to 

an abstract class and is also used with abstraction and inheritance. There are some 

differences, however, and interfaces have the following characteristics:

• They are marked with the interface keyword.

• They contain one or more incomplete methods called interface 

methods, but we do not use the keyword abstract as the compiler 
would complain.

• They provide the signature or declaration of the abstract methods; 

they leave the implementation of these methods to the class that 
implements the interface.

• They cannot be instantiated as they are incomplete and they are 

interfaces.

• From C# 8 an interface can have static members, for example, 

vatRate = 0.25. This means that the vatRate member can be called 

directly from the interface without having an instantiation.

Now the interesting one. If we have used or read about C# interfaces compared with 

abstract classes up to C# 7, then we may have read the following statement:

They cannot have concrete methods, that is, methods with a body.

Yes, that message could probably be embedded in our inner mind, but, like all 

things, they change. Indeed, when C# 8 was introduced, things about interfaces did 

change, and not to the liking of all in the developer community. With C# 8 we can now 

add concrete methods, methods with code. They are called default methods. So does 

this make it more like an abstract class? Well, the answer is possibly. However, for now, 

we will concentrate on pre–C# 8, so we get a strong understanding of interfaces as a 

concrete, and then we will add new features. Looking at an interface, some additional 

points are important before we start coding:

• A class implementing the interface must implement all the interface 

methods in the interface class.

ChaPTer 14  InTerFaCeS



553

• They can be used for multiple inheritance. In other words, if we have 

an EcommerceBilling interface class and an EcommercePayment 

interface class, then a derived class such as CountryOne could 

implement both of these interfaces:

public class CountryOne : IEcommerceBilling, IEcommercePayment

This line works as we can implement more than one interface. Looking back at the 

example we had earlier in the abstract class, we can now show how we could do the 

same thing using an interface.

Example
The manager gives three of their staff the same instructions in following a task: "Use 

this interface when you write your class."

The interface is supplied as in Listing 14-30.

Listing 14-30. Sample interface from manager

// Interface

interface IEcommerceBilling

{

  // Abstract method in interface but no keyword abstract

  double TaxCalculation(double itemPrice);

}

Now that the three developers have been given the interface, what might they do 

with it when they write their code?

Developer 1 writes the CountryOne class, which inherits from the 

IEcommerceBilling interface as in Listing 14-31.

Listing 14-31. Developer 1's implementation of the interface

class CountryOne : IEcommerceBilling

{

  public double TaxCalculation(double itemPrice)

  {

    return itemPrice * 0.2;

  } // End of TaxCalculation() method

} // End of CountryOne class

ChaPTer 14  InTerFaCeS



554

Developer 2 writes the CountryTwo class, which inherits from the 

IEcommerceBilling interface as in Listing 14-32.

Listing 14-32. Developer 2's implementation of the interface

class CountryTwo : IEcommerceBilling

{

  public double TaxCalculation(double itemPrice)

  {

    return itemPrice * 0.15;

  } // End of TaxCalculation() method

} // End of CountryTwo class

Developer 3 writes the CountryThree class, which inherits from the 

IEcommerceBilling interface as in Listing 14-33.

Listing 14-33. Developer 3's implementation of the interface

class CountryThree : IEcommerceBilling

{

  public double TaxCalculation(double itemPrice)

  {

    return itemPrice * 0.10;

  } // End of taxCalculation() method

} // End of CountryThree class

All three classes have been developed by implementing the IEcommerceBilling 

interface, and therefore they are contracted to use the method called TaxCalculation(), 

which has a parameter of type double. Here, all three developers have written their 

classes and implemented the method as contracted to do so, but they have different 

business logic appropriate for their country, that is, 20%, 15%, or 10% is used depending 

on the developer and their country. This is like the “manager” giving the instructions 

and the employees implementing them, but with different business logic.

Brilliant! We have now seen that an interface or an abstract class can be developed 

to have method signatures with a return type stated. What we should also see from the 

example code is that we are using an interface. The preceding classes, CountryOne, 

CountryTwo, and CountryThree, are all concrete classes.

Add a new folder to the Chapter 14 project to hold the code for this example.

ChaPTer 14  InTerFaCeS

https://doi.org/10.1007/978-1-4842-8619-7_14


555

 1. Right-click the Chapter14 project name.

 2. Choose Add.

 3. Choose New Folder.

 4. Name the folder Example3Interfaces.

 5. Right-click the Example3Interfaces folder.

 6. Choose Add.

 7. Choose New Item.

 8. Choose Interface.

 9. Name the class IEcommerceBilling.cs.

 10. Click the Add button.

We are using the letter I to make it easy to see that this “class” is an interface. The 

use of an I as the initial letter is not essential, but the initial letter I will be used by many 

developers. Indeed, in the C# documentation, there are plenty of examples where the 

Microsoft developers have used the I to name an interface:

• In the TextWriter class documentation, we are told that it represents 

a writer that can write a sequential series of characters, that it is 

abstract, and that it implements IDisposable and IAsyncDisposable.

• In the String class documentation, we are told that the String 

represents text as a sequence of UTF-16 code units and that it 

implements IEnumerable<Char>, IEnumerable, IComparable, 

IComparable<String>, IConvertible, IEquatable<String>, and 

ICloneable.

Now continuing the example, we will see the IEcommerceBilling.cs class code 

will appear in the editor window and will be similar to Listing 14-34. Note the word 

interface.

Listing 14-34. New interface template code

namespace Chapter14.Example3Interfaces

{

  internal interface IEcommerceBilling

ChaPTer 14  InTerFaCeS



556

  {

  } // End of IEcommerceBilling interface

} // End of Chapter14.Example3Interfaces namespace

 11. Amend the code, as in Listing 14-35, to add an “abstract method,” 

which means a return type and a signature.

Listing 14-35. New interface with an interface method

  internal interface IEcommerceBilling

  {

    // interface method

    double TaxCalculation(double itemPrice);

  } // End of IEcommerceBilling interface

This will mean that any class using this interface will have to implement the 

TaxCalculation() method by adding code to it.

Make the concrete classes, which have to inherit from the interface.

 12. Right-click the project Example3Interfaces folder in the Solution 

Explorer panel.

 13. Choose Add.

 14. Choose Class.

 15. Name the class as CountryOne.cs.

 16. Click the Add button.

 17. Amend the CountryOne class code, as in Listing 14-36, to have 

it inherit the IEcommerceBilling class and then implement the 

method with some code specific to this country’s tax rate for 

the item.

Listing 14-36. Country 1 class inherits the interface and implements the method

namespace Chapter14.Example3Interfaces

{

  internal class CountryOne : IEcommerceBilling

ChaPTer 14  InTerFaCeS



557

  {

    public double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.2;

    } // End of taxCalculation() method

  } // End of CountryOne class

} // End of Chapter14.Example3Interfaces namespace

 18. Right-click the project Example3Interfaces folder in the Solution 

Explorer panel.

 19. Choose Add.

 20. Choose Class.

 21. Name the class as CountryTwo.cs.

 22. Amend the CountryTwo class code, as in Listing 14-37, to have 

it inherit the IEcommerceBilling class and then implement the 

method with some code specific to this country’s tax rate for 

the item.

Listing 14-37. Country 2 class inherits the interface and implements the method

namespace Chapter14.Example3Interfaces

{

  internal class CountryTwo :IEcommerceBilling

  {

    public double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.15;

    } // End of TaxCalculation() method

  } // End of CountryTwo class

} // End of Chapter14.Example3Interfaces namespace

 23. Right-click the Example3Interfaces folder in the Solution 

Explorer panel.

ChaPTer 14  InTerFaCeS



558

 24. Choose Add.

 25. Choose Class.

 26. Name the class as CountryThree.cs.

 27. Amend the CountryThree class code, as in Listing 14-38, to have 

it inherit the IEcommerceBilling class and then implement the 

method with some code specific to this country’s tax rate for 

the item.

Listing 14-38. Country 3 class inherits the interface and implements the method

namespace Chapter14.Example3Interfaces

{

  internal class CountryThree :IEcommerceBilling

  {

    public double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.10;

    } // End of TaxCalculation() method

  } // End of CountryThree class

} // End of Chapter14.Example3Interfaces namespace

Now we will make the class that will contain the Main method and use the three 

country classes, which have inherited from the interface.

 28. Right-click the Example3Interfaces folder in the Solution 

Explorer panel.

 29. Choose Add.

 30. Choose Class.

 31. Name the class as EcommerceApplication.cs.

 32. Amend the EcommerceApplication class code to have it contain a 

Main() method and one member of type double, which will hold a 

price for an item, as in Listing 14-39.

ChaPTer 14  InTerFaCeS



559

Listing 14-39. Class with a Main() method and one member

namespace Chapter14.Example3Interfaces

{

  internal class EcommerceApplication

  {

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

    } // End of Main() method

  } // End of EcommerceApplication class

} // End of Chapter14.Example3Interfaces namespace

 33. Right-click the Chapter14 project in the Solution Explorer panel.

 34. Choose Properties from the pop-up menu.

 35. Choose the Chapter14.Example3Interfaces.

EcommerceApplication class in the Startup object drop-down list, 

as shown in Figure 14-9.

Figure 14-9. Changing the startup class in the C# project

 36. Amend the EcommerceApplication class code to have it 

instantiate the CountryOne class, as in Listing 14-40.

ChaPTer 14  InTerFaCeS



560

Listing 14-40. Instantiate the CountryOne class

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

      CountryOne myCountryOne = new CountryOne();

    } // End of Main() method

 37. Amend the EcommerceApplication class code to have it display 

a message that includes a call to the method in the CountryOne 

class, as in Listing 14-41.

Listing 14-41. Display details of the item for CountryOne class

static void Main(string[] args)

{

  double itemPrice = 100.00;

  CountryOne myCountryOne = new CountryOne();

   Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryOne.TaxCalculation(itemPrice)}");

    } // End of Main() method

 38. Click the File menu.

 39. Choose Save All.

 40. Click the Debug menu.

 41. Choose Start Without Debugging.

The console window will appear and show the item price and the tax amount for 

country 1, as shown in Figure 14-10.

ChaPTer 14  InTerFaCeS



561

Figure 14-10. CountryOne output from the method

 42. Press the Enter key to close the console window.

 43. Amend the EcommerceApplication class code to have it 

instantiate the CountryTwo and CountryThree classes, as in 

Listing 14-42.

Listing 14-42. Instantiate the CountryTwo and CountryThree classes

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

      CountryOne myCountryOne = new CountryOne();

      CountryTwo myCountryTwo = new CountryTwo();

      CountryThree myCountryThree = new CountryThree();

 44. Amend the EcommerceApplication class code to have it display 

messages that include calls to the methods in the CountryTwo 

and CountryThree classes, as in Listing 14-43.

Listing 14-43. Display details of the item for CountryTwo and CountryThree

 CountryOne myCountryOne = new CountryOne();

 CountryTwo myCountryTwo = new CountryTwo();

 CountryThree myCountryThree = new CountryThree();

   Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryOne.TaxCalculation(itemPrice)}");

       Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryTwo.TaxCalculation(itemPrice)}");

ChaPTer 14  InTerFaCeS



562

       Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryThree.TaxCalculation(itemPrice)}");

    } // End of Main() method

 45. Click the File menu.

 46. Choose Save All.

 47. Click the Debug menu.

 48. Choose Start Without Debugging.

The console window will appear, as Figure 14-11, and  show the item price and the 

tax amount for each of the three countries.

 49. Press the Enter key to close the console window.

 Implementing Multiple Interfaces
When using interfaces, it is possible to implement multiple of them. In other words, if 

we have an IEcommerceBilling interface and an IEcommercePayment interface, then a 

class such as CountryOne could implement both of these interfaces. The syntax for this 

multiple inheritance would be

public class CountryOne : IEcommerceBilling, IEcommercePayment

So we will now code this and ensure that we can see the implementation of multiple 

interfaces by classes. The new IEcommercePayment interface will have three interface 

methods that will be used in the CountryOne class to calculate the extra charge on a 

Figure 14-11. All three methods, one from each class, have run

ChaPTer 14  InTerFaCeS



563

transaction based on the card type and the transaction amount. There are only two card 

types for this example, credit card or debit card:

• The first method will accept the card type and the transaction 

amount and pass the transaction amount to either the credit card 

payment method or the debit card payment method and return the 

additional fee value to the calling method.

• The second method will be for the debit card payment fee, which will 

calculate 1%, 0.01, of the transaction amount and return the value to 

the calling method.

• The third method will be for the credit card payment fee, which will 

calculate 2%, 0.02, of the transaction amount and return the value to 

the calling method.

Create a second interface.

 1. Right-click the Example3Interfaces folder.

 2. Choose Add.

 3. Choose New Item.

 4. Choose Interface.

 5. Name the interface IEcommercePayment.cs.

 6. Click the Add button.

The IEcommercePayment.cs class code will appear in the editor window and will be 

similar to Listing 14-44. Note the word interface.

Listing 14-44. Interface template code

namespace Chapter14.Example3Interfaces

{

  internal interface IEcommercePayment

  {

  } // End of IEcommercePayment interface

} // End of Chapter14.Example3Interfaces namespace

ChaPTer 14  InTerFaCeS



564

 7. Amend the code, as in Listing 14-45, to add the “abstract 

methods,” which means a return type and a signature.

Listing 14-45. New interface with interface methods

namespace Chapter14.Example3Interfaces

{

  internal interface IEcommercePayment

  {

    // interface methods

    double PaymentMethod(String paymentType,

    double transactionAmount);

    double DebitCardPaymentFee(double debitAmount);

    double CreditCardPaymentFee(double creditAmount);

  } // End of IEcommercePayment interface

} // End of Chapter14.Example3Interfaces namespace

This will mean that any class implementing this interface will have to implement all 

three of the interface methods by adding code to them.

Make the concrete class CountryOne inherit from this interface.

 8. Open the CountryOne class, which is in the 

Example3Interfaces folder.

 9. Amend the CountryOne class code to have it inherit this 

new interface IEcommercePayment, as well as the original 

IEcommerceBilling interface, and then implement the methods 

with some code specific to this country, as in Listing 14-46.

Listing 14-46. Multiple inheritance and implementing all abstract methods

namespace Chapter14.Example3Interfaces

{

 internal class CountryOne : IEcommerceBilling, IEcommercePayment

  {

    public double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.2;

ChaPTer 14  InTerFaCeS



565

    } // End of taxCalculation() method

   public double PaymentMethod(String paymentType, double

       transactionAmount)

    {

      double cardFee;

      if (paymentType.Equals("Debit"))

      {

        cardFee = DebitCardPaymentFee(transactionAmount);

      } // End of if block

      else

      {

        cardFee = CreditCardPaymentFee(transactionAmount);

      }// End of else block

      return cardFee;

    } // End of paymentMethod() method

    public double DebitCardPaymentFee(double debitAmount)

    {

      return debitAmount * 0.01; // 1%

    } // End of debitCardPaymentFee() method

    public double CreditCardPaymentFee(double creditAmount)

    {

      return creditAmount * 0.02; // 2%

    } // End of creditCardPaymentFee() method

  } // End of CountryOne class

} // End of Chapter14.Example3Interfaces namespace

 10. Open the EcommerceApplication class, which is in the 

Example3Interfaces folder.

In the EcommerceApplication class, we will now

• Add a variable of type double called feeForUsingACard, which 

will hold the value passed back from the payment method in the 

CountryOne class.

ChaPTer 14  InTerFaCeS



566

• Call the PaymentMethod() method in the CountryOne concrete class, 

passing to it a credit card and an amount of 200.

• Display the returned fee amount from the method call. In this 

example for a credit card in this country, there is a 2% fee, so we 

should expect to get back 2% of 100, which is 2.

 11. Amend the code, as in Listing 14-47.

Listing 14-47. Add a variable, calling the payment method from the class

static void Main(string[] args)

{

  double itemPrice = 100.00;

  double feeForUsingACard;

  CountryOne myCountryOne = new CountryOne();

  CountryTwo myCountryTwo = new CountryTwo();

  CountryThree myCountryThree = new CountryThree();

  Console.WriteLine($"The tax on an item of price " +

  $"£{itemPrice} is £{ myCountryOne.TaxCalculation(itemPrice)}");

  Console.WriteLine($"The tax on an item of price " +

  $"£{itemPrice} is £{ myCountryTwo.TaxCalculation(itemPrice)}");

 Console.WriteLine($"The tax on an item of price " +

  $"£{itemPrice} is £{ myCountryThree.TaxCalculation(itemPrice)}");

 feeForUsingACard = myCountryOne.PaymentMethod("Credit", itemPrice);

  Console.WriteLine($"The fee for using this card with this transaction 

amount is £{feeForUsingACard: 0.00}");

    } // End of Main() method

 12. Click the File menu.

 13. Choose Save All.

 14. Click the Debug menu.

 15. Choose Start Without Debugging.

ChaPTer 14  InTerFaCeS



567

The console window will appear as shown in Figure 14-12 and the card fee of 2.00 

will be displayed.

Figure 14-12. Card fee for CountryOne calculated

 16. Press the Enter key to close the console window.

This is great. We have coded a nice example that has allowed us to use 

implementation of more than one interface.

As an extension to this example, we will code for the CountryTwo and CountryThree 

classes, so they inherit the IEcommercePayment interface, as in Listings 14-46 and 14-47. 

This is really the same process we used when CountryOne inherited the interface. The 

main difference would be using different percentage rates in each class if that was required:

• For CountryTwo, the rates might be as follows:

• Debit card payment fee of 1.5%, 0.015, of the transaction amount

• Credit card payment fee of 2.5%, 0.025, of the transaction amount

• For CountryThree, the rates might be as follows:

• Debit card payment fee of 2.0%, 0.02, of the transaction amount

• Credit card payment fee of 3.0%, 0.03, of the transaction amount

 17. Amend the code for the CountryTwo class, which is in the 

Example3Interfaces folder, as shown in Listing 14-48.

Listing 14-48. CountryTwo inheriting the interfaces and implementing methods

namespace Chapter14.Example3Interfaces

{

  internal class CountryTwo : IEcommerceBilling,IEcommercePayment

  {

    public double TaxCalculation(double itemPrice)

    {

ChaPTer 14  InTerFaCeS



568

      return itemPrice * 0.15;

    } // End of TaxCalculation() method

     public double PaymentMethod(String paymentType, double 

transactionAmount)

    {

      double cardFee;

      if (paymentType.Equals("Debit"))

      {

        cardFee = DebitCardPaymentFee(transactionAmount);

      } // End of if block

      else

      {

        cardFee = CreditCardPaymentFee(transactionAmount);

      }// End of else block

      return cardFee;

    } // End of PaymentMethod() method

    public double DebitCardPaymentFee(double debitAmount)

    {

      return debitAmount * 0.015; // 1.5%

    } // End of DebitCardPaymentFee() method

    public double CreditCardPaymentFee(double creditAmount)

    {

      return creditAmount * 0.025; // 2.5%

    } // End of CreditCardPaymentFee() method

  } // End of CountryTwo class

} // End of Chapter14.Example3Interfaces namespace

 18. Amend the code for the CountryThree class, which is in the 

Example3Interfaces folder, as shown in Listing 14-49.

ChaPTer 14  InTerFaCeS



569

Listing 14-49. CountryThree inheriting the interfaces and 

implementing methods

namespace Chapter14.Example3Interfaces

{

  internal class CountryThree :IEcommerceBilling, IEcommercePayment

  {

    public double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.10;

    } // End of TaxCalculation() method

     public double PaymentMethod(String paymentType, double 

transactionAmount)

    {

      double cardFee;

      if (paymentType.Equals("Debit"))

      {

        cardFee = DebitCardPaymentFee(transactionAmount);

      } // End of if block

      else

      {

        cardFee = CreditCardPaymentFee(transactionAmount);

      }// End of else block

      return cardFee;

    } // End of PaymentMethod() method

    public double DebitCardPaymentFee(double debitAmount)

    {

      return debitAmount * 0.02; // 2%

    } // End of DebitCardPaymentFee() method

    public double CreditCardPaymentFee(double creditAmount)

    {

      return creditAmount * 0.03; // 3%

    } // End of CreditCardPaymentFee() method

ChaPTer 14  InTerFaCeS



570

  } // End of CountryThree class

} // End of Chapter14.Example3Interfaces namespace

 19. Open the EcommerceApplication class, which is in the 

Example3Interfaces folder.

 20. Amend the code, as in Listing 14-50, to call the PaymentMethod() 

methods from the CountryTwo and CountryThree concrete 

classes, passing to them a credit card and an amount of 200, and 

have it display the returned fee amounts from each call.

For a credit card for CountryTwo, there is a 2.5% fee, so we should expect to get back 

2.5% of 100, which is 2.5.

For a credit card for CountryThree, there is a 3.0% fee, so we should expect to get 

back 3.0% of 100, which is 3.

Listing 14-50. EcommerceApplication card fee calls

feeForUsingACard = myCountryOne.PaymentMethod("Credit", itemPrice);

       Console.WriteLine($"The fee for using this card with this transaction 

amount is £{feeForUsingACard: 0.00}");

      feeForUsingACard = myCountryTwo.PaymentMethod("Credit", itemPrice);

       Console.WriteLine($"The fee for using this card with this transaction 

amount is £{feeForUsingACard: 0.00}");

      feeForUsingACard = myCountryThree.PaymentMethod("Credit", itemPrice);

       Console.WriteLine($"The fee for using this card with this transaction 

amount is £{feeForUsingACard: 0.00}");

    } // End of Main() method

  } // End of EcommerceApplication class

} // End of Chapter14.Example3Interfaces namespace

 21. Click the File menu.

 22. Choose Save All.

ChaPTer 14  InTerFaCeS



571

 23. Click the Debug menu.

 24. Choose Start Without Debugging.

The console window will appear as shown in Figure 14-13, and the card fee for each 

of the three countries based on the business logic implemented in each of the three 

country classes is displayed.

Figure 14-13. Card fee for all countries calculated

 25. Press the Enter key to close the console window.

This is fantastic! We have coded a nice example with two interfaces containing 

interface methods, and we have three different classes that implemented the interfaces 

and their interface methods.

As we conclude this chapter on abstract classes and interfaces, let us think about 

the manager concept again. The manager, the abstract class or interface, dictates what 

they require through their abstract methods; and the employees, the concrete classes, 

implement all the abstract methods by making them concrete. Brilliant!

Yes, the idea of an abstract class or interface is great, and we have seen that they 

work well in code. BUT what happens if CountryTwo does not have credit cards, only 

debit cards? Well, one solution would be that the CountryTwo class will not have an if 

construct and simply call the DebitCardPaymentFee() method, as in Listing 14-51. The 

CreditCardPaymentFee() method could be left as it is or changed to, for example, return 

0.00 – after all, it is never called. The problem with this “fix” is that whether it is a credit 

or debit transaction, the debit fee is charged, so all in all a poor development solution. 

But it is here to illustrate that a problem has been found because this country code needs 

to be different.

Listing 14-51. CountryTwo class with no if construct

public double PaymentMethod(String paymentType, double transactionAmount)

    {

      double cardFee;

ChaPTer 14  InTerFaCeS



572

      cardFee = DebitCardPaymentFee(transactionAmount);

      return cardFee;

    } // End of PaymentMethod() method

So the real issue is that because the “manager,” the interface, has three methods and 

developer 2 is told to inherit the IEcommercePayment interface, they must implement 

all three methods, even though they will not be using one or more of the methods. It's a 

contract that cannot be broken.

But did we not read in Chapter 8 the following?

There is a programming concept known as YAGNI, which stands for You 
Ain't Going To Need It.

Yes, we did read this. So how does the interface and class design we have just 

suggested for CountryTwo fit with this concept? It doesn't is the simple answer. Now, 

how can we get around the YAGNI for developer 2 and their country 2 class? It is a 

strange but simplistic solution in which we develop interfaces with only one interface 

method and the implementing classes can then choose which interfaces they wish to 

implement. For developer 2 and their CountryTwo 2, they might follow a process similar 

to the following example.

Add a new folder to the Chapter14 project to hold the code for this example.

 1. Right-click the solution Chapter14 project name.

 2. Choose Add.

 3. Choose New Folder.

 4. Name the folder Example4Interfaces.

IEcommerceBilling Interface
We will now add a new interface, which will have only one interface method. As we 

do this example, we can copy and paste the relevant code from the existing interface 

from the Example3Interfaces project and simply change references from Example3 to 

Example4.

 5. Right-click the Example4Interfaces folder.

 6. Choose Add.

 7. Choose New Item.

ChaPTer 14  InTerFaCeS

https://doi.org/10.1007/978-1-4842-8619-7_8


573

 8. Choose Interface.

 9. Name the interface IEcommerceBilling.cs.

 10. Click the Add button.

The IEcommerceBilling.cs class code will appear in the editor window.

 11. Amend the code to have the one interface method, as in 

Listing 14-52.

Listing 14-52. Interface with only one interface method

namespace Chapter14.Example4Interfaces

{

  internal interface IEcommerceBilling

  {

    // interface method

    double TaxCalculation(double itemPrice);

  } // End of IEcommerceBilling interface

} // End of Chapter14.Example4Interfaces namespace

IPaymentMethod Interface
Add a new interface for the payment method, which has only one interface method.

 1. Right-click the Example4Interfaces folder.

 2. Choose Add.

 3. Choose New Item.

 4. Choose Interface.

 5. Name the interface IPaymentMethod.cs.

 6. Click the Add button.

The IPaymentMethod.cs class code will appear in the editor window.

 7. Amend the code to have the one interface method, as in 

Listing 14-53.

ChaPTer 14  InTerFaCeS



574

Listing 14-53. Interface with only one interface method

namespace Chapter14.Example4Interfaces

{

  internal interface IPaymentMethod

  {

    // Interface methods

    double PaymentMethod(String paymentType, double transactionAmount);

  } // End of IPaymentMethod interface

} // End of Chapter14.Example4Interfaces namespace

IDebitCardPayment Interface
Add a new interface for the debit card payment method, which has only one 

interface method.

 8. Right-click the Example4Interfaces folder.

 9. Choose Add.

 10. Choose New Item.

 11. Choose Interface.

 12. Name the interface IDebitCardPayment.cs.

 13. Click the Add button.

The IDebitCardPayment.cs class code will appear in the editor window.

 14. Amend the code to have the one interface method, as in 

Listing 14-54.

Listing 14-54. Interface with only one interface method

namespace Chapter14.Example4Interfaces

{

  internal interface IDebitCardPayment

  {

    // Interface methods

    double DebitCardPaymentFee(double debitAmount);

  } // End of IDebitCardPayment interface

} // End of Chapter14.Example4Interfaces namespace

ChaPTer 14  InTerFaCeS



575

ICreditCardPayment Interface
Add a new interface for the credit card payment method, which has only one 

interface method.

 15. Right-click the Example4Interfaces folder.

 16. Choose Add.

 17. Choose New Item.

 18. Choose Interface.

 19. Name the interface ICreditCardPayment.cs.

 20. Click the Add button.

The ICreditCardPayment.cs class code will appear in the editor window.

 21. Amend the code to have the one interface method, as in 

Listing 14-55.

Listing 14-55. Interface with only one interface method

namespace Chapter14.Example4Interfaces

{

  internal interface ICreditCardPayment

  {

    // interface method

    double CreditCardPaymentFee(double creditAmount);

  } // End of ICreditCardPayment interface

} // End of Chapter14.Example4Interfaces namespace

Now we have four interfaces, each with only one abstract method, and our concrete 

classes can now select which of the interfaces they wish to use. This will mean there is no 

need for a concrete class to have methods that it will not use. No more YAGNI.

Code the class CountryTwo.

 22. Right-click the Example4Interfaces folder.

 23. Choose Add.

 24. Choose Class.

ChaPTer 14  InTerFaCeS



576

 25. Name the class CountryTwo.cs.

 26. Click the Add button.

This country does not have credit card payments, so it does not need to inherit the 

interface ICreditCardPayment. This concrete class will implement the abstract methods 

by adding code to the methods, making them concrete methods.

 27. Amend the code to implement the interface methods for the three 

interfaces that this class inherits from, as in Listing 14-56.

Listing 14-56. Implement the methods

namespace Chapter14.Example4Interfaces

{

  internal class CountryTwo : IEcommerceBilling,

                            IPaymentMethod, IDebitCardPayment

  {

    public double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.15;

    } // End of TaxCalculation() method

    public double PaymentMethod(String paymentType,

                                    double transactionAmount)

    {

      double cardFee;

      cardFee = DebitCardPaymentFee(transactionAmount);

      return cardFee;

    } // End of PaymentMethod() method

    public double DebitCardPaymentFee(double debitAmount)

    {

      return debitAmount * 0.02; // 2%

    } // End of DebitCardPaymentFee() method

  } // End of CountryTwo class

} // End of Chapter14.Example4Interfaces namespace

ChaPTer 14  InTerFaCeS



577

 28. Right-click the Example4Interfaces folder.

 29. Choose Add.

 30. Choose Class.

 31. Name the class as EcommerceApplication.cs.

We will now add the class containing the Main() method and call the 

PaymentMethod() method in the CountryTwo concrete class, passing it a debit card 

and an amount of 100, and have it display the returned fee amount. Before we run the 

application code, we should know what we expect as an answer. When using a debit card 

in this country, there is a 2% fee, so we should expect to get back 2% of 100, which is 2.

 32. Amend the EcommerceApplication class code, as in Listing 14-57.

Listing 14-57. Display the card fee

namespace Chapter14.Example4Interfaces

{

  internal class EcommerceApplication

  {

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

      double feeForUsingACard;

      CountryTwo myCountryTwo = new CountryTwo();

       Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryTwo.TaxCalculation(itemPrice)}");

      feeForUsingACard = myCountryTwo.PaymentMethod("Debit", itemPrice);

       Console.WriteLine($"The fee for using this card with this transaction 

amount is £{feeForUsingACard: 0.00}");

    } // End of Main() method

  } // End of EcommerceApplication class

} // End of Chapter14.Example4Interfaces namespace

ChaPTer 14  InTerFaCeS



578

 33. Right-click the Chapter14 project in the Solution Explorer panel.

 34. Choose Properties from the pop-up menu.

 35. Choose the Chapter14.Example4Interfaces.

EcommerceApplication class in the Startup object drop-down list, 

as shown in Figure 14-14.

Figure 14-14. Changing the startup class in the C# project

 36. Click the File menu.

 37. Choose Save All.

 38. Click the Debug menu.

 39. Choose Start Without Debugging.

The console window will appear as Figure 14-15, and show the card fee of 2.00, 

which we know is correct, because we did the calculation before we ran the code and 

knew what the expected outcome should be. This 2.00 result is the same result as we got 

from the previous code when we had not separated the abstract methods, as shown in 

Figure 14-13, but now we have segregated our abstract methods in different interfaces.

Figure 14-15. Card fee for country 2 calculated

ChaPTer 14  InTerFaCeS



579

 40. Press the Enter key to close the console window.

Now we have a “solution”, but in reality if we were to pass Credit to the CountryTwo 

PaymentMethod() method, we would get the same result, which would not be what 

we wanted. The correct solution would be to only have the IDebitCardPayment and 

ICreditCardPayment interfaces and forget the IPaymentMethod interface. Then 

CountryTwo only implements the IDebitCardPayment and cannot get access to the 

ICreditCardPayment.

 41. Right-click the CountryTwo.cs file in the Example4Interfaces 

folder and choose Copy.

 42. Right-click the Example4Interfaces folder and choose paste.

 43. Rename the CountryTwo – Copy.cs file to CountryTwoDebit.cs.

 44. Amend the CountryTwoDebit.cs to remove the implementation of 

the IPaymentMethod as in Listing 14-58.

Listing 14-58. New CountryTwo class not implementing IPaymentMethod

namespace Chapter14.Example4Interfaces

{

  internal class CountryTwoDebit : IEcommerceBilling, IDebitCardPayment

  {

    public double TaxCalculation(double itemPrice)

    {

      return itemPrice * 0.15;

    } // End of TaxCalculation() method

    public double DebitCardPaymentFee(double debitAmount)

    {

      return debitAmount * 0.02; // 2%

    } // End of DebitCardPaymentFee() method

  } // End of CountryTwoDebit class

} // End of Chapter14.Example4Interfaces namespace

ChaPTer 14  InTerFaCeS



580

 45. Amend the EcommerceApplication.cs code to add an additional 

variable called feeForUsingADebitCard, instantiate the new class, 

and call the method that calculates the fee, assigning the returned 

value to the variable we have created, as in Listing 14-59.

Listing 14-59. Instantiate the CountryTwoDebit class and find card fee

namespace Chapter14.Example4Interfaces

{

  internal class EcommerceApplication

  {

    static void Main(string[] args)

    {

      double itemPrice = 100.00;

      double feeForUsingACard, feeForUsingADebitCard;

      CountryTwo myCountryTwo = new CountryTwo();

       Console.WriteLine($"The tax on an item of price £{itemPrice} is 

£{myCountryTwo.TaxCalculation(itemPrice)}");

      feeForUsingACard = myCountryTwo.PaymentMethod("Debit", itemPrice);

       Console.WriteLine($"The fee for using this card with this transaction 

amount is £{feeForUsingACard: 0.00}");

      CountryTwoDebit myCountryTwoDebit = new CountryTwoDebit();

       feeForUsingADebitCard = myCountryTwoDebit.DebitCardPaymentFee 

(itemPrice);

       Console.WriteLine($"The fee for using a debit card with this 

transaction amount is £{feeForUsingADebitCard: 0.00}");

    } // End of Main() method

  } // End of EcommerceApplication class

} // End of Chapter14.Example4Interfaces namespace

 46. Click the File menu.

 47. Choose Save All.

ChaPTer 14  InTerFaCeS



581

 48. Click the Debug menu.

 49. Choose Start Without Debugging.

The console window will display the result as in Figure 14-16.

Figure 14-16. Card fee for CountryTwo calculated

 50. Press the Enter key to close the console window.

We can now see that using segregation in our interfaces follows the same principle 

we read about when we dealt with methods and classes. In following this principle of 

segregation, we are writing clean code, avoiding issues around YAGNI, using the SOLID 

principles of interface segregation and single responsibility, and using another industry 

principle of programming to an interface.

Should we use an abstract class or an interface?
Whether we use an abstract class or an interface will depend on the needs we have 

or the application we are coding. As we have seen, abstract classes and interfaces are 

similar, but as we have seen there are differences, and it will be these differences that 

help us decide which is the best option. We need to consider a few things:

• An “abstract class” can have abstract methods and concrete methods.

• We have seen that an abstract class contains abstract methods, 

but it can also contain concrete methods, therefore allowing 

classes that inherit from the abstract class to override or 

implement the methods.

• On the other hand, we saw that an interface cannot contain 

concrete methods.

Do we want our class to implement from more than one “abstract class”?

ChaPTer 14  InTerFaCeS



582

• We have seen that a class can inherit only one abstract class.

• On the other hand, a class can inherit more than one interface – 

multiple inheritance.

But whoa! What did we read earlier?

With C# 8 we can now add concrete methods, methods with code. They are 
called default methods.

Eve though we have a default method in the interface any class that inherits from the 

interface can choose to use the default method, amend the method, or ignore it. We will 

now verify that it is possible to add a default method and see how this is implemented, or 

not, in a class.

 Concept of Default Method in an Interface
We will now add a new folder to the project to hold the code for this example where we 

will code the interfaces with the default method.

 1. Right-click the solution Chapter14 project name.

 2. Choose Add.

 3. Choose New Folder.

 4. Name the folder Example5Interfaces.

IPolicy Interface
Now we will add a new interface containing interface methods.

 5. Right-click the Example5Interfaces folder.

 6. Choose Add.

 7. Choose New Item.

 8. Choose Interface.

 9. Name the interface IPolicy.cs.

 10. Click the Add button.

 11. Amend the code to add the abstract methods and a default 

method, as in Listing 14-60.

ChaPTer 14  InTerFaCeS



583

Listing 14-60. Interface with abstract methods and a default method

namespace Chapter14.Example5Interfaces

{

  internal interface IPolicy

  {

    // abstract methods, method signature and return type

    void CreateAPolicy();

    void CloseAPolicy();

    // C# 8 allows us to have default implementations

    public void Print(string policyName)

    {

      Console.WriteLine($"The policy type created by the " +

        $"default interface implementation is {policyName}");

        }

  } // End of IPolicy interface

} // End of Chapter14.Example5Interfaces namespace

PolicyManager Class Inheriting from the IPolicy Interface

 12. Right-click the Example5Interfaces folder.

 13. Choose Add.

 14. Choose Class.

 15. Name the class PolicyManager.cs.

 16. Click the Add button.

We will now have this PolicyManager class implement the IPolicy interface and make 

the abstract methods of the interface concrete, thereby ensuring the “contract” with the 

interface is applied.

 17. Amend the code, as in Listing 14-61.

ChaPTer 14  InTerFaCeS



584

Listing 14-61. Concrete class implementing the abstract methods

namespace Chapter14.Example5Interfaces

{

internal class PolicyManager: IPolicy

{

// Implement the abstract method, make it a concrete method

public void CreateAPolicy()

{

        Console.WriteLine("Policy created");

}  // End of CreateAPolicy() concrete method

// Implement the abstract method, make it a concrete method

public void CloseAPolicy()

{

        Console.WriteLine("Policy closed");

} // End of CloseAPolicy() concrete method

}//End of PolicyManager class that implements IPolicy interface

} // End of Chapter14.Example5Interfaces

Program Class with the Main() Method

 18. Right-click the Example5Interfaces folder.

 19. Choose Add.

 20. Choose Class.

 21. Name the class PolicyApplication.cs.

 22. Click the Add button.

 23. Amend the code to instantiate the PolicyManager class and call 

the concrete methods that we created in it as in Listing 14-62.

ChaPTer 14  InTerFaCeS



585

Listing 14-62. Main class, which uses the default method of the interface

namespace Chapter14.Example5Interfaces

{

  internal class PolicyApplication

  {

  public static void Main()

  {

    Console.WriteLine("C# 8 default methods in an Interface");

 // Instantiate the PolicyManager class

    IPolicy myPolicyManager = new PolicyManager();

 // Call the CreateAPolicy method from the PolicyManager instance

    myPolicyManager.CreateAPolicy();

 // Call the CloseAPolicy method from the PolicyManager instance

    myPolicyManager.CloseAPolicy();

 // Call the default method from the PolicyManager instance

    myPolicyManager.Print("Auto");

  } // End of Main() method

  } // End of PolicyApplication class

} // End of Chapter14.Example5Interfaces class

 24. Right-click the Chapter14 project in the Solution Explorer panel.

 25. Choose Properties from the pop-up menu.

 26. Choose the Chapter14.Example5Interfaces.PolicyApplication 

class in the Startup object drop-down list, as shown in 

Figure 14-17.

ChaPTer 14  InTerFaCeS



586

Figure 14-17. Set the startup project

 27. Click the File menu.

 28. Choose Save All.

 29. Click the Debug menu.

 30. Choose Start Without Debugging.

The console window will appear, as shown in Figure 14-18, and display the message 

from the default method of the interface.

Figure 14-18. Default method of the interface has been executed

 31. Press the Enter key to close the console window.

The code has worked, and in the code line

IPolicy myPolicyManager = new PolicyManager();

ChaPTer 14  InTerFaCeS



587

we have used the interface IPolicy when instantiating, but what would happen if we 

were to use the PolicyManager class, which inherits from the IPolicy interface, and our 

code line would be

PolicyManager myPolicyManager = new PolicyManager

Well, let us see how this works out.

 32. Amend the code to use PolicyManager rather than IPolicy, as 

shown in in Listing 14-63.

Listing 14-63. Instantiate using the class rather than the interface

  public static void Main()

  {

    Console.WriteLine("C# 8 default methods in an Interface");

    // Instantiate the PolicyManager class

    PolicyManager myPolicyManager = new PolicyManager();

We will see that we have a compile error in the amended code.

 33. Hover over the red underline of the Print("Auto") in the line of 

code myPolicyManager.Print() as shown in Figure 14-19.

Figure 14-19. Error, method not available

The compile error tells us that the myPolicyManager object does not contain a 

Print() method. This is telling us that the default method is not accessible; in other 

words, the inherited class knows nothing about the default method of the interface. 

To make it accessible, we must use the interface, and we can achieve this in two 

different ways:

• We can go back to using the IPolicy in the instantiation:

// Instantiate the PolicyManager class

IPolicy myPolicyManager = new PolicyManager();

ChaPTer 14  InTerFaCeS



588

• We can upcast the myPolicyManager to an interface:

// Call the default method from the PolicyManager instance

 ((IPolicy)myPolicyManager).Print("Auto");

We will use the upcasting technique since we have not used this before with an 

interface. Upcasting follows the same principle as we used when casting with our data 

types. When we looked at casting in Chapter 7, we said

In C#, casting is a method used to convert one data type to another. Casting 
is used as an explicit conversion and tells the compiler what to do.

 34. Amend the code within the Main() method to use the upcasting, 

as shown in Listing 14-64.

Listing 14-64. Upcast the class to an interface

// Call the CloseAPolicy method from the PolicyManager instance

      myPolicyManager.CloseAPolicy();

// Call the default method from the PolicyManager instance

      ((IPolicy)myPolicyManager).Print("Auto");

    } // End of Main() method

  } // End of PolicyApplication class

} // End of Chapter14.Example5Interfaces class

 35. Amend the code in the PolicyManager class to add an 

“overridden” version of the interface default method, as in 

Listing 14-65.

Listing 14-65. Override the default method of the interface

public void CloseAPolicy()

{

  Console.WriteLine("Policy closed");

} // End of CloseAPolicy() concrete method

/*

C# 8 allows us to have default implementations

*/

ChaPTer 14  InTerFaCeS

https://doi.org/10.1007/978-1-4842-8619-7_7


589

public void Print(string policyName)

{

  Console.WriteLine($"The policy type created by the overridden default 

interface method is {policyName }");

}

}//End of PolicyManager class that implements IPolicy interface

} // End of Chapter14.Example5Interfaces

 36. Click the File menu.

 37. Choose Save All.

 38. Click the Debug menu.

 39. Choose Start Without Debugging.

The console window will appear and show the message from the default method of 

the interface, as in Figure 14-20.

Figure 14-20. Default method has been overridden

 40. Press the Enter key to close the console window.

We have seen that we can have a default implementation in our interface, but the 

class that implements the interface does not have to implement the default method – it is 

optional. When we talk about “program to an interface” as a design approach, we use the 

interface as our starting point. In using such a design approach, we will then have many 

classes that are dependent on the interface, and if we then decide to go back and amend the 

interface, we will impact all the dependent classes. So we would say that once the interface 

is designed, it is not open for amendments. However, as we have seen, C# 8 allows us to add 

default implementations to the interface, and this does not break any of the existing classes 

that implement the interface, since the default methods are optional. We therefore say that 

with C# 8 and above, the interface is expandable in terms of adding default methods.

ChaPTer 14  InTerFaCeS



590

 Concept of Static Methods and Fields in an Interface
With C# 8 interfaces, we were introduced to another new feature in which we can have 

static members, methods, and fields. We read earlier the following:

Remember that static means belonging to the class or Interface.

So not only can a class have static members but an interface, from C# 8, can also 

have static members. We will now add a static member, field, to the IPolicy interface.

 41. Amend the code, as in Listing 14-66, to declare a static field to the 

IPolicy interface that will be used to record the number of current 

policies.

Listing 14-66. Static field in an interface

using System;

namespace Chapter14.Example5Interfaces

{

  internal interface IPolicy

  {

    /*

    C# 8 allows us to have static members. Here we use a

    static field.

    Remember that static means belonging to the class or

    Interface.

    We can therefore call the methods and members of the

    interface directly.

    */

    static int policyCounter;

From within the Main() method, we will now call the policyCounter field directly 

from its location in the interface. We will call the policyCounter field twice, once when 

the policy is created and again when the policy is closed. The static nature of the field 

means there is only one version of the field; there is no copy made when the class is 

instantiated.

ChaPTer 14  InTerFaCeS



591

 42. Amend the PolicyApplication.cs class code, as in Listing 14-67.

Listing 14-67. Call the static field in an interface

using System;

namespace Chapter14.Example5Interfaces

{

  internal class PolicyApplication

  {

    public static void Main()

    {

      Console.WriteLine("C# 8 default methods in an Interface");

      // Instantiate the PolicyManager class

      PolicyManager myPolicyManager = new PolicyManager();

 // Call the CreateAPolicy method from the PolicyManager instance

      myPolicyManager.CreateAPolicy();

      // Increment the static policyCounter by 1

      IPolicy.policyCounter = IPolicy.policyCounter + 1;

       Console.WriteLine($"Policy created - there are now {IPolicy.

policyCounter} policies");

 // Call the CloseAPolicy method from the PolicyManager instance

      myPolicyManager.CloseAPolicy();

      // Decrement the static policyCounter by 1

      IPolicy.policyCounter = IPolicy.policyCounter - 1;

       Console.WriteLine($"Policy closed - there are now {IPolicy.

policyCounter} policies");

// Call the default method from the PolicyManager instance

      ((IPolicy)myPolicyManager).Print("Auto");

    } // End of Main() method

  } // End of Program class

} // End of Chapter14.Example5Interfaces class

ChaPTer 14  InTerFaCeS



592

 43. Click the File menu.

 44. Choose Save All.

 45. Click the Debug menu.

 46. Choose Start Without Debugging.

The console window will appear as shown in Figure 14-21. The console message 

shows that after the CreateAPolicy() method is called, we have one policy. Then the 

message shows that there are zero policies after the CloseAPolicy() method is called.

Figure 14-21. Static field of the interface has been called.

 Chapter Summary
In this chapter we have tackled two large concepts, abstract classes and interfaces, and 

we have looked at the differences and similarities between them. We have also seen 

that since C# 8 the concept of an interface changed from being a template that could 

only have abstract methods to being capable of having default implementations with 

business logic. When creating a class that inherits from the interface with the default 

implementation, we do not have to use the default implementation, but if we do use it, 

we call it directly from the interface. In the previous chapter, we looked at classes and 

objects, and now we should appreciate that abstract classes and interfaces sit alongside 

classes. A class can decide to form a contract with an abstract class or interface, and then 

it will have to implement the abstract methods that are part of the contract. This has 

been a “big chapter” in terms of learning, but we are now really moving to coding at a 

higher level and seeing how applications are coded in the commercial world.

ChaPTer 14  InTerFaCeS



593

We are making fantastic progress in our programming of C# applications and we 

should be very proud of our achievements. In finishing this very important chapter, we 

have increased our knowledge further and we are advancing to our target.

 

ChaPTer 14  InTerFaCeS



595

CHAPTER 15

String Handling

 String Handling and Manipulation
In the previous chapter, we gained knowledge of interfaces and abstract classes and 

their relationship with classes and objects. We saw that interfaces and abstract classes 

can be used to make classes have a consistency when they inherit from the interface or 

abstract class. We also read that many developers will program to an interface, showing 

that interfaces form an integral part of developing C# applications in a commercial 

environment.

In this chapter we will study in more detail the use of Strings and see how we can 

use and manipulate them within our C# code. Throughout our chapters we used Strings, 

and in many of our coding examples, we have seen how we can concatenate a string 

to another string or to a non-string data type, which has been converted to a string. 

When we look back to Chapter 6, we can see that string is not one of the primitive 

data types, whereas char is. So we know that String as a data type is special. Just look 

at the fact that we have used a capital S when writing it here. Having studied classes 

and objects in Chapter 13, we might also think that the capital S might suggest that 

it is a class, as classes by convention start with a capital letter. Indeed, we are correct 

in this assumption, and we would say that String is a class within .NET in the System 

namespace. The fully qualified name of the String class is System.String, and string in 

C# is a shortcut for System.String.

From the code we have already developed, we should be aware that strings are very 

important in C# applications, and we have taken strings and converted them to other 

data types so that they could be used in calculations. Such examples make us realize 

that not all data entered into our application will be as we require. Let us look at some 

examples to help us better understand this:

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_15

https://doi.org/10.1007/978-1-4842-8619-7_6
https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_15#DOI


596

• A customer may need to enter their personal details into an online 

form and submit the form so the data can be stored in a company 

database. However, the customer, like myself, might not be the best 

“typist” and may enter uppercase or lowercase or a mixture of cases 

when entering their details. Does the company really want to store 

this poorly formed string of data in its database? Probably not. In 

developing the code, we could convert the data to upper, to lower, 

or to proper case through our C# code, thereby standardizing the 

stored format.

• A customer may need to complete an online form and include their 

account number. As they enter their account number, they add an 

extra space at the start or end. In developing the code, we need to 

read this account number and check if it exists, before we let the 

customer see their account details. As the extra space is included, 

our code will not be able to match the account number. Our code 

must check for extra spaces at the start or end of a string and take 

appropriate action to correct the string.

• A customer may need to enter their credit card number, and it is 

known that this should be 16 digits with no spaces and in the correct 

format. As developers we need to check that there are 16 digits, not 

less or more, and in our code we will need to check that there is not a 

mixture of numbers and characters or even all characters.

• Data read from a text file might need to be dissected and parsed 

for various reasons such as getting the customer postcode or date 

of birth.

• Data being written to a database from our application needs to be 

validated, manipulated, and then written, to reduce the possibility of 

errors happening during the writing process.

In dealing with all the preceding situations, and many more, we can make use of 

string manipulation, yet another “tool” offered to us by .NET and one we will make good 

use of in many of our applications. The String class comes with its own methods and 

fields and we will now explore some of these. However, it is important to remember that 

all of the String methods and C# operators that appear to modify a string actually 
return the results in a new string object. We say that a string is immutable. Immutable 

Chapter 15  String handling



597

means we cannot change the contents of a string, so what happens is that a new string 

object is created and the variable that pointed to the old string is now pointed to the 

new string object. Interestingly, if we think of strings in terms of memory usage and 

allocation, they are – to say the least – “poor.”

Listing 15-1. Example string replacement

string accountNumber = "AB123456";

accountNumber = accountNumber.Replace("AB", "GB");

In Listing 15-1 we are trying to replace the characters AB with the characters GB in 

the string and assign the returned value to the string, but as the string accountNumber 

cannot be changed – it is immutable – a new string object is created and accountNumber 

is simply pointed to this new object in its new memory location, as shown in Figure 15-1.

Figure 15-1. Immutable string – new object is created

 String Literals
C# has two types of string literals, verbatim and regular strings:

• Verbatim string

The first type of string literal is the verbatim string. When we 

create a verbatim string, there will be an @ symbol at the start of 

the string, informing the string constructor to ignore any escape 

characters and line breaks. Verbatim means exact, so when 

we use the @ symbol, we are saying, “Use the string exactly as 

it is written.” We will see as we code examples in this chapter 

that escape characters are special characters, for example, \n 

represents a new line and \t represents a tab.

Chapter 15  String handling



598

Listing 15-2. Example verbatim string

String  message = @"\n C# programming \t console applications";

Console.WriteLine(message);

In Listing 15-2 the code includes the escape sequences \n and 

\t as part of the string, but they are not taken to mean new line 

and tab, because we have used the @ symbol. When the code is 

compiled and run, the output will be as shown in Figure 15-2.

Figure 15-2. Verbatim displays the line exactly as it is written

Attempting to add an extra backslash in a verbatim string does 

not work, as we are saying we want the string to be exactly as it 

is. The \\ approach works in other situations like assigning a file 

path name to a string variable, but it will not work with verbatim, 

only in a regular string. The escape sequences \\n and \\t in 

Listing 15-3 are part of the string, and the output will be as shown 

in Figure 15-3.

Listing 15-3. Example verbatim string using double backslash

String  message = @"\\n C# programming \\t console applications";

Console.WriteLine(message);

Figure 15-3. Trying a double slash \\ does not work with verbatim

Chapter 15  String handling



599

• Regular string

The second type of string literal is the regular string. When we 

create a regular string literal, it means the string will be read and 

special characters will need to be “escaped” with a \.

Listing 15-4. Example regular string

string message = "\n C# programming \t console applications";

Console.WriteLine(message);

The escape sequences \n and \t in Listing 15-4 are not taken as 

part of the string; they are to be taken to mean new line and tab. 

We have not used the verbatim symbol, @, so the output will be as 

shown in Figure 15-4.

Figure 15-4. Regular string

If we want the \n and \t to be displayed when using a regular string, we use the \\,  

double backslash, as shown in Listing 15-5, and the output will be as shown in Figure 15-5.

Listing 15-5. Example regular string with double backslash

string message = "\\n C# programming \\t console applications";

Console.WriteLine(message);

Figure 15-5. Regular string with \\, a double backslash

Chapter 15  String handling



600

Let's code some C# and build our programming muscle.
Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter15 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter15 project within the solution called CoreCSharp.

 10. Right-click the project Chapter15 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter15 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to Strings.cs.

 15. Press the Enter key.

 16. Double-click the Strings.cs file to open it in the editor window.

 17. Amend the code, as in Listing 15-6, with the namespace, the class, 

and Main().

Chapter 15  String handling



601

Listing 15-6. Class with the Main() method

namespace Chapter15

{

  internal class Strings

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Strings class

} // End of Chapter15 namespace

We will now create code that uses String class methods and properties and 

demonstrates their use in practical examples. We will start with the Substring method.

 Substring
The Substring() method has two forms that can be used:

• Substring(Int32 startposition)

In this format the Substring method will retrieve a substring of 

the full string starting at the specified character position and 

continuing to the end of the string.

• Substring(Int32 startposition, Int32 length)

In this format the Substring method will retrieve a substring 

starting at the specified character position and continuing for the 

specified number of characters as indicated by the length.

We will now create a string variable to hold a vehicle registration number. We will 

use the String data type, with a capital S, to emphasize the idea that we are dealing with a 

class. Remember we could use string or String.

Chapter 15  String handling



602

 1. Amend the code, as in Listing 15-7.

Listing 15-7. Set up a string and assign it a value

    static void Main(string[] args)

    {

      String myVehicleRegistration = "ZER 7890";

    } // End of Main() method

We will now write the code to find the characters of the string from position 4 to the 

end of the string object.

 2. Amend the code as in Listing 15-8.

Listing 15-8. Characters of the string starting at position 4

    static void Main(string[] args)

    {

      String myVehicleRegistration = "ZER 7890";

      /*

      Use the Substring() method to find the first string

      characters of the myVehicleRegistration string, starting

      at position 4 and reading to the end of the string.

      */

      Console.WriteLine("The characters from position 4 are: "

        + myVehicleRegistration.Substring(4));

 3. Click the File menu.

 4. Choose Save All.

 5. Click the Debug menu.

 6. Choose Start Without Debugging.

Figure 15-6 shows the console window displaying the characters of the 

zero-indexed string from position 4, the fifth element.

Chapter 15  String handling



603

Figure 15-6. Position 4 to the end of the string

 7. Press the Enter key to close the console window.

Continuing with this code, we will add new code to demonstrate different string 

handling methods and features. We will add the code after the existing code, just 

above the end curly brace of the Main() method. We will continue now by coding the 

statements to find the characters from position 0 to position 2, the first three characters, 

of the myVehicleRegistration String object.

 8. Amend the code, as in Listing 15-9.

Listing 15-9. First three characters using Substring

      Console.WriteLine("The characters from position 4 are: "

        + myVehicleRegistration.Substring(4));

      /*

      Use the Substring() method to find the first 3 characters

      of the myVehicleRegistration string.

      Remember substring is inclusive of the char at the first

      position but exclusive of the char at the end position we

      say it is inclusive/exclusive

      */

      Console.WriteLine("The first 3 characters are: "

        + myVehicleRegistration.Substring(0, 3));

    } // End of Main() method

  } // End of Strings class

} // End of Chapter15 namespace

Chapter 15  String handling



604

 9. Click the File menu.

 10. Choose Save All.

 11. Click the Debug menu.

 12. Choose Start Without Debugging.

Figure 15-7 shows the console window displaying the first three characters.

Figure 15-7. First three characters of the string

 13. Press the Enter key to close the console window.

 Length
The Length property will return an integer that represents the number of char values in 

the string. The code behind the Length property will count spaces in the string as they 

are also characters.

 1. Amend the code to find the number of characters in the string 

called myVehicleRegistration, as in Listing 15-10.

Listing 15-10. Find the length of a string

      Console.WriteLine("The first 3 characters are: "

        + myVehicleRegistration.Substring(0, 3));

      /*

      Use the Length property from the String class to find the

      number of characters in the myVehicleRegistration object.

      */

Chapter 15  String handling



605

      Console.WriteLine("The number of characters is: "

        + myVehicleRegistration.Length);

    } // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-8 shows the console window displaying the number of characters in the 

string as 8.

Figure 15-8. The length of a string

 6. Press the Enter key to close the console window.

 StartsWith( )
In coding our insurance application, we might need to find a specific character or 

characters in a vehicle registration number since an accident involved a vehicle with the 

specific character(s). For this situation we could use the StartsWith() method. There are 

two forms of this method, method overloading, that we will use.

The StartsWith() method has two forms:

• StartsWith(Char)

In this format the StartsWith() method will return a Boolean value 

of true or false, depending on whether the String object begins 

with the specific char or chars. The method starts at character 0.

Chapter 15  String handling



606

• StartsWith(String)

In this format the StartsWith() method will return a Boolean value 

of true or false, depending on whether the String object begins 

with the specific string. The method starts at character 0.

 1. Amend the code, as in Listing 15-11, to add an array of strings.

Listing 15-11. Declare and create an array of strings

      Console.WriteLine("The number of characters is: "

        + myVehicleRegistration.Length);

      // Create an array of String objects

       String[] myVehicleRegistrations = new String[] { "ZER 7890", "ZAC 

7124", "ARC 3330" };

    } // End of Main() method

 2. Amend the code, as in Listing 15-12, to iterate the array and 

display those strings that start with (StartsWith()) the character Z.

Listing 15-12. Find strings that start with the character Z and display them

       String[] myVehicleRegistrations = new String[] { "ZER 7890", "ZAC 

7124", "ARC 3330" };

      foreach (String registration in myVehicleRegistrations)

      {

        if (registration.StartsWith(‘Z’))

        {

           Console.WriteLine(String.Format("\nThe registration {0} starts 

with the letter Z", registration));

        } // End of if block

        else

        {

          Console.WriteLine(String.Format("\nThe registration {0} does not 

start with the letter Z", registration));

Chapter 15  String handling



607

        } // End of else block

      } // End of for each iteration

    } // End of Main() method

 3. Click the File menu.

 4. Choose Save All.

 5. Click the Debug menu.

 6. Choose Start Without Debugging.

Figure 15-9 shows the console window displaying each array member and stating if it 

begins with the character Z.

Figure 15-9. Strings starting with Z

 7. Press the Enter key to close the console window.

 Split( )
In coding our insurance application, we might need to read a file or database, which 

contains data. The format of the file might be that each part is separated by a comma 

or a tab or a - or a space. We will need to find the data from within the file, and for this 

situation we could use the Split() method, which will split the data at the specified 

value. The Split() method will return an array of strings after it has split the string 

object at the specified expression. We will split each value in our registration array at 

the space, and we will put each of the parts of the split into a new array, which we will 

call splitRegistration. The Split() method has different options in the form of method 

overloads.

Chapter 15  String handling



608

 1. Amend the code, as in Listing 15-13.

Listing 15-13. Split the strings at the spaces

       Console.WriteLine(String.Format("\nThe registration {0} starts with 

the letter Z", registration));

    } // End of if block

    else

    {

       Console.WriteLine(String.Format("\nThe registration {0} does not 

start with the letter Z", registration));

    } // End of else block

  } // End of for each iteration

  // Iterate the array and split the items as they are read

  foreach (String registration in myVehicleRegistrations)

  {

    // Array to hold the 2 parts of the vehicle registration

    String[] splitRegistration = new String[2];

    // Split the array at the space

    splitRegistration = registration.Split(' ');

     Console.WriteLine(String.Format("\nPart 0 is {0}", 

splitRegistration[0]));

     Console.WriteLine(String.Format("\nPart 1 is {0}", 

splitRegistration[1]));

  } // End of iteration for splitting at the space character

 } // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-10 shows the console window displaying each of the array members in 

their two parts, split at the space character.

Chapter 15  String handling



609

Figure 15-10. New strings created from original strings split at spaces

 6. Press the Enter key to close the console window.

We can also split on multiple characters, delimiters, or regular expressions.

 7. Amend the code, as in Listing 15-14, to add a new array, called 

myMixedVehicleRegistrations.

Listing 15-14. Add a new array called myMixedVehicleRegistrations

   // Create a new array of String objects

    String[] myMixedVehicleRegistrations = new String[]{ "ZER 7890", 

"ZAC_7124", "ARC,3330" };

 } // End of Main() method

We will now iterate the new array, myMixedVehicleRegistrations, and split each 

String object member of the array at the underscore, space, or comma and put the result 

into the splitMixedRegistration array which we will create, as shown in Listing 15-15.

 8. Amend the code, as in Listing 15-15.

Listing 15-15. Split the strings at the required delimiters

String[] myMixedVehicleRegistrations = new String[]

{ "ZER 7890", "ZAC_7124", "ARC,3330" };

// Iterate the array and split the items as they are read

foreach (String mixedRegistrationPart in myMixedVehicleRegistrations)

 {

Chapter 15  String handling



610

// Array to hold the 2 parts of the vehicle registration

 String[] splitMixedRegistration = new String[2];

 // Split the array at the underscore, space or ,

  splitMixedRegistration

     = mixedRegistrationPart.Split(new char[] { ' ', ',', '_' });

   Console.WriteLine(String.Format("\nPart 0 is {0} is ", 

splitMixedRegistration[0]));

   Console.WriteLine(String.Format("\nPart 1 is {0} is ", 

splitMixedRegistration[1]));

  } // End of for each iteration

} // End of Main() method

 9. Click the File menu.

 10. Choose Save All.

 11. Click the Debug menu.

 12. Choose Start Without Debugging.

Figure 15-11 shows the console window displaying new strings.

Figure 15-11. New strings created from original strings split at the delimiters

 13. Press the Enter key to close the console window.

Chapter 15  String handling



611

 CompareTo( )
In coding our insurance application, we might need to compare two strings. We could be 

asking a customer to enter their account reference and then comparing it with account 

references read from a file so we can display data related to this specific customer. To 

undertake the comparison, we could use the CompareTo() method of the String class. 

Interestingly, the CompareTo() method is an implementation of the interface method 

CompareTo() that exists in the interface IComparable. We have just completed a chapter 

on interfaces where we talked about interfaces and interface methods, and this is a great 

example of an implementation of an interface method.

In string handling the CompareTo() method will compare two string objects or 

strings and return an integer that indicates a position for the comparing string, as per the 

following rules:

• If the string being compared precedes the other string, it returns an 

integer less than zero.

• If the string being compared is in the same position as the other 

string, it returns a 0, zero.

• If the string being compared follows the other string, it returns an 

integer greater than zero.

When dealing with strings, the comparison is based on the lexical relationship 

between the two objects, which essentially means alphabetical order. We can think of it 

as the dictionary order of the word where digits come before letters and lowercase letters 

come before uppercase ones.

 1. Amend the code, as in Listing 15-16, to add a new array called 

myDuplicateVehicleRegistrations with additional String objects.

Listing 15-16. New array

        Console.WriteLine(String.Format("\nPart 1 is {0}" +

          " is ", splitMixedRegistration[1]));

      } // End of for each iteration

Chapter 15  String handling



612

      // Create a new array of String objects

       String[] myDuplicateVehicleRegistrations = new String[] { "ZER 7890", 

"ZAC_7124", "ARC,3330", "ZER 7890", "ARC,3330", "zer 7890",  

" zac_7124" };

    } // End of Main() method

Finding Matching Strings
We will add code to iterate the new array and compare each String object with each 

of the other String objects and output a message to say if the Strings are the same. This 

will require an inner iteration.

 2. Amend the code, as in Listing 15-17.

Listing 15-17. Iterate the array and find strings that are the same

// Create a new array of String objects

String[] myDuplicateVehicleRegistrations = new String[]

{ "ZER 7890", "ZAC_7124", "ARC,3330", "ZER 7890",

  "ARC,3330", "zer 7890", " zac_7124" };

// Iterate the array and split the items as they are read

for (int counter = 0; counter <

        myDuplicateVehicleRegistrations.Length; counter++)

{

  for (int innercounter = counter + 1; innercounter <

      myDuplicateVehicleRegistrations.Length; innercounter++)

  {

     if (myDuplicateVehicleRegistrations[counter].CompareTo(myDuplicate 

VehicleRegistrations[innercounter]) == 0)

    {

       Console.WriteLine(String.Format("\n{0} at index {1} is the same 

String as array index {2} {3}", myDuplicateVehicleRegistrations 

[counter],counter,innercounter,myDuplicateVehicleRegistrations 

[innercounter]));

    } // End of the if selection block

  } // End of for inner loop iteration

} // End of for each outer loop iteration

} // End of Main() method

Chapter 15  String handling



613

 3. Click the File menu.

 4. Choose Save All.

 5. Click the Debug menu.

 6. Choose Start Without Debugging.

Figure 15-12 shows the console window displaying strings that have been compared 

as the same. This means a value less than zero was returned when the two strings were 

compared.

Figure 15-12. Equal strings

 7. Press the Enter key to close the console window.

Finding Which Strings Precede Other Strings
We will add code at the end of the Main() method to iterate the new array and 

compare each String object with each of the other String objects, displaying a message 

when a string comes before, precedes, another string.

 8. Amend the code, as in Listing 15-18.

Listing 15-18. Iterate the array and find strings that precede other strings

  // Iterate the array and split the items as they are read

   for (int counter = 0; counter < myDuplicateVehicleRegistrations.Length; 

counter++)

  {

     for (int innercounter = counter + 1; innercounter < 

myDuplicateVehicleRegistrations.Length; innercounter++)

    {

       if (myDuplicateVehicleRegistrations[counter].CompareTo(myDuplicate 

VehicleRegistrations[innercounter]) == 1)

      {

Chapter 15  String handling



614

         Console.WriteLine(String.Format("\nString {0} comes after String 

{1}", myDuplicateVehicleRegistrations[counter],myDuplicateVehicle 

Registrations[innercounter]));

      } // End of if block

    } // End of for inner loop iteration

  } // End of for each outer loop iteration

} // End of Main() method

 9. Click the File menu.

 10. Choose Save All.

 11. Click the Debug menu.

 12. Choose Start Without Debugging.

Figure 15-13 shows the console window displaying the strings that come before other 

strings in the array.

Figure 15-13. Strings in the array that precede other strings

 13. Press the Enter key to close the console window.

Chapter 15  String handling



615

 ToUpper( ) and ToLower( )
In coding our insurance application, we might need to compare two strings, but we need 

to be sure the strings are in the correct case. There is no point in having the customer 

enter their account reference in mixed-case lettering and then trying to compare it 

for equality with our data, which is in uppercase. To solve this issue, we could use the 

ToUpper() method of the String class to convert the user input to match our uppercase 

data. We could equally apply the same principle to a scenario where we need to use 

lowercase.

In string handling the ToUpper() method will convert the characters of the string into 

uppercase characters, when there is an equivalent uppercase character.

In string handling the ToLower() method will convert the characters of the string into 

lowercase characters, when there is an equivalent lowercase character.

We will add code to convert the String objects to uppercase when we are comparing 

them. This code is the same iteration as we have just used, but we use the ToUpper() 

method on both strings being compared.

 1. Add the code in Listing 15-19.

Listing 15-19. Convert both strings to uppercase using the ToUpper() method

/*

Iterate the array and compare the items, changing to

upper case, as they are read

*/

for (int counter = 0; counter <

        myDuplicateVehicleRegistrations.Length; counter++)

{

  for (int innercounter = counter + 1; innercounter <

          myDuplicateVehicleRegistrations.Length; innercounter++)

   {

      if(myDuplicateVehicleRegistrations[counter].ToUpper().

    CompareTo(myDuplicateVehicleRegistrations[innercounter].ToUpper()) == 0)

    {

     Console.WriteLine("With upper case {0} at index {1} is " +

     "the same String as {3} at index {2}\n",

     myDuplicateVehicleRegistrations[counter], counter,

Chapter 15  String handling



616

     innercounter, myDuplicateVehicleRegistrations[innercounter]);

    }

  } // End of inner for iteration

} // End of outer for each iteration

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-14 shows the console window displaying the matching strings when 

conversion to uppercase has occurred.

Figure 15-14. Using ToUpper() before comparing strings

 6. Press the Enter key to close the console window.

We could amend the program code if we wished to test the ToLower() method.

 Concat( )
In many of the applications we have coded, we have concatenated a string and a non- 

string value using the + symbol. Another way to concatenate when we have only string 

values is to use the String.Concat() static method of the String class.

Concat() will concatenate multiple strings by appending the specified Strings. The 

String.Concat() method returns the newly combined String of characters.

We will now amend the code to create three string literals and concatenate the 

strings into a message of two sentences. The concatenation includes “hard-coded” string 

constants and an escape character, \n. Ensure there is a space before the G of Gerry in 

the insuredPerson string, as we will use it later in an example.

Chapter 15  String handling



617

 1. Add the code in Listing 15-20.

Listing 15-20. Using the Concat() method to join strings

String insuredPerson = " Gerry Byrne,";

String welcome = "thank you for taking out insurance with us.";

String insuranceType = "Home Insurance";

String myOfferDetails = String.Concat(insuredPerson, " ", welcome, "\n", 

"You now have full ", insuranceType, ". ");

Console.WriteLine(String.Format("\n{0}", myOfferDetails));

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-15 shows the console window displaying the concatenated strings.

Figure 15-15. Concatenating strings

 6. Press the Enter key to close the console window.

 Trim( )
We read at the start of the chapter about an example where a customer might enter 

their account number and accidentally add an extra space at the start or end. We said 

that our code would need to check for spaces at the start and end of the string input, 

and this is what the Trim() method can do for us. The Trim() method will remove any 

leading spaces, at the start, and any trailing spaces, at the end, from the string object. 

The method will leave spaces that exist inside the string. There is also a TrimStart() 

Chapter 15  String handling



618

method, which is used to remove the occurrences of a set of characters from the start of 

the String object, while the TrimEnd() method is used to remove the occurrences of a set 

of characters from the end of a String object.

We will now amend the code to trim the space from the front of the insuredPerson 

string, remembering that we were told to insert a space before the Gerry Byrne part. We 

will then display the new string.

 1. Add the code in Listing 15-21, to apply the Trim() method to the 

myOfferDetails variable.

Listing 15-21. Remove the leading and trailing spaces using the Trim() method

String trimmedMyOfferDetails = myOfferDetails.Trim();

Console.WriteLine(String.Format("\n{0}", trimmedMyOfferDetails));

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-16 shows the console window displaying the concatenated strings, but the 

leading space has been removed.

Figure 15-16. Extra space at the front of the string trimmed

 6. Press the Enter key to close the console window.

Chapter 15  String handling



619

 Replace( )
In an application we may need to replace a character or characters with different 

characters, and this can be achieved using the Replace() method. We may need to 

replace 2023 with 2024 in a date string or replace Au with AU in all auto policies.

The Replace() method has two forms:

• Replace(old char, new char)

In this format the method will replace all occurrences of the old 

character with the new character.

• Replace(old string, new string)

In this format the method will replace all occurrences of the old 

string of characters with the new string of characters.

We will amend the code to use the Replace() method to replace a character in a 

string and then display the new string.

 1. Amend the code, as in Listing 15-22.

Listing 15-22. Replace characters in a string; new string object is formed

String name = "Gerry Byrne";

String newName = name.Replace('e', 'E');

Console.WriteLine(String.Format("\n{0}", newName));

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-17 shows the console window displaying the string with the two lowercase 

e characters replaced with uppercase E characters.

Chapter 15  String handling



620

Figure 15-17. Lowercase e replaced with uppercase E

 6. Press the Enter key to close the console window.

We will amend the code to use the Replace() method to replace a string of characters 

in a string and then display the new String.

 7. Amend the code as in Listing 15-23.

Listing 15-23. Replace Gerry with GERARD

String name = "Gerry Byrne";

String newName = name.Replace('e', 'E');

Console.WriteLine(String.Format("\n{0}", newName));

String newCapitalName = name.Replace("Gerry", "GERARD");

Console.WriteLine(String.Format("\n{0}", newCapitalName));

    } // End of Main() method

 8. Click the File menu.

 9. Choose Save All.

 10. Click the Debug menu.

 11. Choose Start Without Debugging.

Figure 15-18 shows the console window displaying the string Gerry replaced by the 

string GERARD.

Figure 15-18. Gerry replaced with GERARD

 12. Press the Enter key to close the console window.

Chapter 15  String handling



621

 Contains( )
In an application we may need to check if a string contains a char or a number of chars, 

and this can be achieved using the Contains() method. We may need to check if a policy 

id contains AU and then amend the monthly premium because auto insurance policies 

are due to be increased by 10%.

The Contains() method has two forms:

• Contains(char)

In this format the method will return a value indicating if a 

specified character occurs within a string.

• Contains(string)

In this format the method will return a value indicating if a 

specified string occurs within a string.

 1. Amend the code, as in Listing 15-24, to use the Contains() method 

to see if the user has input the string Home in an answer to a 

question.

Listing 15-24. Checking if a string input contains the string Home

Console.WriteLine("What type of insurance do you require?\n");

  String clientInsuranceType = Console.ReadLine();

  if (clientInsuranceType.Contains("Home"))

  {

    Console.WriteLine("Home Insurance types are");

    Console.WriteLine("1. Building Only");

    Console.WriteLine("2. Content Only");

    Console.WriteLine("3. Building and Content Only");

  }

  else

  {

    Console.WriteLine("You have not chosen Home Insurance");

  }

} // End of Main() method

Chapter 15  String handling



622

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-19 shows the console window displaying the question.

Figure 15-19. Home insurance types displayed

 6. Type Home in the console window and press the Enter key.

 7. Press the Enter key to close the console window.

Figure 15-19 shows the types of home insurance because our input contained the 

string Home.

 IndexOf( )
In our application we may wish to see if a string contains a specific character and at what 

position the character is located, and for this we use the IndexOf() method to check if a 

character is inside a string. An example might be when we are verifying a customer email 

address. We might want to check that it contains an @ symbol. If it does, we might be 

happy that the entry is a valid email address; otherwise, it is not. But we might also wish 

to verify that the @ is located at a specific position or index.

The IndexOf() method has two forms:

• IndexOf(char)

In this format the method will return the zero-based index of the 

first occurrence of the specified char in the string object.

Chapter 15  String handling



623

• IndexOf(string)

In this format the method will return the zero-based index of the 

first occurrence of the specified string in the string object.

The IndexOf () method returns –1 if the character or string is not found.

 1. Amend the code, as in Listing 15-25, to use the IndexOf() method 

to find the position of the @ char.

Listing 15-25. Check if IndexOf() returns –1

Console.WriteLine("Please enter your email address?\n");

string emailAddress = Console.ReadLine();

int intPosition = emailAddress.IndexOf("@");

if (intPosition == -1)

{

   Console.WriteLine("Not a valid email address - retype your email 

address");

}

else

{

  Console.WriteLine("Valid email address with the @ at position "

    + intPosition);

}

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-20 shows the console window asking for the email address.

Chapter 15  String handling



624

Figure 15-20. Index of the character @

 6. Type an email address containing an @, for example, gerry@

anywhere.com, and press the Enter key.

 7. Press the Enter key to close the console window.

The text is checked only for an @ symbol, so this is not a very efficient email checker, 

but we receive a message that the email address is valid, as in Figure 15-20, because the 

@ symbol was located.

 Insert( )
In our application we may wish to see if a string contains a specific character or string 

of characters, and if it does not, then we might wish to insert the character or string 

of characters. .NET offers us the Insert() method to place characters inside a string. 

As an example, we might need to verify a customer account number by checking that 

it contains two letters at the start. If it does, the entry can be seen as a valid account 

number. If it does not, then we may wish to put the two letters in front of the number 

based on other information the user has also entered.

The format for the Insert() method means we must specify the zero-indexed position 

where the insertion will take place and we must also give the character or characters to 

be inserted. In this example we will check if the first two characters of a string are G and 

B, and if they are not, we insert the value GB at position 0.

 1. Amend the code, as in Listing 15-26.

Listing 15-26. Use the Insert method to insert the characters GB at index 0

Console.WriteLine("What is your account number?\n");

string accountNumber = Console.ReadLine();

int intPositionG = accountNumber.IndexOf("G");

Chapter 15  String handling



625

int intPositionB = accountNumber.IndexOf("B");

if (intPositionG == 0 && intPositionB == 1)

{

   Console.WriteLine("Valid account number\n" + "Character G was found at 

location " + intPositionG + "\nCharacter B was found at location " + 

intPositionB);

} // End of if section

else

{

  Console.WriteLine("Not a valid account number");

  accountNumber = accountNumber.Insert(0, "GB");

  Console.WriteLine("The account number is " + accountNumber);

} // End of else section

} // End of Main() method

• The code finds the position of the letter G in the string and assigns it 

to the variable intPositionG.

• The code finds the position of the letter B in the string and assigns it 

to the variable intPositionB.

• The next part uses the if statement to see if the letters G and B have 

been located at the start of the string in the positions 0 and 1.

• If they have been found, then a message is displayed saying that the 

account number is valid and telling us the position of the two letters.

• If the two letters are not found, then a message is displayed saying 

that the account number is invalid.

• The letters GB are then inserted into the string starting at position 

0. Remember that we are using the Insert() method, not the 

Replace() method.

• The console will show the string with the GB added at the start.

 2. Click the File menu.

 3. Choose Save All.

Chapter 15  String handling



626

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

The console window will appear and ask the user to input their account number. 

We know it should begin with the string GB or, put another way, G should be the first 

character and B should be the second character. If this is not what is entered, the code 

will insert GB at the start of the entered string. Obviously, we could have used the 

Replace() method, but we are trying to understand the Insert() method.

 6. Type AB123456, an invalid input, and press the Enter key.

Figure 15-21 shows the console window with GB prefixed to the string.

Figure 15-21. Insert GB as the first two characters if they are not already GB

 7. Press the Enter key to close the console window.

 8. Click the File menu.

 9. Choose Save All.

 10. Click the Debug menu.

 11. Choose Start Without Debugging.

 12. Type GB123456, a valid input, and press the Enter key.

Figure 15-22 shows the console window with the indexes of G and B shown, after we 

have entered the input required.

Chapter 15  String handling



627

Figure 15-22. No replacement needed

 13. Press the Enter key to close the console window.

 String.Format( )
We will continue the use of the String class, but we will now look at how we have already 

used the Format() method of the String class to contain a string and placeholders for 

variables or objects.

In many of our code applications, we have displayed to the console using two 

different formats:

• The first format has been to use the Console.WriteLine() method 

where we have concatenated a string literal with a variable. In this 

case the variable becomes a string and is joined onto the string 

literal, and then the whole string is displayed. Listing 15-27 shows an 

example that we have already coded.

Listing 15-27. Using Console.WriteLine()

Console.WriteLine("The number of characters is: " + myVehicleRegistration.

Length);

• The second format has been to use the Console.WriteLine() method 

where we have included the String.Format() method to format the 

string. We use String.Format() when we wish to insert a variable, 

object, or expression within our string. Listing 15-28 shows an 

example that we have already coded.

Chapter 15  String handling



628

Listing 15-28. Using String.Format()

Console.WriteLine(String.Format("\nThe registration {0} does not start with 

the letter Z", registration));

The {0} is a placeholder within the format string. The 0 refers 

to the index of the object whose string value will be inserted 

at that position, and in Listing 15-28 this is the variable called 

registration. If the placeholder refers to an object that is not a 

string, then the ToString() method of the object will be called, 

and the object will be converted to a string, which is placed at the 

position of the placeholder.

We can have as many placeholders as we require so long as there 

is a matching object after the comma (,) following the end double 

quote. We say that there is an object list after the comma following 

the end double quote.

 Formatting the Items in the String

When we use the placeholder like {0} in Listing 15-28, it refers to an object in the object 

list, and if the object is a string, this is an easy insertion. If we have a different data type 

to be inserted, like a double, we may wish to format it to two decimal places or some 

other type of formatting. With placeholders we can add some control to them, and in 

the widely used case of the double or float data type, we could do {0:d}. We can also 

use a similar approach for a time object, where we could do {1:t}, remembering that 

we can have more than one object in the string, and that is why we have the number 1 in 

the curly braces. There are a number of types in C# that are supportive of format strings, 

including all numeric types, dates, and times. Listing 15-29 shows some code examples, 

with comments, and their output.

 1. Amend the code, as in Listing 15-29, to use some String.Format() 

methods.

Chapter 15  String handling



629

Listing 15-29. Using String.Format() with formatting

// Format the number to 2 decimal places giving 99.97

Console.WriteLine(String.Format("Decimal: {0:0.00}", 99.9687));

// Format to scientific format 9.99E+002

// (E+002 is 10 to the power of 2 or 100)

Console.WriteLine(String.Format("Scientific: {0:E}", 999));

// Format to local currency format e.g. 2 decimal places

// and a £ symbol £99.97

Console.WriteLine(String.Format("Currency:{0:C}", 99.9687654));

// Format to percent 99 multiplied by 100 is 9900%.

Console.WriteLine(String.Format("Percent: {0:P}", 99));

DateTime localDate = DateTime.Now;

// Format the string as a short time

Console.WriteLine(String.Format("Short date:{0:t}", localDate));

// Format the string as a long time

Console.WriteLine(String.Format("Long date: {0:F}", localDate));

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Chapter 15  String handling



630

Figure 15-23 shows the console window after we have entered the inputs required.

Figure 15-23. Output when using String.Format()

 6. Press the Enter key to close the console window.

 String Interpolation

We will continue the use of the String class, but we will now look at how we can use 

string interpolation to format a string to be used in the WriteLine() method.

We have been coding using what is called composite formatting, which is fine, 

and we have used it successfully to display our output. However, from C# 6 the 

recommended way to do the same thing is by using string interpolation because it is 

more flexible and the code is easier to read. String interpolation introduces us to the use 

of the special character $, which identifies the string literal as an interpolated string. An 

interpolated string is a string literal that might contain interpolation expressions. Whoa, 

hold on. What does this word interpolation even mean? Well, it means

The insertion of something of a different

nature into something else

For us it is a fancy word for joining our strings with other non-string variables or 

values, and to build a string interpolation, we will have the following:

• The start as a $

• Next, open and close "" double quotes

• Then, inside the double quotes, our string

• Next to the string, open and close curly braces {} to hold an object

Chapter 15  String handling



631

• Then, inside the open and close curly braces {}, the object and any 

formatting

• All this will be within the () of the WriteLine().

Listing 15-30 shows some code examples, with comments, and their output.

 1. Amend the code, as in Listing 15-30.

Listing 15-30. Using string interpolation

  // Format  the number to 2 decimal places giving 99.97

  Console.WriteLine($"Decimal: {99.9687:0.00}");

  // Format to scientific format giving 9.99E+002

  // E+002 is 10 to the power of 2 or 100)

  Console.WriteLine($"Scientific: {999:E}");

  // Format to local currency format e.g. 2 decimal places

  // and a £ symbol £99.97

  Console.WriteLine($"Currency: {99.9687654:C}");

  // Format to percent 99 multiplied by 100 is 9900%

  Console.WriteLine($"Percent: {99:P}");

  DateTime localDate2 = DateTime.Now;

  // Format the string as a short time

  Console.WriteLine($"Short time: {localDate2:t}");

  // Format the string as a long time

  Console.WriteLine($"Long date: {localDate2:F}");

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Chapter 15  String handling



632

Figure 15-24 shows the console and confirms that we get the same output as 

Figure 15-23, which uses the code shown in Listing 15-29, but we should be thinking that 

our code is easier to read and therefore will be easier to maintain.

Figure 15-24. Interpolation with a single object in the display line

 6. Press the Enter key to close the console window.

In the code of Listing 15-30, we have used one object in the interpolation, so let us 

code an example that uses more than one object.

 7. Amend the code, as in Listing 15-31, to use multiple objects in the 

interpolation.

Listing 15-31. Using string interpolation with more than one object

Console.WriteLine($"Decimal: {99.9687654:0.00} Scientific: {999:E} 

Currency: {99.9687654:C}");

  Console.WriteLine($"The Short date is {localDate:t} while the long date is 

{localDate:F}");

} // End of Main() method

 8. Click the File menu.

 9. Choose Save All.

 10. Click the Debug menu.

 11. Choose Start Without Debugging.

Figure 15-25 shows the console window displaying the formatted objects in each of 

the two display lines.

Chapter 15  String handling



633

Figure 15-25. Interpolation with multiple objects in the display line

 12. Press the Enter key to close the console window.

 String Interpolation: Spacing

We also have the option of controlling spacing within the interpolation by using the 

alignment component. This component uses a signed integer where

• A negative means align left.

• A positive means align right.

If there is a situation where the string is larger than the amount of spacing set aside, 

then the alignment is ignored and the length of the string will be used for the field width, 

therefore overriding the user-assigned numeric value. The padding required to make the 

string the correct alignment will consist of white spaces. Listing 15-32 shows some code 

examples, with comments, and their output.

 1. Amend the code, as in Listing 15-32, to use spacing in string 

interpolation.

Listing 15-32. Using string interpolation with control of spacing

/*

Spacing is achieved using - for left and + for right alignment

In this example we have the first string right aligned in its

20 spaces, the second string left aligned in its 25 spaces,

*/

  Console.WriteLine($"The Short time is {localDate:t} while the long date is 

{localDate:F}");

Chapter 15  String handling



634

  Console.WriteLine($"{"The Short time is",20} {localDate:t} {"while the 

long date is",-25}{ localDate:F}");

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-26 shows the console window displaying, in the second line, the right- and 

left-aligned formatted objects.

Figure 15-26. Second line is controlled using left and right alignment

 6. Press the Enter key to close the console window.

 @ Verbatim

Sometimes in our strings, we will want to use characters such as a backslash, \ , 

and double quotes, " , but the compiler thinks they are code sequences and tries to 

“interpret” them. There will be other times when we want to use escape sequences such 

as \n for a new line and \t for a tab, and in order to achieve this we can use another 

backslash, \ , in front of the escape sequence. Often, we will see the \ in code that uses a 

path name for a file, for example:

"C:\Desktop\Gerry\Code\test.cs"

We will see this in the next chapter on file handling. In the path name we have 

backslashes and double quotes ", which can cause errors in our code. Listing 15-33 

shows some code examples, with comments, and their output.

 1. Amend the code, as in Listing 15-33, to use the double backslash 

in string interpolation.

Chapter 15  String handling



635

Listing 15-33. Using \\ to make the compiler read the sequence literally

/*

Escape sequences

In this example we use the backslash in front of the \n which

is the escape sequence for a new line

*/

Console.WriteLine("Two character pair for a new line is \\n");

/*

Escape sequences

In this example we use the backslash in front of the starting

double quote " to indicate that we wish the " to be displayed

We then use the backslash in front of the \n which is the

escape sequence for a new line and we are saying we want this

\n to be displayed and finally we use the backslash in front

of the ending double quote " to indicate that we wish

the " to be displayed

*/

Console.WriteLine("Two character pair for a new line is \"\\n\" ");

} // End of Main() method

 2. Click the File menu.

 3. Choose Save All.

 4. Click the Debug menu.

 5. Choose Start Without Debugging.

Figure 15-27 shows the console window displaying the \n in the first display line and 

the double quotes and \n in the second line.

Figure 15-27. Output from \\, double backslash sequence

Chapter 15  String handling



636

 6. Press the Enter key to close the console window.

Unfortunately we may have a number of these backslashes in our strings, and it can 

be tedious to type the string and it also makes the code hard to read, for example:

\"C:\\Desktop\\Gerry\\Code\\test.cs\"

So another way to do the same thing is to use verbatim, the @ symbol. Using the 

verbatim @ symbol means backslashes are not interpreted as escape characters. 

However, the downside is that we cannot have special characters in our string when 

using verbatim. Another idiosyncrasy is when we want to display a double quote. We 

need to precede the double quote with another double quote. Listing 15-34 shows the 

same code examples as Listing 15-33, with comments, and their output.

Listing 15-34. Using verbatim, @

/*

@ Verbatim

There is an alternative way to the \\ when we wish to display

or use a \

The alternative is to use a verbatim string which means we use

a regular string but we put a @ symbol before the opening

double quotes. The verbatim now treats all characters in a

literal way, just as they appear

*/

Console.WriteLine(@"Two character pair for a new line is \n");

/*

There is an exception when using the verbatim and that is when

we are wanting to display the double quote character ".

As the " indicates the start and the end of the verbatim string

how can we add them if we want to actually display them?

We might think use the backslash \. But no, we use another

double quote in front of the double quote to be displayed as

shown in this example.

*/

Console.WriteLine(@"Two character pair for a new line is ""\n""");

Chapter 15  String handling



637

 7. Click the File menu.

 8. Choose Save All.

 9. Click the Debug menu.

 10. Choose Start Without Debugging.

Figure 15-28 shows the console window displaying the \n in the first display 

line and the double quotes and \n in the second line, but this time we have used the 

verbatim style.

Figure 15-28. Output from using verbatim, @

 11. Press the Enter key to close the console window.

Now we will look at using the verbatim, @, symbol alongside the string interpolation, 

$, symbol. We will see how C# 8, C# 10, and above handle the use and mixing of these 

symbols.

 What About $@ or @$?
While coding an application, we may also have a need within the string interpolation to 

have double quotes around something, for example, we might want to display "\" as we 

saw in the last example using the verbatim. So, in the string interpolation, we might try to 

use the line of code as shown in Listing 15-35.

Listing 15-35. Compile error when using "" within a verbatim string

Console.WriteLine($"Two character pair for a new line is ""\n""");

Chapter 15  String handling



638

However, if we were to code this line, we would get a compile error, as shown in 

Figure 15-29. The reason for the error is we will have reached the match for the opening 

double quote when we are at the first double quote after the word is.

Figure 15-29. Compile error

From C# 7 we could fix this by using the $ symbol, followed by the verbatim @. This 

means we will code $@, and it is essential that the symbols are in the correct order when 

using C# 7. However, from C# 8 we can also have the order of the symbols reversed, and 

therefore we can now use @$. So, as we are coding for C# 10 and above, we can write our 

code as in Listing 15-36 or as in Listing 15-37, and the results will be the same, as shown 

in Figure 15-30.

Listing 15-36. In C# 7 we use $@

Console.WriteLine($@"Two character pair for a new line is ""\n""");

Listing 15-37. In C# 8 onward we can also use @$

Console.WriteLine(@$"Two character pair for a new line is ""\n""");

Figure 15-30. $@ or @$ gives the same output

From all the different ways we have looked at to display to the console, we can 

choose which “format” to use. What we need to consider is which format suits our 

coding style while at the same time making the code easy to read and therefore easier to 

maintain. Having personal choice also comes with responsibility.

Chapter 15  String handling



639

 Const String Interpolation

Prior to C# 10 we could have constant strings, where a const string is a string that cannot 

be modified. Prior to C# 10 we had to concatenate const strings using the +, and we 

could not use const strings in string interpolation, with the $. However, from C# 10 this 

has changed, and we can now make use of const strings within a string interpolation.

Add a new class.

 1. Right-click the Chapter15 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class ConstantStrings.cs.

 5. Amend the code, as in Listing 15-38, to create a Main() method 

within the class, as this was not produced automatically, and 

delete the unwanted imports.

Listing 15-38. Using const strings

namespace Chapter15

{

  internal class ConstantStrings

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of ConstantStrings class

} // End of Chapter15 namespace

Now we will create four const strings, which we will use in a concatenation.

 6. Create a series of four const strings, as in Listing 15-39.

Chapter 15  String handling



640

Listing 15-39. Adding the four const strings

  static void Main(string[] args)

  {

    /*

    Prior to C# 10 we could have const strings and we

    had to concatenate them using the +

    */

     const string thankYou = "Thank you for purchasing insurance 

with us.\n";

     const string offerMessageHome = "As a thank you we are offering you 10% 

of your next Home insurance \n";

     const string offerMessageBuilding = "As a thank you we are offering you 

5% of your next Building insurance \n";

     const string redeemMessage = "Simply call us and we have this offer 

associated with your account\n ";

} // End of Main() method

Now we will create a new const string for a home message, which will be formed 

by concatenating three of the four const strings. We will then display the new home 

message const string.

 7. Amend the code as in Listing 15-40.

Listing 15-40. Concatenating strings for a home message using the +

    const string redeemMessage = "Simply call us and we have this offer 

associated with your account\n ";

   // Concatenation using +

   const string homeMessage = thankYou + offerMessageHome + redeemMessage;

   Console.WriteLine(homeMessage);

    } // End of Main() method

Now we will create a new const string for a building message, which will be formed 

by concatenating three of the four const strings. We will then display the new building 

message const string.

Chapter 15  String handling



641

 8. Amend the code as in Listing 15-41.

Listing 15-41. Concatenating strings for a building message using the +

   // Concatenation using +

   const string homeMessage = thankYou + offerMessageHome + redeemMessage;

   Console.WriteLine(homeMessage);

    const string buildingMessage = thankYou + offerMessageBuilding + 

redeemMessage;

   Console.WriteLine(buildingMessage);

    } // End of Main() method

 9. Right-click the Chapter15 project in the Solution Explorer panel.

 10. Choose Properties from the pop-up menu.

 11. Choose the Chapter15.ConstantStrings class in the Startup object 

drop-down list, as shown in Figure 15-31.

Figure 15-31. Changing the startup class in the C# project

 12. Close the Properties window.

 13. Click the File menu.

 14. Choose Save All.

 15. Click the Debug menu.

Chapter 15  String handling



642

 16. Choose Start Without Debugging.

Figure 15-32 shows the console output displaying the concatenated const strings.

Figure 15-32. Concatenating strings using the traditional +

 17. Press the Enter key to close the console window.

Now we will use the const strings, but in an interpolated string. We will create a new 

home message const string and assign it the $ string interpolation, which uses the const 

strings. We will then display the new string to the console.

 18. Amend the code, as in Listing 15-42.

Listing 15-42. Interpolated string using const strings – home message

    /*

    From C# 10 we are allowed to concatenate const strings

    with the string interpolation $

    */

     const string homeMessageConst = ($"{thankYou}{offerMessageHome}

{redeemMessage}");

   Console.WriteLine(homeMessageConst);

} // End of Main() method

Now we will create a new building message const string and assign it the $ string 

interpolation, which uses the const strings. We will then display the new string to the 

console.

 19. Amend the code, as in Listing 15-43.

Chapter 15  String handling



643

Listing 15-43. Interpolated string using const strings – building message

    const string homeMessageConst = ($"{thankYou}{offerMessageHome}

{redeemMessage}");

   Console.WriteLine(homeMessageConst);

    const string buildingMessageConst = $"{thankYou}{offerMessageBuilding}

{redeemMessage}";

   Console.WriteLine(buildingMessageConst);

} // End of Main() method

If we look at our code and hover over the opening bracket ( in the code

($"{thankYou}{offerMessageHome}{redeemMessage}");

there may be a warning, as shown in Figure 15-33, stating that we do not require the 

opening and closing brackets, but it is also fine to keep the brackets.

Figure 15-33. Warning that parentheses are not required

Also, if we are not using C# 10, we will see a message, as shown in Figure 15-34, that 

const strings in an interpolated string are not available.

Figure 15-34. Error – const strings not available in this language version

Chapter 15  String handling



644

 20. Click the File menu.

 21. Choose Save All.

 22. Click the Debug menu.

 23. Choose Start Without Debugging.

Figure 15-35 shows the console output displaying the interpolated string, which uses 

the const strings.

Figure 15-35. Interpolated string using const strings displayed

 24. Press the Enter key to close the console window.

 Chapter Summary
So, finishing this long chapter on string handling, we should remember that a string or 

String is one of the built-in reference value types. String is a class, and therefore it has 

methods and properties just like any other class. We have completed a chapter on classes 

and objects where we saw that when we typed the name of the instantiated class into our 

editor and then typed the . (period), the name of the methods and properties appeared. 

In this chapter we saw some of the methods of the String class, for example, Trim(), 

ToUpper(), Split(), and Replace(). While we have covered some of the methods, we have 

Chapter 15  String handling



645

not covered them all, and we could investigate many more of the methods and their use. 

We have also covered different ways to write code in the WriteLine() method, and we 

have also looked at the newer features of C#, including constant interpolated strings and 

then constant strings within interpolated strings available from C# 10.

We are making fantastic progress in our programming of C# applications and we 

should be very proud of our achievements. In finishing this chapter, we have increased 

our knowledge further and we are advancing to our target.

 

Chapter 15  String handling



647

CHAPTER 16

File Handling

 File Handling
In the previous chapter, we gained knowledge of string handling and used many of the 

methods that belong to the String class. We saw some of the new features introduced in 

C# 10 that related to string handling, and now we will look at another important topic, 

file handling. File handling is an important skill since there are many uses for it in the 

commercial environment.

We learned throughout all the previous chapters about the core constructs of a C# 

program, and we have seen how to write data to an array. We also read that an array is 

used to temporarily store data in a data structure, but now we will look at how to store 

the data in the more permanent form of a text file. Once we have seen how to write to a 

text file, we should easily be capable of writing the data to a database, but for this book 

we will not get into the setting up of a database.

It is common for developers to interact with files within their applications. If we think 

about a game application, we will often see that the highest scores are stored, and the 

store could be a file located on the device where the game is being played. If the top ten 

scores are written to the file, then we can envisage that the file will have to be amended 

as new high scores are achieved. With a persistent store, such as a text file, the scores will 

be read after the device is restarted.

In the same manner when we use a web browser to visit a website, the site might 

store a cookie on our computer. The cookie could be a session cookie, which is stored 

temporarily and only exists for the duration of our browser session on this site, or it could 

be a persistent cookie where a small text file is saved on our computer. Text files are also 

widely used as log files, and a log file could consist of historical data related to things that 

occur. An example where we might encounter a log file could be historical data related to 

when we logged on to our insurance account or a bank account. The insurance company 

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_16

https://doi.org/10.1007/978-1-4842-8619-7_16#DOI


648

may record data related to the date and time of our log-in, the date and time when we 

logged out, and what parts of the account we used, for example, the payments window or 

the statements window. Or it might have been the documents window where we can see 

a PDF of our policy.

Within .NET we are provided with many “tools” to help us interact with the file 

system. Files provide a means by which our programs can store and access data. Within 

.NET the System.IO namespace offers us a collection of classes, methods, enumerations, 

and types to read and write data streams and files, using either a synchronous or 

asynchronous approach. In .NET all file handling operations require us to use the 

System.IO namespace.

 An Overview of File Handling
We can think of a file as a series of bytes that exist as a collection of bytes in a named file 

on a persistent storage. Think of a file in terms of

• The file path, which contains

• The drive the file is stored on, which could be a local drive 

or server

• The directory the file is located in, within the drive – this may be a 

nested folder

In C#, when our application code is used to read in from a file or write out to a file, 

we will use a stream object, which can pass and receive data in the form of bytes. We 

can think of a stream as a series of bytes, and we will commonly use streams when we 

are reading or writing a large file where it is more efficient to read the file, chunk by 

chunk, or where we write to the file, chunk by chunk. Streams offer better performance 

in our application because in a write operation, the data is written to a stream first and 

held there until the device being written to is ready to accept the data. Equally, in a read 

operation, the chunks are sent to a stream as they are read from a file on the device, 

before they are used by the application requesting the data.

In using streams, it is not always about file streams being used to read from or write 

to a physical file, for example, a text file (.txt), an image file (.jpg, .jpeg, .bmp, .png), etc. 

Instead, we could use a different type of stream, and some of the possible stream types 

are shown in the following:

Chapter 16  File handling



649

• Network – A network stream will be used to read from or write to a 

network socket, where a socket is one of the endpoints in a two-way 

network communication.

• Memory – A memory stream will be used to read or write bytes 

stored in memory.

• Pipe – A pipe stream will be used to read or write bytes from or to 

various processes.

• Buffer – A buffered stream is used to read or write bytes from or to 

other streams in order to enhance the performance of the operation.

The stream object offers us subclasses that can help when we have to work with any 

of the streams we have mentioned. Even though there are different classes for dealing 

with the different types of streams, there is some commonality. The common and 

regularly used methods will be the following:

• Read( ) method, which allows us to read data from a stream.

• Write( ) method, which allows us to write data to a stream.

• Close( ) method, which frees the file for other processes to use. Not 

closing the stream means other programs will not have access to the 

stream and its data.

• Seek( ) method, which allows us to change position within a stream. 

We can therefore use this method to read from or write to a position 

of our choice within the stream.

 File Class
Now we will look at the File class, having read a little about streams. The C# File class 

provides static methods for file operations such as creating a file, copying a file, moving a 

file, and deleting a file. It also works with the FileStream class to read and write streams. 

So the File class and the FileStream class are different but work together. Table 16-1 

shows some of the methods we might use.

Chapter 16  File handling



650

Table 16-1. File class methods

Method Description

appendalllines(filename, 

lines)

this method will be used to append lines to a file and then close the file. 

Should the file not exist, then the method will create the file for us, write 

the required lines to the new file, and then close the newly created file.

appendalltext(filename, 

strig)

this method will be used to open a file and append the specified string 

to the file, closing the file when it has completed the task. Should 

the file not exist, then the method will create the file for us, write the 

required string to the new file, and then close the newly created file.

exists(filename) this method checks if the specified file exists.

readallBytes(filename) this method will be used to open a binary file and then read the 

contents of the file into a byte array before closing the file.

readalllines(filename) this method will be used to open a file and then read the contents of 

the file line by line before closing the file.

readalltext(filename) this method will be used to open a file and then read the contents of 

the file as one block before closing the file.

WriteallBytes(filename, 

byte[])

this method will be used to create a new file and then write the 

contents of the specified byte array to the file before closing the file. 

Should the file exist, then the method will overwrite it.

Writealllines(filename, 

String[])

this method will be used to create a new file and then write the 

contents of the specified String array to the file before closing the file. 

Should the file exist, then the method will overwrite it.

Writealltext(filename, 

string)

this method will be used to create a new file and then write the 

contents of the specified string to the file before closing the file. Should 

the file exist, then the method will overwrite it.

In Chapter 12, we read the following point:

In terms of the word static, we will see more about it in Chapter 13, but for 
now just accept that static means belonging to this class.

Chapter 16  File handling

https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_13


651

In Chapter 13, we read the following points:

Using the instance of the class, we have access to the methods and fields of 
the class that have the public access modifier and are not static.

Adding the full stop after the instance name means those methods and 
fields that are accessible will be displayed. This is called the dot notation

Well, in .NET the File class contains static methods, and this means they belong 

to the File class, not any instance of the File class. So, when we wish to use the static 

methods, we will not need to make an instance of the File class to access and use these 

methods. Yes, indeed, this is different from what we did in Chapter 13, but it is a 

perfectly acceptable practice, and there are many classes that follow this paradigm.

In the following exercises, where we will use the File class from the System.IO 

namespace, we will be using the File class directly to access any methods. The format for 

calling the methods will be as follows: the word File followed by a period, followed by 

the method name, for example, File.ReadAllLines( ), or File. followed by any of the static 

methods of the File class. A few of the static methods that will appear when the period is 

added in Visual Studio 2022 are shown in Figure 16-1.

Figure 16-1. File class methods

Chapter 16  File handling

https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_13


652

Having gained some knowledge about classes and knowing that when we use the 

File class, we are using the class directly, we will know that we do not need to make 

an instance of the class. We can say this another way: we do not make an instance of 

the class.

Let’s code some C# and build our programming muscle.
Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter16 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter16 project within the solution called CoreCSharp.

 10. Right-click the Chapter16 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter16 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to FileHandling.cs.

 15. Press the Enter key.

 16. Double-click the FileHandling.cs file to open it in the 

editor window.

Chapter 16  File handling



653

 17. Amend the code as, in Listing 16-1, to have a namespace, a class, and 

a Main( ) method and import the System and System.IO namespaces.

Listing 16-1. Class template with the Main( ) method

namespace Chapter16

{

  internal class FileHandling

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of FileHandling class

} // End of Chapter16 namespace

We will initially create a string variable to hold the name of the file being used. We 

will then write the code in a method that checks to see if a file exists, and when we run 

the application, we will see that a message appears telling us that the file does not exist. 

After this we will create the file and once again check that the file does exist.

 18. Amend the code, as in Listing 16-2, to create string variables at the 

class level and assign the filenames to them.

Listing 16-2. String variable assigned the filename

namespace Chapter16

{

  internal class FileHandling

  {

    /*

    Create a variable to hold the file name. Here the file is

    in the current directory, which in this case means it will

    be in the Chapter 16 folder and then inside the bin folder

    of either the Debug or Release folder depending on how we

    have run the application, Start without debugging or Start

    with debugging which means it goes into the debug folder,

    build application means it will go into the Release folder

    */

Chapter 16  File handling



654

    const string policyDetailsFile = "policydetails.txt";

    const string policyDetailsFileNew = "policydetailsnew.txt";

    const string policyDetailsFileCopy = "policydetailscopy.txt";

    static void Main(string[] args)

    {

We will now create a method to check if a file exists using the Exists( ) method, and 

then we will call the method from the Main( ) method.

 19. Amend the code, as in Listing 16-3.

Listing 16-3. Create a method outside Main( ) and call it from inside Main( )

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

    } // End of Main() method

    public static void CheckIfTheFileExists()

    {

      // Check if the file exists and display a message

      if (File.Exists(policyDetailsFile))

      {

        Console.WriteLine("Policy details file exists.");

      }

      else

      {

        Console.WriteLine("Policy details file does not exist.");

      }

    }// End of CheckIfTheFileExists() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 20. Click the File menu.

 21. Choose Save All.

Chapter 16  File handling



655

 22. Click the Debug menu.

 23. Choose Start Without Debugging.

Figure 16-2 shows the console window, which displays the message telling us the file 

does not exist.

Figure 16-2. File does not exist message

 24. Press the Enter key to close the console window.

We will now create a method that uses the Create( ) method to create a new file with a 

specified name and then call the method from the Main( ) method. The Create( ) method 

will create or overwrite a file with the filename given, and in doing so we are given a 

FileStream, which gives us read and write access to the file. Once the stream is opened, 

we need to be sure to close it using the Close( ) method or dispose of the stream in some 

other way.

 25. Amend the code, as in Listing 16-4, to create the method for 

creating the file.

Listing 16-4. Create a new file using the Create( ) method

  }// End of CheckIfTheFileExists() method

  public static void CreateTheFile()

  {

    /*

     Create a file called policydetails.txt and close

     the stream that is opened for us

    */

    File.Create(policyDetailsFile).Close();

  }// End of CreateTheFile() method

  } // End of FileHandling class

} // End of Chapter16 namespace

Chapter 16  File handling



656

 26. Amend the code, as in Listing 16-5, to call the method from the 

Main( ) method.

Listing 16-5. Call our new method that creates the file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

    } // End of Main() method

 27. Click the File menu.

 28. Choose Save All.

 29. Click the Debug menu.

 30. Choose Start Without Debugging.

The console window will now display the same “file does not exist” message. Just 

ignore this for now.

 31. Press any key to close the console window that appears.

 32. In the Solution Explorer click the Chapter16 project.

 33. Click the Show All Files icon, as shown in Figure 16-3.

Figure 16-3. Show All Files

 34. Click the Sync with Active Document button, if the icon is 

displayed, as shown in Figure 16-4.

Chapter 16  File handling



657

Figure 16-4. Refresh the project files view

 35. Expand the bin, Debug, and net6.0 folders.

The text file, which we wrote the code to create, should be displayed in the, initially 

hidden, net6.0 folder, which is inside the Debug folder, which is inside the bin folder, as 

shown in Figure 16-5.

Figure 16-5. Text file has been written to its location

The file is not where we might initially have thought it would be. We must not always 

think about the code we are writing, and its location, but more about the compiled code 

and where it will be located. This is why our text file is located in the bin file, the binary 

file folder. Figure 16-6 shows the containing folder where we can see the text file, but also 

the Chapter16 application file, our program essentially.

Chapter 16  File handling



658

Figure 16-6. Location of the compiled code

 Writing to a File
 WriteAllText( )

We stated earlier that the WriteAllText( ) method is used to create a new file or overwrite 

the existing file and then write the contents of a string to the file. Now we will code 

another method to write data to the file we have created and then call the method from 

the Main( ) method.

 36. Amend the code, as in Listing 16-6, to create the new method.

Listing 16-6. Create the method that will write all text to a file

    }// End of CreateTheFile() method

    public static void WriteAllTextToTheFile()

    {

       string policyDetailsMessage = "This file will hold details of the 

customer policies\r\n";

      File.WriteAllText(policyDetailsFile, policyDetailsMessage);

    }// End of WriteAllTextToTheFile() method

  } // End of FileHandling class

} // End of Chapter16 namespace

Chapter 16  File handling



659

 37. Amend the code, as in Listing 16-7, to call the method from the 

Main( ) method.

Listing 16-7. Call our new method that writes text to the file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

      WriteAllTextToTheFile();

    } // End of Main() method

 38. Click the File menu.

 39. Choose Save All.

 40. Click the Debug menu.

 41. Choose Start Without Debugging.

Figure 16-7 shows the console window, which displays the message telling us the file 

exists, and now we will be able to check that the data has been written to it.

Figure 16-7. File is found and can be written to

 42. Press any key to close the console window that appears.

 43. In the Solution Explorer expand the Chapter16 project.

As we have just shown in Figure 16-7, the application code does create the file and 

we get the message to confirm this. Looking in the file directory structure where our 

Chapter16 project is located and then looking inside the net6.0 folder, within the Debug 

folder, within the bin folder, we will see the text file has been created and the text has 

been written to it.

Chapter 16  File handling



660

 44. Double-click the policydetails.txt file to open it in the editor 

window, as shown in Figure 16-8.

Figure 16-8. Data written to the text file

 WriteAllLines( )

We stated earlier that the WriteAllLines( ) method is used to create a new file or overwrite 

the existing file with the contents of a string array. Now we will code another method to 

write all the data from a string array to the file we have created and then call the method 

from the Main( ) method.

 45. Amend the code, as in Listing 16-8, to create a method.

Listing 16-8. Create the method that will write the array contents to the text file

    }// End of WriteAllTextToTheFile() method

    public static void WriteAllLinesToTheFile()

    {

       string[] policyDetailsArray = {"Home insurance", "ID123456", 

"199.99"};

      File.WriteAllLines(policyDetailsFile, policyDetailsArray);

    }// End of WriteAllLinesToTheFile() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 46. Amend the code, as in Listing 16-9, to call the method from the 

Main( ) method.

Chapter 16  File handling



661

Listing 16-9. Call our new method that writes all lines to the file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

      WriteAllTextToTheFile();

      WriteAllLinesToTheFile();

    } // End of Main() method

 47. Click the File menu.

 48. Choose Save All.

 49. Click the Debug menu.

 50. Choose Start Without Debugging.

 51. Press any key to close the console window that appears.

 52. In the Solution Explorer click the Chapter16 project.

 53. Double-click the policydetails.txt file to open it in the editor 

window, as shown in Figure 16-9.

Figure 16-9. Data from array written to the text file, overriding existing text

 WriteAllBytes( )

We stated earlier that the WriteAllBytes method is used to create a new file or overwrite 

the existing file with the contents of a byte array. Now we will code another method 

where we will

• Create a string variable and assign it a string of text.

• Convert the string to bytes using the GetBytes( ) method from System.

Text.Encoding.ASCII and place the bytes in a byte array.

Chapter 16  File handling



662

• Use the WriteAllBytes( ) method to write the bytes to a new text file.

• Display the bytes by iterating the byte array and displaying each 

element, which will be a byte value from 0 to 255.

 54. Amend the code, as in Listing 16-10, to create the method to 

perform the steps listed previously.

Listing 16-10. Create the method to write a byte array’s contents to the text file

    }// End of WriteAllLinesToTheFile() method

    public static void WriteAllBytesToTheFile()

    {

      string policyMessage = "All policies";

      byte[] policyMessageAsData =

      System.Text.Encoding.ASCII.GetBytes(policyMessage);

      File.WriteAllBytes(policyDetailsFile, policyMessageAsData);

      Console.WriteLine("The bytes written to the file are");

      foreach (byte letterCode in policyMessageAsData)

      {

        Console.WriteLine("The byte written is – " + letterCode);

      }

    }// End of WriteAllBytesToTheFile() method

  } // End of FileHandling class

 55. Amend the code, as in Listing 16-11, to call the 

WriteAllBytesToTheFile( ) method from the Main( ) method.

Listing 16-11. Call our new method that writes a byte array’s contents to the 

text file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

      WriteAllTextToTheFile();

Chapter 16  File handling



663

      WriteAllLinesToTheFile();

      WriteAllBytesToTheFile();

    } // End of Main() method

 56. Click the File menu.

 57. Choose Save All.

 58. Click the Debug menu.

 59. Choose Start Without Debugging.

The console window will appear, as shown in Figure 16-10, and display the ASCII 

byte values that are stored in the byte array.

Figure 16-10. The bytes from the byte array are displayed

 60. Press any key to close the console window that appears.

 61. In the Solution Explorer click the Chapter16 project.

 62. Double-click the policydetails.txt file to open it in the editor 

window, as shown in Figure 16-11, and see that the data is written 

to the file.

Chapter 16  File handling



664

Figure 16-11. Data from array written to the text file

We have completed code demonstrating the following methods from the File class:

• WriteAllText( )

• WriteAllLines( )

• WriteAllBytes( )

These File class methods will cause any existing text to be overwritten, but if we 

wanted to keep the existing text, then we could use the Append versions of these 

methods:

• AppendAllText( ) or AppendAllTextAsync( )

• AppendAllLines( ) or AppendAllLinesAsync( )

• AppendAllBytes( )

We will now write code demonstrating some methods from the File class that 

perform the “opposite” operations from the write methods we have used. These will be 

read methods and we will be looking to use

• ReadAllText( )

• ReadAllLines( )

• ReadAllBytes( )

There are also async versions of these three methods: ReadAllTextAsync( ), 

ReadAllLinesAsync( ) and ReadAllBytesAsync( ).

Chapter 16  File handling



665

 Reading from a File
 ReadAllText( )

We stated earlier that the ReadAllText( ) method is used to open a file and then read 

the contents of the file as one block, before closing the file. Now we will code another 

method to read all the text from a new file, which we will create, and then call the 

method from the Main( ) method.

Create the new text file.

 1. Right-click the policydetails.txt file in the net6.0 folder, which 

is inside the Debug folder, inside the bin folder, in the Solution 

Explorer window.

 2. Choose Copy.

 3. Right-click the net6.0 folder.

 4. Choose Paste.

 5. Right-click the newly pasted policydetails – Copy.txt file.

 6. Choose Rename.

 7. Rename the file policydetailsnew.txt.

 8. Double-click the policydetailsnew.txt file to open it in the 

editor window.

 9. Amend the text file by adding some additional lines of text. Listing 

16-12 shows some additional lines added to the one line that 

previously existed.

Listing 16-12. Additional lines added to the policydetailsnew.txt file

All policies

Policy AU123456

Policy HO987654

Policy BO234580

Policy LI675423

Chapter 16  File handling



666

We will now add the new method to the FileHandling.cs file and then call it from the 

Main() method.

 10. Amend the FileHandling.cs code, as in Listing 16-13, to create 

the method.

Listing 16-13. Create the method to read all contents of the text file

    }// End of WriteAllBytesToTheFile() method

    public static void ReadAllTextFromTheFile()

    {

     // Open the file to be read from

     string textReadFromFile =

     File.ReadAllText(policyDetailsFileNew);

     Console.WriteLine("The data read is:\n" + textReadFromFile);

    }// End of ReadAllTextFromTheFile() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 11. Amend the code, as in Listing 16-14, to call the method from the 

Main( ) method.

Listing 16-14. Call our new method that reads all contents of the text file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

      WriteAllTextToTheFile();

      WriteAllLinesToTheFile();

      WriteAllBytesToTheFile();

      ReadAllTextFromTheFile();

    } // End of Main() method

 12. Click the File menu.

 13. Choose Save All.

Chapter 16  File handling



667

 14. Click the Debug menu.

 15. Choose Start Without Debugging.

The console window will appear, as shown in Figure 16-12, and show the contents of 

the file that has been read.

Figure 16-12. Data read from the file is displayed

 16. Press any key to close the console window that appears.

 ReadAllLines( )

We stated earlier that the ReadAllLines( ) method is used to open a file and then read 

the contents of the file line by line before closing the file. Now we will code another 

method to

• Read all the lines from the file we have created

• If it is the first line, display the text as it is.

• If it is not the first line, use the Substring( ) method to read the policy 

number part of the line, which starts at character 7.

• Display a message showing the policy number.

We will then call the method from the Main( ) method.

 17. Amend the code, as in Listing 16-15, to create the method.

Chapter 16  File handling



668

Listing 16-15. Create the method to read all lines of the text file

}// End of ReadAllTextFromTheFile() method

public static void ReadAllTextLinesFromTheFile()

{

  // Open the file to be read from

  string[] textLinesReadFromFile = File.ReadAllLines(policyDetailsFileNew);

  int lineCounter = 0;

  foreach (string lineReadFromFile in textLinesReadFromFile)

  {

    if(lineCounter > 0)

    {

      string policyNumber = lineReadFromFile.Substring(7);

      Console.WriteLine("The policy number is " + policyNumber);

    }

    else

    {

      Console.WriteLine(lineReadFromFile);

    }

    lineCounter++;

  }// End of foreach

}// End of ReadAllTextLinesFromTheFile() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 18. Amend the code, as in Listing 16-16, to call the method from the 

Main( ) method.

Listing 16-16. Call our new method that reads all lines of the text file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

      WriteAllTextToTheFile();

Chapter 16  File handling



669

      WriteAllLinesToTheFile();

      WriteAllBytesToTheFile();

      ReadAllTextFromTheFile();

      ReadAllTextLinesFromTheFile();

    } // End of Main() method

 19. Click the File menu.

 20. Choose Save All.

 21. Click the Debug menu.

 22. Choose Start Without Debugging.

 23. Press any key to close the console window, as shown in 

Figure 16-13.

 ReadAllBytes( )

We stated earlier that the ReadAllBytes( ) method is used to open a binary file and then 

read the contents of the file into a byte array before closing the file. Now we will code 

another method to read all the bytes from the file we created and add them to a byte 

array. We will then call the method from the Main( ) method.

 24. Amend the code, as in Listing 16-17, to create the method.

Figure 16-13. Data read from the lines of the file is displayed

Chapter 16  File handling



670

Listing 16-17. Create the method to read all bytes of the text file

    }// End of ReadAllTextLinesFromTheFile() method

    public static void ReadAllBytesFromTheFile()

    {

      /*

      Open the file to read from and read all the bytes placing

      them in a byte string

      */

       byte[] bytesReadFromTheFile = File.ReadAllBytes(policyDetails 

FileNew);

      foreach (byte byteReadFromFile in bytesReadFromTheFile)

      {

        Console.WriteLine("The byte is " + byteReadFromFile);

      }

    }// End of ReadAllBytesFromTheFile() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 25. Amend the code, as in Listing 16-18, to call the method from the 

Main( ) method.

Listing 16-18. Call our new method that reads all bytes of the text file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

      WriteAllTextToTheFile();

      WriteAllLinesToTheFile();

      WriteAllBytesToTheFile();

      ReadAllTextFromTheFile();

      ReadAllTextLinesFromTheFile();

      ReadAllBytesFromTheFile();

    } // End of Main() method

Chapter 16  File handling



671

 26. Click the File menu.

 27. Choose Save All.

 28. Click the Debug menu.

 29. Choose Start Without Debugging.

 30. Press any key to close the console window, as shown in Figure 16-14.

 Copy a File
Up to now we have been reading from and writing to files without any errors, exceptions, 

occurring. However, when we attempt to read and write files, things can go wrong, for 

example:

• The file might not exist.

• The file might be readonly when we attempt to write to it.

• The file may be damaged.

• We may have the filename spelled incorrectly.

C# gives us a try catch block that can help us avoid getting an exception error when 

we perform file handling processes. The C# try catch block uses the try and catch 

keywords, and the try catch block is placed around the code that we think could throw 

Figure 16-14. Some of the data read from the file to a byte array

Chapter 16  File handling



672

an exception. When an exception is thrown, the try catch block will handle the exception 

and therefore ensure that our application does not cause an unhandled exception. Since 

we are dealing with files and we are using the System.IO namespace, we can use the 

catch section to catch any IO exceptions.

 Copy( )

The Copy( ) method is used to copy an existing file to a new file, but it cannot overwrite a 

file with the same name, unless specifically told to. The Copy( ) method has two forms:

• Copy(String, String)

This form copies an existing file to a new file, but overwriting a file 

with the same name is not permitted.

• Copy(String, String, Boolean)

This form copies an existing file to a new file, and overwriting a file 

with the same name is permitted.

 31. Amend the code, as in Listing 16-19, to create a method that uses 

the Copy( ) method from the File class to copy the specified source 

file to the specified destination file.

Listing 16-19. Create the method to copy the file

    }// End of ReadAllBytesFromTheFile() method

    public static void CopyAFile()

    {

      // Use a try catch construct to catch any exceptions

      try

      {

        /*

        Copy the contents of the source file policydetailsnew.txt

        to the destination file policydetailscopy.txt

        */

      File.Copy(policyDetailsFileNew,policyDetailsFileCopy,true);

       Console.WriteLine("The copying process was successful.");

      } // End of try block

Chapter 16  File handling



673

      catch (IOException exceptionFound)

      {

        Console.WriteLine("Copying failed with exception:");

        Console.WriteLine(exceptionFound.Message);

      } // End of catch block

    }// End of CopyAFile() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 32. Amend the code, as in Listing 16-20, to call the method from the 

Main( ) method.

Listing 16-20. Call our new method that copies the file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

      WriteAllTextToAFile();

      WriteAllLinesToAFile();

      WriteAllBytesToAFile();

      ReadAllTextFromAFile();

      ReadAllTextLinesFromAFile();

      ReadAllBytesFromAFile();

      CopyAFile();

    } // End of Main() method

 33. Click the File menu.

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

Figure 16-15 shows the output that indicates a successful copying process.

Chapter 16  File handling



674

Figure 16-15. File success message

 37. Press any key to close the console window that appears.

Looking in the net6.0 folder, inside the Debug folder, inside the bin folder, we should 

see the file policydetailscopy as shown in Figure 16-16.

Figure 16-16. File copied

 Delete a File
In a similar manner to reading a file or writing a file where we could get an exception, 

when we wish to delete a file, we could get an exception, so we will use the try catch 

block around the process used to delete a file.

Chapter 16  File handling



675

 Delete( )

The Delete( ) method is used to delete an existing file.

 38. Amend the code, as in Listing 16-21, to create a method that uses 

the Delete( ) method from the File class to delete the specified 

source file.

Listing 16-21. Create the method to delete the file

    }// End of CopyAFile() method

    public static void DeleteAFile()

    {

      // Use a try catch construct to catch any exceptions

      try

      {

        // Delete the file policydetailscopy.txt

        File.Delete("policydetailscopy.txt");

        Console.WriteLine("The file deletion was successful.");

      } // End of try block

      catch (IOException exceptionFound)

      {

       Console.WriteLine("File deletion failed with exception:");

       Console.WriteLine(exceptionFound.Message);

      } // End of catch block

    }// End of DeleteAFile() method

  } // End of FileHandling class

 39. Amend the code, as in Listing 16-22, to call the method from the 

Main( ) method.

Listing 16-22. Call our new method that deletes a file

    static void Main(string[] args)

    {

      CheckIfTheFileExists();

      CreateTheFile();

Chapter 16  File handling



676

      WriteAllTextToAFile();

      WriteAllLinesToAFile();

      WriteAllBytesToAFile();

      ReadAllTextFromAFile();

      ReadAllTextLinesFromAFile();

      ReadAllBytesFromAFile();

      CopyAFile();

      DeleteAFile();

    } // End of Main() method

 40. Click the File menu.

 41. Choose Save All.

 42. Click the Debug menu.

 43. Choose Start Without Debugging.

The output, as shown in Figure 16-17, shows the deletion was successful.

Figure 16-17. Deletion successful

 44. Press any key to close the console window that appears.

Looking in the net6.0 folder, inside the Debug folder, inside the bin folder, we should 

see the copied file has been deleted as shown in Figure 16-18.

Chapter 16  File handling



677

Figure 16-18. File deleted

 StreamReader Class
The C# StreamReader class provides methods that allow us to read the characters of a file 

into a stream. There is also a StreamWriter class that allows us to write to a stream, and 

we will discuss this in the next section. StreamReader and StreamReader hide us from 

some of the complexities of streams, and we will look at this in the “FileStream” section.

 Stream

First, we might want to think about what a stream is and why we would use one. Well, 

let's think about downloading a film from our favorite online store. Do we expect the 

whole video to be downloaded before we watch it? Well, the answer is probably not, 

and this is where the idea of a stream comes in. The stream will act as an intermediary, 

between the sender and the receiver, where the sender starts delivering the movie, 

chunk by chunk, and the stream accepts the chunk and starts to pass the data to the 

receiver. The speed at which the sender can send the movie data and the speed at which 

the receiving device can accept the data could well be different, so the stream holds the 

data and “feeds” the receiver at a speed that suits it. In the meantime, as this streaming 

process is taking place, we are able to start watching the movie as the first chunks have 

arrived, and the other chunks will be available when we need them. We should therefore 

Chapter 16  File handling



678

think about the stream as having the objective of making for a smooth process when 

performing a read and write operation. Also, we should remember that it’s not just 

movies that the principle of streaming applies to.

 Synchronous and Asynchronous

Second, we might want to think about what synchronous and asynchronous mean 

when we apply the terms to file handling operations. Synchronous is also known as sync, 
and asynchronous is also known as async, and there will be different methods used 

depending on whether we use sync or async. As an initial thought, we might wish to 

think of the concepts as follows:

• With synchronous processes, the first process or task needs to 

complete before the next process starts. We therefore have the first 

process “blocking” other processes while it completes its task fully.

• With asynchronous processes, the first process or task does not 

need to complete before the next process starts. The processes can 

run in parallel. One process does not block the other processes, and 

we therefore will hear the term “non-blocking” in the context of 

asynchronous processing.

Now, if we think about synchronous and asynchronous approaches within our C# 

code, we might see that the synchronous approach could cause delays in the execution 

of a process or program. Many programmers will therefore use an asynchronous 

approach to overcome the delays. In programming we will hear mention of threading, 

the use of multiple threads where each thread will return after making a request, so that 

the program can get on with performing the other processes it has to perform.

Looking at another programming language called JavaScript, we will see that it is 

by default synchronous and single-threaded, meaning our JavaScript code could not 

create new threads and run in parallel. On the other hand, when Node.js was created, 

it introduced a non-blocking input and output (I/O) environment, and there is the 

concept of a callback, which is used to inform one process when its work has been 

completed. Think of it like the “chef” who takes the order for eggs and toast from child 

1. They process the order by making the eggs and toast, and then they call the first child 

when their order is complete, a callback. We have probably experienced a callback or 

asynchronous process in our everyday life.

Chapter 16  File handling



679

 StreamReader Class Methods

StreamReader uses the TextReader class as its base class and has methods and one 

property that can help us perform operations on our stream of data. Table 16-2 shows 

some of the StreamReader methods we might use, but we should be aware that there are 

many overloads of these methods that can be used.

Table 16-2. StreamReader class methods and property

Method Description

read( ) this method will be used to read the next set of characters from an input 

stream and then move to the next.

readasync( ) this method will be used to asynchronously read a sequence of bytes from 

a stream and then move to the next position in the stream to read the next 

sequence of bytes.

readline( ) this method will be used to read a line of characters from a stream returning 

the data read as a string.

readlineasync( ) this method will be used to read a line of characters from a stream in an 

asynchronous manner returning the data read as a string.

readtoend( ) reads all characters from the current position to the end of the stream.

Property
endOfStream this property of the class returns a value that indicates if we are at the end of 

the stream. it is a Boolean value, so it is either true or false.

 StreamWriter Class
The C# StreamWriter class provides methods that allow us to write characters to a 

stream with specific encoding and by default uses UTF-8 encoding. UTF-8 is used as 

an encoding mechanism for Unicode, and Unicode is a standard that assigns a unique 

number to every character. UTF is an acronym for Unicode Transformation Format.

The StreamWriter class inherits from the TextWriter class so it makes use of the 

methods in this TextWriter class. Table 16-3 shows some of the StreamWriter methods 

we might use, but we should be aware that there are many overloads of these methods 

that can be used.

Chapter 16  File handling



680

Table 16-3. StreamWriter class methods and property

Method Description

Write( ) this method will be used to write a sequence of bytes to a stream and then 

advance to the position after this sequence of bytes.

Writeasync( ) this method will be used to asynchronously write a sequence of bytes to a 

stream and then advance to the position in the stream after this sequence of 

bytes.

Writeline( ) this method will be used to write a formatted string and a new line to a 

stream.

Writelineasync( ) this method will be used to asynchronously write a sequence of bytes to a 

stream followed by a line terminator.

Property

endOfStream gets a value that indicates if the current stream position is at the end of the 

stream. the return value is true if the current stream position is at the end of 

the stream; otherwise, it will be false.

 Reading from a Stream
We will now use the StreamReader Read( ) method and the EndOfStream property in 

some code. Initially, we will create a method that uses the Read( ) method to read the 

specified text and then display the byte data. When we open a stream, we should always 

close it, so we will use the Close( ) method to do this.

 1. Amend the code, as in Listing 16-23.

Listing 16-23. Read( ) and Peek( ) to read file characters, close StreamReader

    }// End of DeleteAFile() method

    public static void UseStreamReaderRead()

    {

      try

      {

        if (File.Exists(policyDetailsFile))

Chapter 16  File handling



681

        {

          // Create an instance of the StreamReader class

           StreamReader myStreamReader = new StreamReader(policyDetailsFile);

          /*

          Iterate the instance of the StreamReader while there

          is data, which means the Peek() method returns an

          integer greater than 0

          */

          while (myStreamReader.Peek() > 0)

          {

            Console.Write(myStreamReader.Read() + "\t");

          }

          myStreamReader.Close();

        }

        else

        {

        }

      }

      catch (Exception exceptionFound)

      {

        Console.WriteLine("Process failed with the exception:");

        Console.WriteLine(exceptionFound.Message);

      }

      Console.WriteLine();

    }// End of UseStreamReaderRead() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 2. Call the method from the Main( ) method, as in Listing 16-24.

Listing 16-24. Call our new method that reads the specified text

      CopyAFile();

      DeleteAFile();

      UseStreamReaderRead();

    } // End of Main() method

Chapter 16  File handling



682

 3. Click the File menu.

 4. Choose Save All.

 5. Click the Debug menu.

 6. Choose Start Without Debugging.

The output, as shown in Figure 16-19, shows the bytes of the file that has been read. 

The file contains the words All policies, which is 12 characters, so we see 12 byte codes. 

Each of the bytes represents an ASCII character, for example, 65 is A and 32 is a space.

Figure 16-19. Bytes read from file – these bytes represent the string All policies

 7. Press any key to close the console window that appears.

 Writing to a Stream
Rather than using the try catch block, we will use a different approach to illustrate that a 

using block can be used if we wish to have garbage collection (GC) handled for us. Using 

is very helpful and can be used with the StreamReader and StreamWriter classes. With 

the using block, we wrap the StreamWriter process inside it. Using handles disposal of 

any objects that are not required; it is not a try catch being used to catch exceptions, but 

rather a way to ensure disposal of objects we are not using.

We will discuss the using statement at the end of this chapter, but for now we will 

use the pre–C# 8 version of the using statement, and later we will see how there is an 

alternative way to use the using without the curly braces.

We will now use the StreamWriter WriteLine( ) method in some code along with the 

using block:

• We will create the using block.

• Using will be given an instance of the StreamWriter class.

Chapter 16  File handling



683

• In creating the instance of the StreamWriter class, we will use the 

constructor, which will accept a true attribute, and this indicates that 

the content should be appended to the file, rather than overwriting 

the contents.

• We will use the WriteLine( ) method to write some lines to the file.

• We will also add an extra WriteLine( ) so our new data starts on a 

new line.

 8. Amend the code, as in Listing 16-25.

Listing 16-25. Making use of the using block

 }// End of UseStreamReaderRead() method

 public static void UseStreamWriterWriteInUsingBlock()

 {

   using (StreamWriter myStreamWriter =

                new StreamWriter(policyDetailsFile, true))

   {

     try

     {

     if (File.Exists(policyDetailsFile))

     {

       myStreamWriter.WriteLine("");

       myStreamWriter.WriteLine("Auto insurance");

       myStreamWriter.WriteLine("ID987654");

       myStreamWriter.WriteLine("299.99");

       Console.WriteLine("The data has been written to file");

        }

        else

        {

        }

      }

      catch (Exception exceptionFound)

Chapter 16  File handling



684

      {

       Console.WriteLine("Process failed with the exception:");

          Console.WriteLine(exceptionFound.Message);

        }

      } // End of using block

    }// End of UseStreamWriterWriteInUsingBlock() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 9. Call the method from the Main( ) method, as in Listing 16-26.

Listing 16-26. Call our new method

      DeleteAFile();

      UseStreamReaderRead();

      UseStreamWriterWriteInUsingBlock();

    } // End of Main() method

 10. Click the File menu.

 11. Choose Save All.

 12. Click the Debug menu.

 13. Choose Start Without Debugging.

 14. Press any key to close the console window that appears.

 15. Double-click the policydetails.txt file to open it in the 

editor window.

Figure 16-20 shows the lines of text have been added, but because of the other 

code we have, the policydetails.txt starts blank and our new method adds its data. We 

therefore do not see the effect of the true, which allows appending data to the file. If we 

wanted to see this append effect, we would need to comment out the other method calls 

in the Main( ) method. But for now, we will accept that appending has occurred.

Chapter 16  File handling



685

Figure 16-20. WriteLine() method inside a using block

Great, the StreamWriter class has been used with its WriteLine( ) method to write 

data to the file.

 Async Methods and Asynchronous Programming
When we use input and output operations such reading from and writing to a database 

or text file, we should consider using asynchronous programming. To assist in using 

asynchronous programming, the C# language offers us Task-based Asynchronous 

Pattern (TAP). This effectively means we do not have to worry about the callbacks we 

discussed earlier, as they will be handled for us. When we use this asynchronous pattern, 

two keywords are important, async and await. The important concepts to understand are 

as follows:

• We must use the async keyword to convert our method into an async 
method, which then allows us to use the await keyword within the 

body of the method. We should not use async on void methods, and 

we should use Task as the return type for non-void methods.

• The await keyword acts to put the caller on hold while the async 

method is performing what it needs to perform, but in the meantime 

our program can do other things until we get control back.

Listing 16-27 shows an example of using Task and await, while Listing 16-28 shows 

how we call the async method that returns a Task.

So how can using asynchronous programming help us when reading and writing 

files? Well, writing to a file in an asynchronous manner allows our program to continue 

doing other things while the file is being written to. If we are writing small files, the 

asynchronous approach will hardly be noticeable, but when the files become much 

larger, which will be the case in many business applications, it will make a big difference. 

The same principle applies when reading a large file in an asynchronous manner. Our 

program can get on with doing other things while it awaits the end of the reading process.

Chapter 16  File handling



686

 WriteLineAsync

We will now use the StreamWriter WriteLineAsync( ) method to write data. This is almost 

the same code as in Listing 16-25, but we are using a WriteLineAsync() method instead 

of the ordinary WriteLine( ) method, and we will still have our code in a using block. 

We read earlier that the WriteLineAsync( ) method is used to asynchronously write a 

sequence of bytes to a stream followed by a line terminator.

 16. Amend the code as in Listing 16-27.

Listing 16-27. Writing data asynchronously with WriteLineAsync( )

    }// End of UseStreamWriterWriteInUsingBlock() method

    public static async Task<int> WriteCharactersAsynchronously()

    {

      int count = 0;

       using (StreamWriter myStreamWriter = File.

CreateText("asynctextfile.txt"))

      {

        await myStreamWriter.WriteLineAsync("Life insurance");

        await myStreamWriter.WriteLineAsync("LF123456");

        await myStreamWriter.WriteLineAsync("99.99");

        count += 3;

      }

      return count;

    }// End of WriteCharactersAsynchronously() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 17. Call the method from the Main( ) method, as in Listing 16-28.

Listing 16-28. Call our new method that writes data asynchronously

      UseStreamWriterRead();

      UseStreamWriterWriteInUsingBlock();

      Task<int> task = WriteCharactersAsynchronously();

    } // End of Main() method

Chapter 16  File handling



687

 18. Click the File menu.

 19. Choose Save All.

 20. Click the Debug menu.

 21. Choose Start Without Debugging.

 22. Press any key to close the console window that appears.

 23. Double-click the asynctextfile.txt file, in the net6.0 folder, to open 

it in the editor window.

Figure 16-21 shows the lines of text have been added, just like in the last example, 

but this time using an asynchronous method. Remember that we will not see any real 

difference when the code runs because we will be writing small amounts of data.

Figure 16-21. Data written to new file in an asynchronous manner

 FileStream
When looking at this section, we need to be aware that we have used the StreamReader 

and StreamWriter classes and they have shielded us from certain “complexities.” Now we 

are going to see how we can do things that the StreamReader and StreamWriter shield 

us from.

 FileModes

A file stream needs to understand the file mode to be used, and the FileMode 

enumeration holds the modes. For now, we will not concern ourselves with what an 

enumeration is, as we will have a full chapter on enumerations later in the book. The 

FileMode fields assist us in manipulating files. Table 16-4 shows some of the constants 

included in the FileMode enum, along with a short description, while Table 16-5 shows 

some of the stream methods we might see,

Chapter 16  File handling



688

Table 16-4. The FileMode fields, which dictate the file mode

Field Description

Open this will open the file.

OpenOrCreate this will open the file if it exists and creates a new file if it does not exist.

append this will open the file and seeks the end of the file. if the file does not exist, it will be 

created.

Create this will create a new file, and if the file already exists, it will be overwritten.

Createnew this will create a new file, and if the file already exists, an exception is thrown – 

more about this shortly.

truncate this will open a file and truncate it so the size is zero bytes.

Table 16-5. Stream class methods

Method Description

Seek( ) this method will be used to set the position within a stream.

read( ) this method will be used to read a sequence of bytes from the stream and then move 

by the number of bytes read to the new position within the stream.

readasync( ) this method will be used to asynchronously read a sequence of bytes from the 

stream and then move by the number of bytes read to the new position within the 

stream.

Write( ) this method will be used to write a sequence of bytes to the stream and then move 

by the number of bytes written to the new position within the stream.

Writeasync( ) this method will be used to asynchronously write a sequence of bytes to the stream 

and then move by the number of bytes written to the new position within the stream.

We will now create a method that will

• Create a byte array from a string of characters.

• Display the elements of the byte array.

• Create a file to hold the byte data and use an appropriate method to 

add the bytes to it.

Chapter 16  File handling



689

• Use the Seek( ) method to move to a position in the FileStream, 

the stream.

• Read each byte from this new position to the end of the stream.

• Display the data that has been read.

Having displayed the byte elements, we will be able to confirm that the data is 

displayed from the new position found using the Seek( ) method.

 24. Amend the code, as in Listing 16-29, to create the method.

Listing 16-29. Using the Seek() method

    } // End of WriteCharactersAsynchronously() method

    public static void FileStreamSeekReadAndWrite()

    {

      const string claimsFileName = "claims.dat";

      int startPosition = 6;

      // Create a string and then convert it to a byte array

      string claimantsName = "Gerry Byrne";

      byte[] claimantsByteArray =

       System.Text.Encoding.ASCII.GetBytes(claimantsName);

      Console.WriteLine("The bytes written to the file are");

      // Iterate the byte array and display each byte

      foreach (byte byteInTheArray in claimantsByteArray)

      {

        Console.WriteLine(byteInTheArray);

      } // End of foreach block

      Console.WriteLine("The bytes read from the file are");

       using (FileStream fileStream = new FileStream(claimsFileName, 

FileMode.Create))

      {

         for (int counter = 0; counter< claimantsByteArray.Length; 

counter++)

Chapter 16  File handling



690

        {

          fileStream.WriteByte(claimantsByteArray[counter]);

        } // End of for block

        // Move to new position in the file stream

        fileStream.Seek(startPosition, SeekOrigin.Begin);

         for (int counter = 0; counter< fileStream.Length - startPosition; 

counter++)

        {

          Console.WriteLine(fileStream.ReadByte());

        } // End of for block

      } // End of using block

    } // End of FileStreamSeekReadAndWrite() method

  } // End of FileHandling class

} // End of Chapter16 namespace

 25. Call the method from the Main( ) method, as in Listing 16-30.

Listing 16-30. Call our new FileStreamSeekReadAndWrite( ) method

      UseStreamWriterWriteInUsingBlock();

      Task<int> task = WriteCharactersAsynchronously();

      FileStreamSeekReadAndWrite();

    } // End of Main() method

 26. Click the File menu.

 27. Choose Save All.

 28. Click the Debug menu.

 29. Choose Start Without Debugging.

Figure 16-22 shows the console output.

Chapter 16  File handling



691

Figure 16-22. Data read from file starting at index 6

 30. Press any key to close the console window that appears.

 Chapter Summary
So, finishing this chapter on file handling, we should be aware that C# file handling is 

taken care of by the namespace System.IO. We have used some of the methods of the File 

class including Exists( ), Create( ), ReadAllText( ), WriteAllText( ), Copy( ), and Delete( ). 

We also looked at the StreamReader class with methods such as Read( ), ReadAsync( ), 

and the synchronous and asynchronous concepts in programming. Likewise, we looked 

at the StreamWriter class and the methods WriteLine( ) and WriteLineAsync( ). The 

FileStream class was then introduced when we looked at the Seek( ), ReadByte( ), and 

WriteByte( ) methods, but we should be aware that all stream types work in roughly the 

same way. We also looked at exception handling with the try catch code block and the 

using statement.

It is great to be able to read from and write to a text file, and we could in the future 

apply a similar concept to reading from and writing to a database.

Chapter 16  File handling



692

We are making fantastic progress in programming our C# applications. We should be 

proud of our achievements. In finishing this very important chapter, we have increased 

our knowledge further and we are advancing to our target.

 

Chapter 16  File handling



693

CHAPTER 17

Exception Handling

 Exceptions
In the previous chapter on file handling, we gained knowledge of different classes 

and methods that could be used to read from and write to a file. More importantly, 

when we used the methods CopyAFile(), DeleteAFile(), and UseStreamWriterRead(), 

we introduced the concept of the try catch block. In this chapter we will enhance our 

knowledge and skills in exception handling.

 What Is an Exception?
We should think of an exception as an “exceptional event” that occurs when an 

application program is being executed. If we think about a time when we have seen an 

unhandled exception in our personal life, we will understand the consequences of such 

exception. What about when we have been dependent on information from a screen 

at an airport or railway station and the screen displayed a technical message of the 

unhandled exception? This may be an inconvenience to us, but thankfully it is unlikely 

to cause us any serious damage. However, what if we required the use of an emergency 

device in our home and the device screen displayed an exception! This situation may be 

more inconvenient or indeed life-threatening. Unfortunately, when we develop code, 

there are many different things within our code that can cause an exception. There 

can also be exceptions outside our code that will cause our code to stop working and 

are outside our control. Some examples of exceptions that we might encounter are the 

following:

• When the code is required to read a text file, as in Listing 17-1, 

but the text file is corrupted or not at the location, we get a 

FileNotFoundException. Figure 17-1 shows the exception when 

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_17

https://doi.org/10.1007/978-1-4842-8619-7_17#DOI


694

the file is not found because the filename has been entered as 

policydetail.txt instead of policydetails.txt.

Figure 17-1. FileNotFoundException – filename is incorrect

Listing 17-1. Code will cause a FileNotFoundException

  internal class Exceptions

  {

    static void Main(string[] args)

    {

      StreamReader myStreamReader = new

                   StreamReader("policydetail.txt");

      while (myStreamReader.EndOfStream)

      {

        Console.Write(myStreamReader.Read() + "\t");

      }

      myStreamReader.Close();

    } // End of Main() class

  } // End of Exceptions class

• When the code is required to read a database and the SQL server 

returns a SQL exception.

• When iterating an array and trying to go past the last item, we  

get an IndexOutOfRangeException, or out-of-bounds exception. 

Listing 17-2 shows code that gives an IndexOutOfRangeException as 

shown in Figure 17-2.

Chapter 17  exCeption handling



695

Figure 17-2. Exception – index out of bounds

Listing 17-2. Code will cause an IndexOutOfRangeException

static void Main(string[] args)

{

  string[] hardwareTypes = new String[3];

  hardwareTypes[0] = "Laptop";

  hardwareTypes[1] = "Desktop";

  hardwareTypes[2] = "Printer";

  for (int counter = 0; counter < 4; counter++)

  {

  Console.WriteLine($"The hardware type is

  {hardwareTypes[counter]}");

  }

 } // End of Main() class

} // End of Exceptions class

• Performing a calculation involving division that is dependent on 

the user input for the divisor. When a 0 is input by the user, the 

calculation will cause a DivideByZeroException. Listing 17-3 shows 

code that gives a divide-by-zero exception as shown in Figure 17-3.

Figure 17-3. Exception – divide-by-zero exception

Chapter 17  exCeption handling



696

Listing 17-3. Code will cause a DivideByZeroException

  internal class Exceptions

  {

    static void Main(string[] args)

    {

      int hardwareTypeValue = 0;

      double premium = 100 / hardwareTypeValue;

      Console.WriteLine(premium);

    } // End of Main() class

  } // End of Exceptions class

When we get a .NET exception, it is an object that holds information about the 

specific error. We can then access the object within our code and display whatever 

information we require.

When we code, we need to use exception handling when there is the possibility of an 

error happening, and we can use a number of different “tools,” which include

• The try block, which is used to segment code that can cause an 

exception.

• The catch block(s), which is associated with the try block and 

handles the caught exception. This is an optional block if we have the 

try and finally blocks.

• A finally block, where we write code that will execute whether there 

is a caught exception or not. This is an optional block if we have the 

try and catch blocks.

We will now look in more detail at the try, catch, and finally blocks of code.

 try
The try block will contain C# code between open and close curly braces {}. The reason 

we would enclose lines of code within a try block is that we identify them as being 

capable of causing an exception. Obviously, when we have an exception, we must handle 

the exception, or the code will “crash.” In order to handle the exception caught in the try 

block, we must associate the try with a catch block. The syntax for the try block will be 

similar to

Chapter 17  exCeption handling



697

      try

      {

        // code statements that may cause an exception

      }

 catch
The catch block will contain C# code between open and close curly braces {}. The code 

will be used to handle the caught exception and could include displaying the details 

from the error object, for example, the stack trace or specific error message. We can 

have one catch block or more, but if we have only one catch block, then it can be used 

to handle all exceptions. If we have more than one catch block, when the try block has 

an error, it will be handled by the appropriate catch block. Looking back at our common 

exceptions, we might have a first catch block for a DivideByZeroException and a second 

one for a FileNotFoundException and so on. When the try block tries to divide by zero, 

then the first catch block will be executed:

      Int numberOne = 5, numberTwo = 0;

      try

      {

        double answer = numberOne / numberTwo;

      }

      catch (DivideByZeroException)

      {

        // code statements that handle DivideByZeroException

        Console.WriteLine(“DivideByZeroException”);

      }

      catch (FileNotFoundException)

      {

        // code statements that handle FileNotFoundException

        //  Console.WriteLine(“FileNotFoundException”);

      }

Chapter 17  exCeption handling



698

The important thing to remember about catch is that it can be used without 

accepting arguments, catch, and this means it will catch any type of exception. But 

the recommended usage is catch(), and the argument contains the exception details, 

and this is how we can use the exception details to display a message. Every exception 

inherits from SystemException, and therefore we can have a catch block that appears as 

catch(Exception). This Exception will therefore catch any exceptions not previously 

found. In this format the exception is not held in a variable and therefore cannot be 

used. When we use multiple catch blocks, we should always have a “fallback” for an 

exception we have not previously tried to catch. Amending the code for the previous 

example by assigning different values for numberOne and numberTwo and adding an 

array, when the code would try to read the array value outside the range, we will invoke 

the generic exception, catch(Exception):

      int numberOne = 50, numberTwo = 10;

      int[] claims = { 100, 200, 300 };

      try

      {

        double answer = numberOne / numberTwo;

        Console.WriteLine(claims[3]);

      }

      catch (DivideByZeroException)

      {

        // code statements that handle DivideByZeroException

        Console.WriteLine("DivideByZeroException");

      }

      catch (FileNotFoundException)

      {

        // code statements that handle FileNotFoundException

        Console.WriteLine("FileNotFoundException");

      }

      catch (Exception)

      {

        Console.WriteLine(“An exception was found”);

      }

Chapter 17  exCeption handling



699

 finally
The finally block will contain C# code between open and close curly braces {}. The code 

will be used to execute whatever we wish to happen regardless of whether there was an 

exception or not. In other words, the finally block will always be executed, whereas the 

catch block is only executed if there is an exception it can handle. The syntax for the 

finally block will be similar to

      finally

      {

        // code statements that will be executed if there is an

           exception or if there is no exception

      }

 throw
When exceptions occur and are handled by the try, catch, and finally blocks, we are 

handling exceptions that have been thrown by the system at runtime. However, what 

would happen if we wanted to throw an exception manually in our code? Well, this is 

where the throw keyword comes to our assistance, and we will look at this concept later.

Now we will implement our theory of exceptions that we have just read, by creating 

some code.

Let’s code some C# and build our programming muscle.
Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter17 and leave it in the same location.

 7. Click the Next button.

Chapter 17  exCeption handling



700

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter17 project within the solution called CoreCSharp.

 10. Right-click the project Chapter17 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter17 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to ExceptionHandling.cs.

 15. Press the Enter key.

 16. Double-click the ExceptionHandling.cs file to open it in the 

editor window.

 17. Amend the code, as in Listing 17-4, with the namespace, class, 

and Main() method and a try block with some code.

Listing 17-4. Class with the Main() method and try block

namespace Chapter17

{

  internal class ExceptionHandling

  {

    static void Main(string[] args)

    {

      try

      {

        int hardwareTypeValue = 0;

        double premium = 100 / hardwareTypeValue;

        Console.WriteLine(premium);

      } // End of try block

Chapter 17  exCeption handling



701

    } //End of Main() method

  } // End of ExceptionHandling class

} // End of Chapter17 namespace

The closing curly brace may be showing a red underline, as Figure 17-4, indicating 

an error, and hovering over the error would display a message that tells us we must use 

either a matching catch block or a finally block.

If we think about this, it makes sense, because why would we try to find an exception 

and then do nothing about the exception? Not handling exceptions is a root cause for 

unreliable software applications, which cause business revenue losses and make the 

user experience unsatisfactory.

We will now create the catch block and add some code to handle any exception. Here 

we will simply display a message.

 18. Amend the code, as in Listing 17-5.

Listing 17-5. Adding the catch block

    static void Main(string[] args)

    {

      try

      {

        int hardwareTypeValue = 0;

        double premium = 100 / hardwareTypeValue;

        Console.WriteLine(premium);

      } // End of try block

Figure 17-4. Try block needs a catch or finally block

Chapter 17  exCeption handling



702

      catch

      {

        Console.WriteLine("Error - you cannot divide by zero");

      } // End of catch block

    } //End of Main() method

 19. Click the File menu.

 20. Choose Save All.

 21. Click the Debug menu.

 22. Choose Start Without Debugging.

Figure 17-5 shows the console window displaying the exception message we have 

coded, when we handled the exception through our catch block.

Figure 17-5. Catch block executes.

 23. Press the Enter key to close the console window.

Great, as the developer, we have caught the exception and “gracefully” handled it 

using the catch block, and our application can move to the next statements. But what 

was the actual exception? Well, we used the catch that accepted no arguments, and we 

displayed a message of our choice. We could have used the preferred catch option, which 

lets the catch accept an argument passed to it. In other words, the actual exception is 

passed and accepted as the parameter of the catch, and this will be more beneficial to us 

as we will be getting more details about the exception. In accepting the exception as its 

parameter, the catch will have been coded to assign the exception a name, and this could 

be ex or anything we would like to call it. In this example we will use ex, not a great name 

when we think about clean code, but we will discuss this issue later in the chapter.

We will now replace the existing catch block so that we have a new catch block that 

accepts the passed-in argument as its parameter and add some code to display the 

message that belongs to the exception.

 24. Amend the code, as in Listing 17-6.

Chapter 17  exCeption handling



703

Listing 17-6. Catch method that accepts the exception as a parameter

  try

  {

    int hardwareTypeValue = 0;

    double premium = 100 / hardwareTypeValue;

    Console.WriteLine(premium);

  } // End of try block

  catch (Exception ex)

  {

    Console.WriteLine($"Exception message is - {ex.Message}");

  } // End of catch block

    } //End of Main() method

 25. Click the File menu.

 26. Choose Save All.

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

Figure 17-6 shows the console window, which displays the exception message, which 

was passed from the actual system exception, which we called ex. We should notice that 

the message passed from the exception handler, Attempted to divide by zero, is similar to 

what we manually entered in our catch code. The important thing is that we can use the 

existing exception messages rather than having to create our own messages.

Figure 17-6. Exception message displayed

 29. Press the Enter key to close the console window.

Great, we have caught the exception and displayed the actual exception message, 

which came from the “generic” exception. But we could also catch more specific 

exceptions like the divide-by-zero exception, and we can use the general and specific 

together.

Chapter 17  exCeption handling



704

 Multiple Exceptions
We can have more than one exception handler if we wish to and be more specific 

about the exception. In Listing 17-6 we saw that the catch accepted the exception as its 

parameter called ex. We then used the Message field from the ex instance in the console 

message using the code line

Console.WriteLine($"Exception message is - {ex.Message}");

While this was fine and the code worked, there are a couple of points to consider:

• Is it acceptable to call the parameter ex? What about clean code?

Let's be honest. ex is not a very good name for a variable or 

parameter. What does ex tell us about its meaning or purpose? We 

have already read about clean code and self-documenting code, 

so maybe we should consider being more explicit about the name. 

Certainly, if we search for code snippets or solutions to problems 

on the World Wide Web, we will see the naming convention ex, 

but remember we must try and make our code more readable and 

more maintainable, not just for ourselves but for others who will 

have to work with our code. We can therefore be more explicit 

in our naming of the parameter, for example, exceptionFound, 

divideByZeroException, or fileNotFoundException.

• What does the ex really mean?

As we have just said, ex is the parameter name and it is of type 

Exception. So, for simplicity and going back to Chapter 6, we could 

read the Exception ex as the variable ex of data type Exception. 

However, Exception is a class, and therefore we would say ex is the 

instance of the class or the object. The Exception class, like most 

classes, will be made up of methods and properties, and one of 

the properties is Message, which gets a message that describes the 

current exception. This concept of fields and methods within a class 

should be familiar to us because we have coded our own examples 

of classes and objects in Chapter 13 and we used fields and methods 

within them. Looking at the Exception class from the example code 

shown in Figure 17-7, we can see some methods and fields that exist 

within it.

Chapter 17  exCeption handling

https://doi.org/10.1007/978-1-4842-8619-7_6
https://doi.org/10.1007/978-1-4842-8619-7_13


705

Figure 17-7. Methods and fields of the Exception class

We will now look at multiple exceptions, where we can prioritize the possible 

exceptions, starting with the more specific and moving to the more general, 

which is really what the ex was in Listing 17-6. Here we will just use the name 

DivideByZeroException with no instance of it being made.

 30. Amend the code, as in Listing 17-7, to create another catch block 

that checks for the specific exception DivideByZeroException.

Listing 17-7. Multiple catch clauses

  try

  {

    int hardwareTypeValue = 0;

    double premium = 100 / hardwareTypeValue;

    Console.WriteLine(premium);

  } // End of try block

  catch (Exception ex)

  {

   Console.WriteLine($"Exception message is - {ex.Message}");

   } // End of catch block

   catch (DivideByZeroException)

   {

     Console.WriteLine($"Divide By Zero Exception message");

   } // End of DivideByZeroException catch block

} //End of Main() method

Chapter 17  exCeption handling



706

In theory this seems a reasonable thing to do. We have two types of catch, but we 

have an error showing in our code.

 31. Hover over the red underline of the DivideByZeroException.

The error message, as shown in Figure 17-8, tells us that the second catch is 

unnecessary as the first “generic” catch will already handle the divide-by-zero exception.

Figure 17-8. Exception message displayed

However, let us reverse the order of the catch blocks, as in Listing 17-8, putting the 

specific error first and then having the “generic” catch, and see what happens.

 32. Amend the code, as in Listing 17-8, to reverse the order of the 

catch() clauses.

Listing 17-8. Multiple catch clauses – reversed

 } // End of try block

 catch (DivideByZeroException)

 {

   Console.WriteLine($"Divide By Zero Exception message");

 } // End of DivideByZeroException catch block

 catch (Exception ex)

 {

 Console.WriteLine($"Exception message is - {ex.Message}");

 } // End of catch block

} //End of Main() method

The red underline will have disappeared because we have “stacked” the catch blocks 

in a hierarchical manner from the specific to the general.

 33. Click the File menu.

Chapter 17  exCeption handling



707

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

Figure 17-9 shows the console window displaying the specific exception message, 

which we have created. This shows that there is precedence in the catch blocks.

Figure 17-9. First exception clause executed rather than the general exception

 37. Press the Enter key to close the console window.

 FileNotFoundException
We will now make a few changes so we can see the effect of the catch blocks 

being checked in sequential order. We will change the value of the variable 

hardwareTypeValue, as in Listing 17-9, from a 0 to a 10, and we will use code very 

similar to code we used in Chapter 16 to read the data from a file. However, we will use a 

filename that does not exist, and this will mean there will be a file-not-found exception.

 38. Amend the code inside the try block, as in Listing 17-9, to have 

code that attempts to read a file.

Listing 17-9. hardwareTypeValue=10 and read a text file that does not exist

      try

      {

        int hardwareTypeValue = 10;

        double premium = 100 / hardwareTypeValue;

        Console.WriteLine(premium);

         StreamReader myStreamReader = new 

StreamReader("policydetailsXXX.txt");

Chapter 17  exCeption handling

https://doi.org/10.1007/978-1-4842-8619-7_16


708

        while (myStreamReader.EndOfStream)

        {

          Console.Write(myStreamReader.Read() + "\t");

        }

        myStreamReader.Close();

      } // End of try block

 39. Click the File menu.

 40. Choose Save All.

 41. Click the Debug menu.

 42. Choose Start Without Debugging.

We will see that the console window, as shown in Figure 17-10, now displays the 

general exception message. The first part of the message is the hard-coded text string, 

while the second part is the property from the ex instance of the Exception class.

Figure 17-10. General exception for file not found

 43. Press the Enter key to close the console window.

Great, again we have caught the exception and displayed the “generic” exception 

message. But we could also catch the more specific exception like the file-not-found 

exception. We will now add a new catch block for the FileNotFoundException, coding it 

just before the “generic” catch block. Here we will use the name FileNotFoundException 

but we will use an instance of it, calling it exNoFile.

 44. Amend the code, as in Listing 17-10, to add the new catch block.

Listing 17-10. Add catch block for FileNotFoundException

 } // End of try block

 catch (DivideByZeroException)

 {

   Console.WriteLine($"Divide By Zero Exception message");

Chapter 17  exCeption handling



709

 } // End of DivideByZeroException catch block

 catch (FileNotFoundException exNoFile)

 {

   // Write the 'whole' exception

   Console.WriteLine(exNoFile);

 } // End of FileNotFoundException catch block

 catch (Exception ex)

 {

 Console.WriteLine($"Exception message is - {ex.Message}");

   } // End of catch block

} //End of Main() method

 45. Click the File menu.

 46. Choose Save All.

 47. Click the Debug menu.

 48. Choose Start Without Debugging.

 49. Press the Enter key to close the console window.

Figure 17-11 shows the console window displaying the specific exception, which 

we have created for the file not found. In this example we have displayed the whole 

exception in the WriteLine() method as we have simply used exNoFile, the instance of 

the Exception class, and this shows both the Message and StackTrace of the exception. 

In the example as shown in Figure 17-11, we used the ex.Message where Message was 

Figure 17-11. Specific FileNotFoundException message displayed

Chapter 17  exCeption handling



710

the property of the Exception class that gave us access to details about the cause of the 

exception. Figure 17-12 shows what we would see if we had used the code exNoFile.

Message as in Listing 17-11.

Listing 17-11. Using the Message property of the exception

      catch (FileNotFoundException exNoFile)

      {

        // Write the exception Message property value

        Console.WriteLine(exNoFile.Message);

      }// End of FileNotFoundException catch block

 50. Press the Enter key to close the console window.

 finally
When handling exceptions, we can use a finally block with either the try catch or a try. 

The finally block of code is used to execute whatever business logic there is, regardless of 

whether there was an exception or not. The finally block always gets executed.

 51. Amend the code, as in Listing 17-12, to add the finally block.

Listing 17-12. Using the finally block

catch (Exception ex)

{

  Console.WriteLine($"Exception message is - {ex.Message}");

} // End of catch block

Figure 17-12. FileNotFoundException.Message property message

Chapter 17  exCeption handling



711

 finally

 {

   Console.WriteLine("Try catch blocks ended, tidying up");

 }

  } //End of Main() method

} // End of ExceptionHandling class

} // End of Chapter17 namespace

 52. Click the File menu.

 53. Choose Save All.

 54. Click the Debug menu.

 55. Choose Start Without Debugging.

Figure 17-13 shows the console window, displaying at the end of the text the message 

from the finally block.

Figure 17-13. Finally block executed and message appearing at the end

 56. Press the Enter key to close the console window.

In one of our try blocks, we had code that was using the StreamReader to read 

a text file and, as is good practice, we closed the instance of the StreamReader, 

myStreamReader, when we had finished using it. The finally block would also be a 

location to code the Close() method, but the instance of the StreamReader would need 

to be moved to outside the try block. Otherwise, it would not be accessible. The example 

code for this finally block is shown in Listing 17-13, where we can see the instance of the 

StreamReader is moved to the class level and made static. We do not need to code this; 

it’s merely for information and for demonstrating another way to use the finally block.

Chapter 17  exCeption handling



712

Listing 17-13. Using the finally block to use the Close() method

using System;

namespace Chapter17

{

  internal class ExceptionHandling

  { static StreamReader myStreamReader = new StreamReader 

("policydetailsXXX.txt");

   static void Main(string[] args)

    {

      try

      {

        int hardwareTypeValue = 10;

        double premium = 100 / hardwareTypeValue;

        Console.WriteLine(premium);

        while (myStreamReader.EndOfStream)

        {

          Console.Write(myStreamReader.Read() + "\t");

        }

        myStreamReader.Close();

      } // End of try block

      catch (DivideByZeroException)

      {

        Console.WriteLine($"Divide By Zero Exception message");

      }  // End of DivideByZeroException catch block

      catch (FileNotFoundException exNoFile)

      {

        // Write the 'whole' exception

        Console.WriteLine(exNoFile);

      }// End of FileNotFoundException catch block

      catch (Exception ex)

Chapter 17  exCeption handling



713

      {

       Console.WriteLine($"Exception message is - {ex.Message}");

      }  // End of catch block

      finally

      {

        Console.WriteLine("Try catch blocks ended, tidying up");

        myStreamReader.Close();

      }

    } //End of Main() method

  } // End of ExceptionHandling class

} // End of Chapter17 namespace

 StackTrace
Just like we used the Message property of the Exception class, we could also have used 

the StackTrace property, and we would get a different output to help us identify the 

exception cause. Using the code in Listing 17-14, we will get the exception message as 

shown in Figure 17-14. This is a more detailed message.

 57. Amend the code, as in Listing 17-14, to display the stack trace 

message.

Listing 17-14. Using the StackTrace property

      catch (FileNotFoundException exNoFile)

      {

        // Write the StackTrace exception

        Console.WriteLine(exNoFile.StackTrace);

      }// End of FileNotFoundException catch block

 58. Click the File menu.

 59. Choose Save All.

 60. Click the Debug menu.

 61. Choose Start Without Debugging.

 62. Press the Enter key to close the console window.

Chapter 17  exCeption handling



714

Figure 17-14. Stack trace message

 throw
Rather than using the try, catch, and finally blocks to handle exceptions thrown at 

runtime, we can throw an exception manually in our code. Any exception that is derived 

from the Exception class can be thrown by us within our code, and we can choose where 

in the code to throw the exception.

When we throw our new exception, the class it belongs to must be based on the 

Exception class. In this example we will create a class for a hardware value being too 

high, and inside it, we will create our new exception. The code is added inside the 

namespace but outside the ExceptionHandling class.

 63. Amend the code, as in Listing 17-15, to add a class for our new 

exception, which has to inherit from the Exception base class.

Listing 17-15. New class HardwareValueException inside namespace

    } //End of Main() method

  } // End of ExceptionHandling class

  // Our custom exception for a value which is too high

  public class HardwareValueException : Exception

  {

    public HardwareValueException(string errormessage) :base(errormessage)

    {

    } // End of HardwareValueException constructor

Chapter 17  exCeption handling



715

  } // End of HardwareValueException class

} // End of Chapter17 namespace

We will now use the newly created exception method, which accepts the user input 

for the hardware value and throws an exception if the value is too high.

 64. Amend the code, as in Listing 17-16.

Listing 17-16. New method inside the ExceptionHandling class outside Main()

} //End of Main() method

public static void CheckIfQuoteCanBeMade()

{

  Console.WriteLine("What is the value of the hardware to be insured?");

double hardwareValue = Convert.ToDouble(Console.ReadLine());

 try

 {

   if (hardwareValue > 0 && hardwareValue < 10000)

   {

     Console.WriteLine("Quote will be available");

   }

   else

   {

      throw (new HardwareValueException("HardwareValueException - value too 

high"));

    }

 } // End of try block

   catch (HardwareValueException ourException)

   {

     Console.WriteLine(ourException.Message.ToString());

   } // End of  catch block

 }// End of CheckIfQuoteCanBeMade method

  } // End of ExceptionHandling class

Chapter 17  exCeption handling



716

 65. Amend the code, as in Listing 17-17, to call the new method, 

which contains the new exception handler.

Listing 17-17. New method inside the ExceptionHandling class outside Main()

    static void Main(string[] args)

    {

      CheckIfQuoteCanBeMade();

      try

      {

        int hardwareTypeValue = 10;

        double premium = 100 / hardwareTypeValue;

        Console.WriteLine(premium);

 66. Click the File menu.

 67. Choose Save All.

 68. Click the Debug menu.

 69. Choose Start Without Debugging.

 70. Enter a value greater than 10000, for example, 20000.

We will see that the console window, as shown in Figure 17-15, displays the message 

from our custom exception.

Figure 17-15. Message from custom HardwareValueException

 rethrow
The throw keyword allows us to rethrow an exception and this is useful if we wish to 

pass an exception to the caller that will then use the exception for its own purposes. In 

this example

Chapter 17  exCeption handling



717

• We will call a method that will ask the user to input the value of the 

hardware that is to be insured.

• The method call is within a try block.

• The corresponding catch block will display the exception if 

there is one.

• The exception to be displayed is the exception received from the 

catch block of the method being called.

The method passes back the exception to the calling try catch block; it is a 

hierarchical structure, and this is where we use the throw statement without anything 

else. Within the catch block of the exception, we could decide to perform some 

operations like writing the exception details to a log file or the console, and then we 

can rethrow the exception, which simply means calling the throw statement without 

anything else, no object. The rethrow can only be used within a catch block.

When we throw an exception, we can do it in one of two ways:

• throw – Using throw on its own means the stack trace is “preserved.”

• throw ex – Using the throw with the ex means the stack trace is lost.

Think about when the exceptions move up through what is the “call stack.” As we 

go through the call stack, it would be great if the stack trace was maintained and the 

exception details were accumulated. Well, this is where the throw on its own works 

perfectly. In the same scenario, if we used the throw ex, then only the last exception stack 

trace would be available.

We will now create a method called GetHardwareValue()and call it from 

within the Main() method. We will also comment out the previous call to the 

CheckIfQuoteCanBeMade() method.

 1. Amend the code, as in Listing 17-18, to call the method within a 

try and comment out the other method call.

Listing 17-18. Call the method from within a try catch block

    static void Main(string[] args)

    {

      try

      {

Chapter 17  exCeption handling



718

        GetHardwareValue();

      }

      catch (Exception ex)

      {

        /*

        Do something here that is specific to our business logic.

        */

        Console.WriteLine(ex.Message);

      }

      //CheckIfQuoteCanBeMade();

      try

      {

We will now create the new method that will ask the user to input a value for the 

hardware and it will convert the string input to a double. The conversion is within a try 

block and the catch block uses the throw statement to pass the exception back to the 

calling method.

 2. Amend the code, as in Listing 17-19, to create the method that 

reads the user value and tries to convert it within a try block.

Listing 17-19. Create the method that converts the input from within a try 

catch block

   } // End of  catch block

}// End of CheckIfQuoteCanBeMade method

 public static void GetHardwareValue()

 {

  double hardwareValue;

   try

   {

    Console.WriteLine("What is the hardware replacement value?");

    hardwareValue = Convert.ToDouble(Console.ReadLine());

   }

Chapter 17  exCeption handling



719

   catch (Exception)

   {

     throw;

   }

 } // End of GetHardwareValue() method

  } // End of ExceptionHandling class

Notice the throw statement; this is the rethrow that will pass the exception that 

has been found back to the catch block belonging to the calling method. For simplicity 

we will comment out the code for the while iteration that reads the text file, as in 

Listing 17-20.

Listing 17-20. Commenting out the code for the while iteration

      try

      {

        int hardwareTypeValue = 10;

        double premium = 100 / hardwareTypeValue;

        Console.WriteLine(premium);

        //StreamReader myStreamReader = new

        //           StreamReader("policydetailsXXX.txt");

        //while (myStreamReader.Peek() > 0)

        //{

        //  Console.Write(myStreamReader.Read() + "\t");

        //}

        //myStreamReader.Close();

      } // End of try block

      catch (DivideByZeroException)

 3. Click the File menu.

 4. Choose Save All.

 5. Click the Debug menu.

 6. Choose Start Without Debugging.

Chapter 17  exCeption handling



720

 7. Enter a string value instead of a numeric value for the replacement 

value, for example, Two Thousand.

We will see that the console window, as shown in Figure 17-16, displays the 

exception, which was passed up from the exception in the method that was called.

Figure 17-16. Throw the exception up the hierarchy, rethrow.

 8. Press the Enter key to close the console window.

Another way to code the multiple exceptions we have would be to enclose the 

exceptions within a switch construct, which we looked at in Chapter 9 on selection. 

The example we will now code uses the switch construct to handle one of three 

exception types.

 9. Right-click the Chapter17 project in the Solution Explorer window.

 10. Choose Add

 11. Choose New.

 12. Choose Class

 13. Change the name to ExceptionHandlingWithSwitch.cs.

 14. Press the Enter key.

The ExceptionHandlingWithSwitch class code will appear in the editor window, and 

we will now add

• A Main() method

• A try block with no code for now

• A catch block for a FileNotFoundException

• A catch block for a DivideByZeroException

Chapter 17  exCeption handling

https://doi.org/10.1007/978-1-4842-8619-7_9


721

• A catch block for a OverflowException

• A finally block

 15. Amend the code, as in Listing 17-21, to include a Main() method 

with the try block and the three catch blocks.

Listing 17-21. Switch statement to encompass different exceptions

namespace Chapter17

{

internal class ExceptionHandlingWithSwitch

{

  static void Main(string[] args)

  {

    try

    {

    } // End of try block

    catch (Exception ex)

    {

      switch (ex)

      {

        case FileNotFoundException:

          Console.WriteLine("File not found Exception");

          break;

        case DivideByZeroException:

          Console.WriteLine("Divide By Zero Exception");

          break;

        case OverflowException:

          Console.WriteLine("Overflow Exception");

          break;

      } // End of switch block

    } // End of catch block

    finally

    {

      Console.WriteLine("Try catch blocks ended, tidying up");

    } // End of finally block

Chapter 17  exCeption handling



722

  } // End of Main() method

} // End of ExceptionHandlingWithSwitch class

} // End of Chapter17 namespace

 16. Amend the code, as in Listing 17-22, to include code within the try 

block, which will attempt to open a file that does not exist.

Listing 17-22. Try to read a file that does not exist

internal class ExceptionHandlingWithSwitch

  {

    static void Main(string[] args)

    {

 try

    {

      // Testing FileNotFoundException

       using (var fileStream = new FileStream(@"NoFileExists.txt", 

FileMode.Open))

      {

        // Logic for reading file would go here

      }

    } // End of try block

    catch (Exception ex)

    {

      switch (ex)

 17. Right-click the Chapter17 project in the Solution Explorer panel.

 18. Choose Properties.

 19. Set the Startup object to be the ExceptionHandlingWithSwitch in 

the drop-down list.

 20. Close the Properties window.

 21. Click the File menu.

 22. Choose Save All.

 23. Click the Debug menu.

Chapter 17  exCeption handling



723

 24. Choose Start Without Debugging.

We will see that the console window, as shown in Figure 17-17, displays the relevant 

exception, which is FileNotFoundException.

Figure 17-17. FileNotFoundException

 25. Press the Enter key to close the console window.

We will now comment the code we have just entered for reading the file so we can 

add code that will cause a DivideByZeroException.

 26. Amend the code, as in Listing 17-23, to comment the first piece of 

code and then include code within the try block that will attempt 

to perform a division by zero.

Listing 17-23. Try to perform a division by zero

internal class ExceptionHandlingWithSwitch

  {

    static void Main(string[] args)

    {

      try

      {

        // Testing FileNotFoundException

         //using (var fileStream = new FileStream(@"NoFileExists.txt", 

FileMode.Open))

        //{

        //  // Logic for reading file would go here

        //}

        // Testing DivideByZeroException

        int hardwareTypeValue = 0;

        double premium = 100 / hardwareTypeValue;

      } // End of try block

Chapter 17  exCeption handling



724

 27. Click the File menu.

 28. Choose Save All.

 29. Click the Debug menu.

 30. Choose Start Without Debugging.

We will see that the console window, as shown in Figure 17-18, displays the relevant 

exception, which is DivideByZeroException.

Figure 17-18. DivideByZeroException

 31. Press the Enter key to close the console window.

We will comment the code we entered for the division by zero. Then we can add code 

within the try block to ask the user for a byte value input, and this will cause an exception 

when the user enters a value greater than 255.

 32. Remove the code from the previous steps, as in Listing 17-24.

Listing 17-24. Try to enter a number greater than 255

    try

    {

        // Testing FileNotFoundException

        //using (var fileStream =

        //new FileStream(@"NoFileExists.txt", FileMode.Open))

        //{

        //  // Logic for reading file would go here

        //}

        // Testing DivideByZeroException

        //int hardwareTypeValue = 0;

        //double premium = 100 / hardwareTypeValue;

Chapter 17  exCeption handling



725

        // Testing OverflowException

        Console.WriteLine("How many claims are being made?");

        int claimValue = Convert.ToByte(Console.ReadLine());

      } // End of try block

 33. Click the File menu.

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

We will see that the console window, as shown in Figure 17-19, displays the question, 

and when we enter 300 and press the Enter key, the OverflowException is displayed.

Figure 17-19. OverflowException

This example should help us see how we can build our code using the constructs we 

have learned from the start of the chapters. It is important we think differently to make 

our code “cleaner” and easier to maintain.

 Chapter Summary
So, finishing this chapter on exceptions, we have learned that

• An exception is derived from the System.Exception class.

• With a try block, we must have at least a matching catch or 

finally block.

• We can have multiple catch blocks.

• With multiple catch blocks, there is a hierarchy, and we should code 

them from the specific to the general.

Chapter 17  exCeption handling



726

• We can have a simple catch that accepts no arguments and it will 

handle any exception.

• We can have a catch that accepts an instance of the Exception and 

use its properties such as Message and StackTrace to get more details 

about the exception.

• We can have a finally block, which is always executed.

• We can throw an exception.

• We can create our own user-defined exception.

• We can rethrow an exception.

We are now really beginning to think like professional developers, we are considering 

that exceptions can occur, and we know one technique to handle the exceptions.

We are making fantastic progress in programming our C# applications and we 

should be very proud of our achievements. In finishing this chapter, we have increased 

our knowledge further and we are advancing to our target.

 

Chapter 17  exCeption handling



727

CHAPTER 18

Serialization

 Serialization and Deserialization
In Chapter 13 we gained knowledge of classes and objects. This chapter will extend 

our knowledge and explain how we can save an object so it can be recreated when 

required. The processes we will investigate are called serialization and deserialization. 

By serializing we are saving the state of the object. We will also require some of the 

knowledge we gained in Chapter 16 on file handling as we will write binary data, XML 

data, and JSON data to a file as part of the serialization process.

Serialization is a process to convert an object into a stream of bytes so that the 

bytes can be written into a file. We will normally do this so the serialized data can be 

stored in a database or sent across a network, for example, to a message queue to form 

part of a transaction process. The byte stream created for XML and JSON is platform 

independent; it is an object serialized on one platform that can be deserialized on a 

different platform. All fields of type private, public, and internal will be serialized.

In an enterprise we may wish to send the serialized data from one domain to 

another, to a Rest API web service that could then store it in a database or deserialize 

it and use the details in some business logic. To ensure the serialization process works 

without an error, there are a number of things we need to ensure:

• The class being serialized must have the [Serializable] attribute above 

the class. In this example the class will be called Customer, so the 

code will look like Listing 18-1.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_18

https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_16
https://doi.org/10.1007/978-1-4842-8619-7_18#DOI


728

Listing 18-1. Serializable class

  [Serializable]

  public class Customer

  {

  }

• The class will have fields or properties that will have get and set 

accessors, but it is the fields that are serialized, and each of the three 

formats will be treated differently. Binary serialization will use the 

public and private fields including readonly members, XML will 

use the public fields and properties, and JSON will use the public 

properties.

• The class with the Main() method will instantiate the class.

• The formatter class is used to serialize the object to the required 

format, for example, binary, XML, or JSON.

• A file stream object is created to hold the bytes that are created after a 

named file has been created and opened for writing.

• The Serialize() method is then used to serialize to a stream, and we 

are using the FileStream class for this, as we discussed in a previous 

chapter.

• Finally, the stream must be closed.

 Deserialization
Deserialization is the process of taking the serialized data, which is a stream, and 

returning it to an object as defined by the class. We will use FileStream to read it from 

the disk.

 Attribute [NonSerialized]
When we serialize, there may be some values we do not want to save to the file. These 

values may contain sensitive data or data that can be calculated again. Adding the 

attribute [NonSerialized] means that during the serialization process, the relevant 

Chapter 18  Serialization



729

member, property, will not be serialized, and as such no data will be written for the 

nonserialized field. Listing 18-2 shows code where the [NonSerialized] attribute is used.

Listing 18-2. Serializable class with a NonSerialized field

  [Serializable]

  public class CustomerBinary

  {

    private int customerAccountNumber;

    [NonSerialized] private int customerAge;

    private String customerName;

    private String customerAddress;

    private int customerYearsWithCompany;

  }

Important Note From March 2022 the Microsoft documentation notifies us that

Due to security vulnerabilities in BinaryFormatter, the following methods are now 
obsolete and produce a compile-time warning with ID SYSLIB0011:

Formatter.Serialize(Stream, Object)

Formatter.Deserialize(Stream)

IFormatter.Serialize(Stream, Object)

IFormatter.Deserialize(Stream)

 

We will look at serialization and deserialization using the BinaryFormatter not 

because we can still use it but because we will see existing application code that still uses 

the BinaryFormatter. As the Microsoft documentation also states

Chapter 18  Serialization

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter


730

These methods are marked obsolete as part of an effort to wind down usage 
of BinaryFormatter within the .NET ecosystem.

So, while we code using the BinaryFormatter, we will also look at an alternative 

solution as suggested by the Microsoft documentation:

Stop using BinaryFormatter in your code. Instead, consider using 
JsonSerializer or XmlSerializer.

Let’s code some C# and build our programming muscle.
Serialization is about objects, and an object as we know is an instance of a class. So 

let’s create the class first, with its types, properties, methods, constructor, getters, and 

setters. The class will be called CustomerBinary.

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter18 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter18 project within the solution called CoreCSharp.

 10. Right-click the project Chapter18 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter18 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

Chapter 18  Serialization

https://docs.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer
https://docs.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer


731

 14. Change the name to CustomerBinary.cs.

 15. Press the Enter key.

 16. Double-click the CustomerBinary.cs file to open it in the 

editor window.

 17. Amend the code, as in Listing 18-3, with the namespace and class.

Listing 18-3. Serializable class – CustomerBinary

namespace Chapter18

{

    [Serializable]

    internal class CustomerBinary

    {

    } // End of CustomerBinary class

} // End of Chapter18 namespace

As we are creating a CustomerBinary class that will be instantiated and become 

a CustomerBinary object, which we will serialize and deserialize, we do not need a 

Main() method. The CustomerBinary class, or more correctly the instance of the class 

that we will create, will be accessed from another class, which will contain a Main() 

method. We should be familiar with a class having fields from our previous study of 

classes and objects, but in this class, we will use the special attributes [Serializable] and 

[NonSerializable].

 18. Amend the code, as in Listing 18-4, to add the class fields.

Listing 18-4. Serializable class with fields

namespace Chapter18

{

  [Serializable]

  internal class CustomerBinary

  {

    /***********************************************************

    The [NonSeriazable] attribute is a 'modifier' which can be

    used in serialization. When we serialize there may be some

    values we do not want to save to the file.

Chapter 18  Serialization



732

    These values may contain sensitive data or data that can be

    calculated again.

    Adding the attribute [NonSerialized] means that during the

    serialization process the relevant member (type) will not be

    serialized and no data at all will be written for the member.

    The [NonSeriazable] attribute assists us with the important

    role of meeting security constraints e.g. when we do not

    want to expose private data when we serialize.

    ***********************************************************/

    private int customerAccountNumber;

    private int customerAge;

    private string customerName;

    private string customerAddress;

    private int customerYearsWithCompany;

  } // End of Customer class

} // End of Chapter18 namespace

We will add a constructor for the class using parameter names of our choosing, 

which are not the same names as the fields. We will read shortly an explanation of why 

we are doing this for our learning.

 19. Amend the code, as in Listing 18-5, to add the constructor.

Listing 18-5. Adding our own constructor

  private int customerYearsWithCompany;

  /**********************************************************

  Create a constructor for the Customer class.

  The constructor will over-write the default constructor.

  The constructor is used to accept the value passed into it

  from the code used to instantiate the class.

  The values passed into the constructor are used to

  initialise the values of fields (members, variables!).

  The keyword this is used in front of the field names.

  **********************************************************/

Chapter 18  Serialization



733

   public CustomerBinary(int accountNumberPassedIn, int agePassedIn, string 

namePassedIn, string addressPassedIn, int yearsPassedIn)

    {

      customerAccountNumber = accountNumberPassedIn;

      customerAge = agePassedIn;

      customerName = namePassedIn;

      customerAddress = addressPassedIn;

      customerYearsWithCompany = yearsPassedIn;

    } // End of Customer constructor

  } // End of CustomerBinary class

} // End of Chapter18 namespace

Info
We are now going to create getters and setters for the private members of the 

CustomerBinary class. As we saw in Chapter 13, private members are not accessible 

directly from outside the class. To make them available for reading, we use a getter 

method, and to make them available for changing, we use a setter method.

When using C# there is the concept of a property when we talk about getters and 

setters, and this property offers us a way to get or set the private fields. In other words, 

the property gives us the ability to read and write the private fields. The property can 

have what are called accessors, which are code blocks for the get accessor and the set 

accessor. Figure 18-1 shows the concept of a property, with its getter and setter for the 

private field. When creating the property for the member, we can have

• A get and a set, where we can read the member value and change the 

member value

• A get, where we can only read the member value but not change 

its value

• A set, where we can only change the member’s value but not read it

Chapter 18  Serialization

https://doi.org/10.1007/978-1-4842-8619-7_13


734

Figure 18-1. Property containing a getter and a setter

Remember, we do not always need to have a get and a set for every member; it will 

depend on what we need. If we have a lot of members, then it would take us a little time 

to code each getter and setter, so remember we could use the built-in functionality of 

Visual Studio 2022. When we create the getter and setter for each member, we should ask 

ourselves, “Where do we want them to be located in our code?” The Visual Studio 2022 

“shortcut” might add them as a block where we have our cursor, it might add them as a 

block at the end of the code after the constructor, it might add them as a block after the 

members, or indeed it might add them individually under the corresponding members.

With C# there are a number of different approaches that have evolved to create 

the getters and setters for the members we have created. The different approaches are 

shown in Listings 18-6, 18-7, 18-8, and 18-9.

Approach 1: Probably the More “Dated”

Listing 18-6. Get by returning the variable or assign the new value

class CustomerBinary

{

  // Private member, field, variable

  private int customerAccountNumber;

  // Get and set accessors for the member are inside the property

  public int CustomerAccountNumber

Chapter 18  Serialization



735

  {

    get

      {

        return customerAccountNumber;

      }

    set

      {

        customerAccountNumber = value;

      }

  } // End of property for the customerAccountNumber

} // End of CustomerBinary class

Approach 2: Available from C# 2

Listing 18-7. Use get; and set; in the auto-implemented properties

class CustomerBinary

{

  /*

    A Private member, field, variable with the get and set

    being written beside the member.

    We will now have a member and its corresponding

    getter and setter.

  */

  public int CustomerAccountNumber

    {

      get;

      set;

    }

} // End of CustomerBinary class

Or if we only wanted a getter so that the member is readable from outside the class 

but only settable from within the class using the setter, we could code it as in Listing 18-8.

Chapter 18  Serialization



736

Listing 18-8. Use get; and a private set;

  class CustomerBinary

  {

    /*

     Private member, field, variable with the get and set

     being written beside the member.

     We will now have a getter but the setter is private.

    */

    public int CustomerAccountNumber

    {

      get;

      private set;

    }

  } // End of CustomerBinary class

We could also have a private get and public set, and we can also have properties 

marked as public, private, protected, internal, protected internal, or private protected.

Approach 3: Available from C# 7
In C# 7 we were introduced to the concept of expression-bodied members, which 

were aimed at providing a quicker or shorter way to define properties and methods. The 

fat arrow, =>, can therefore be used with properties that consists of only one expression. 

As we know

• A get accessor does one thing: it gets the value of the member.

• A set accessor does one thing: it sets the value of the member.

Therefore, the fat arrow, =>, can be used within our get and set accessors and it also 

allows us to remove the curly braces and the return.

Listing 18-9. Use get and set with the fat arrow =>

class Customer

{

  /*

    Private member, field, variable with the get and set

    being written beside the member.

    We will now have a member and its corresponding

Chapter 18  Serialization



737

    getter and setter.

  */

  private int customerAccountNumber;

  public int CustomerAccountNumber

  {

    get => customerAccountNumber;

    set => customerAccountNumber = value;

  }

} // End of Customer class

Yes, we might be thinking, That sounds good. It is indeed good; it might even be 

awesome. But we are learning to program, and it might just be a little too much for 

us to understand now. Either way, we will keep the declaring of get and set accessors 

straightforward, and when we understand the concepts, we can start using the shorter 

expression-bodied member style.

 20. Amend the code, as in Listing 18-10, to add a getter and setter for 

each of the private properties of the CustomerBinary class.

Listing 18-10. Getters and setters for the private properties

    } // End of CustomerBinary constructor

    // Property for each member/field

    public int CustomerAccountNumber

    {

      get { return customerAccountNumber; }

      set { customerAccountNumber = value; }

    }// End of CustomerAccountNumber property

    public int CustomerAge

    {

      get { return customerAge; }

      set { customerAge = value; }

    }// End of CustomerAge property

    public string CustomerName

Chapter 18  Serialization



738

    {

      get { return customerName; }

      set { customerName = value; }

    }// End of CustomerName property

    public string CustomerAddress

    {

      get { return customerAddress; }

      set { customerAddress = value; }

    }// End of CustomerAddress property

    public int CustomerYearsWithCompany

    {

      get { return customerYearsWithCompany; }

      set { customerYearsWithCompany = value; }

    }// End of CustomerYearsWithCompany property

  } // End of Customer class

} // End of Chapter18 namespace

 Serializing the Object
Now that we have the class that is to be serialized, we will create a class that will perform 

the serialization on the instance of the class, the object. So let’s create the class called 

SerializedCustomer and add the required code.

 1. Right-click the Chapter18 project in the editor window.

 2. Choose Add.

 3. Choose Class

 4. Change the name to SerializedCustomer.cs.

 5. Click the Add button.

 6. The SerializedCustomer class code will appear in the editor 

window. Amend the code to add the Main() method, as in 

Listing 18-11.

Chapter 18  Serialization



739

Listing 18-11. Class template code with a Main() method

namespace Chapter18

{

  internal class SerializedCustomer

  {

    static void Main(string[] args)

    {

    }//End of Main() method

  } //End of SerializedCustomer class

} //End of Chapter18 namespace

 7. Amend the code, as in Listing 18-12, to add some comments 

about serialization. You may choose to leave these out and go to 

the next step.

Listing 18-12. Add comments

namespace Chapter18

{

  internal class SerializedCustomer

  {

  /*

  Serialization is a process to convert an object into a stream

  of bytes so that the bytes can be written into a file or

  elsewhere.

  We will normally do this so the serialized data can be used to

  store the data in a database or for sending it across a network

  e.g. to a message queue to form part of a transaction process.

   The byte stream created for XML and JSON is platform independent, it is 

an object serialized on one platform that can be de serialized on a

  different platform.

  */

    static void Main(string[] args)

    {

    }//End of Main() method

Chapter 18  Serialization



740

We will now create an instance of the CustomerBinary class, the object, passing to 

the constructor the initial values for the properties. We will create this code inside the 

Main() method.

 8. Amend the code, as in Listing 18-13.

Listing 18-13. Instantiate the class, passing it values

    static void Main(string[] args)

    {

      /*********************************************************

      Create an instance of the Customer class passing in the

      initial values that will be used to set the values of the

      members (fields) in the Customer object being created.

      As a matter of good practice we will use a .ser extension

      for the file name.

      *********************************************************/

         CustomerBinary myCustomerObject = new CustomerBinary(123456, 45, 

"Gerry", "1 Any Street, Belfast, BT1 ANY", 10);

We will now create an instance of the BinaryFormatter class. We will see that this 

formatter is used to give us the method we need when we wish to serialize the object.

 9. Amend the code, as in Listing 18-14.

Listing 18-14. Instantiate the BinaryFormatter class, which we will use

     Customer myCustomerObject = new Customer(123456, 45, "Gerry", "1 Any 

Street, Belfast, BT1 ANY", 10);

      IFormatter formatterForTheClass = new BinaryFormatter();

    }//End of Main() method

 10. Add the code in Listing 18-15, to import the required namespaces 

for the BinaryFormatter and IFormatter.

Listing 18-15. Add the required imports

using System.Runtime.Serialization;

using System.Runtime.Serialization.Formatters.Binary;

Chapter 18  Serialization



741

When we studied file handling in Chapter 16, we saw that the FileStream class could 

be used to read a file or write to a file. In instantiating the FileStream class, the created 

object can have four parameters:

• filename, the name, path, and extension of the file that will hold 

the data

 For example, CustomerSerializedData.ser

• file mode, the mode in which to open the file

 For example, Open, Create, Append

• file access, the access given to this file

 For example, Read, Write, ReadWrite

Now we will create a file stream, which will be used to create the file, so we will be 

using the property Create and we will use the property Write so we can write to the newly 

created file.

 11. Amend the code, as in Listing 18-16.

Listing 18-16. Use FileStream to create the file that will hold the serialized data

      IFormatter formatterForTheClass = new BinaryFormatter();

       Stream streamToHoldTheData = new FileStream("CustomerSerializedData.

ser", FileMode.Create, FileAccess.Write);

    }//End of Main() method

Now we will call the Serialize() method of the formatter class, passing it the stream 

that will hold the data and the object to be serialized. We will then close the file stream.

 12. Amend the code, as in Listing 18-17.

Listing 18-17. Call the Serialize() method of the FileStream class

      Stream streamToHoldTheData =

        new FileStream("CustomerSerializedData.ser",

        FileMode.Create, FileAccess.Write);

Chapter 18  Serialization

https://doi.org/10.1007/978-1-4842-8619-7_16


742

       formatterForTheClass.Serialize(streamToHoldTheData, myCustomerObject);

      streamToHoldTheData.Close();

    }//End of Main() method

 13. Click the File menu.

 14. Choose Save All.

 15. Click the Debug menu.

 16. Choose Start Without Debugging.

 17. Press any key to close the console window that appears.

 18. In the Solution Explorer, click the Chapter18 project.

 19. Click the Show All Files icon, as shown in Figure 18-2.

Figure 18-2. Show All Files

 20. Click the Refresh button, as shown in Figure 18-3.

Figure 18-3. Refresh or sync

The serialized file should be displayed in the net6.0 folder, which is in the Debug 

folder, which is inside the bin folder, as shown in Figure 18-4.

Chapter 18  Serialization



743

Figure 18-4. Serialized file has been written

Brilliant! We have a serialized file. The serialized file contains the state of the 

instance class; in other words, it has the customer details that we supplied when we used 

the constructor.

 Deserializing the Serialized File to a Class

 1. Right-click the Chapter18 project in the Solution Explorer window.

 2. Choose Add.

 3. Choose Class

 4. Change the name to DeserializedFileToCustomerObject.cs.

 5. Click the Add button.

 6. The DeserializedFileToCustomerObject class code will appear in 

the editor window.

Chapter 18  Serialization



744

 7. Now add a Main() method as shown in Listing 18-18.

Listing 18-18. Class with the Main() method

namespace Chapter18

{

  internal class DeserializedFileToCustomerObject

  {

    static void Main(string[] args)

    {

    }//End of Main() method

  } //End of DeserializedFileToCustomerObject class

} //End of Chapter18 namespace

 8. Amend the code, as in Listing 18-19, to add comments about 

deserialization. You may choose to leave these out and go to the 

next step.

Listing 18-19. Comments about deserialization

internal class DeserializedFileToCustomerObject

{

/*

De-serialization is the process of taking the serialized data

(file) and returning it to an object as defined by the class.

When we serialized, there may be some values we do not want to

  save to the file. These values may contain sensitive data or

  data that can be calculated again. Adding the attribute

  [NonSerialized] means that during the serialization process

  the relevant member (field) will not be  serialized and as

  such the data will be ignored and no data for the field

  will be written.

  */

    static void Main(string[] args)

Chapter 18  Serialization



745

 9. Amend the code, as in Listing 18-20, to create an instance of the 

CustomerBinary class, the object, and set it null.

Listing 18-20. Create an instance of the CustomerBinary class

    static void Main(string[] args)

    {

      CustomerBinary myCustomer = null;

    }//End of Main() method

In the serialization code, we created an instance for the BinaryFormatter and 

based it on the interface IFormatter. Remember we said program to an interface. In this 

example however, we will create an instance of the BinaryFormatter that is based on the 

BinaryFormatter class, just to show a different approach. Both approaches are perfectly 

acceptable.

We will now create an instance of the BinaryFormatter so that later we can use the 

method that allows us to deserialize the object.

 10. Amend the code, as in Listing 18-21.

Listing 18-21. Create an instance of the BinaryFormatter

    static void Main(string[] args)

    {

      CustomerBinary myCustomer = null;

      BinaryFormatter binaryFormatterForTheClass = new BinaryFormatter();

    }//End of Main() method

 11. Add the code in Listing 18-22, to import the required namespace 

for the BinaryFormatter.

Listing 18-22. Add the required import

using System.Runtime.Serialization.Formatters.Binary;

namespace Chapter18

We will now create an instance of the FileStream, giving it the serialized filename and 

the Open and Read properties for its parameters.

Chapter 18  Serialization



746

 12. Amend the code, as in Listing 18-23.

Listing 18-23. Create a FileStream to allow file opening and reading

      BinaryFormatter binaryFormatterForTheClass =

        new BinaryFormatter();

       FileStream fileStreamToHoldTheData = new FileStream("CustomerSerializ

edData.ser",FileMode.Open, FileAccess.Read);

    }//End of Main() method

In the serialization code, we did not use a try catch block, which could have  

been a problem if there was an error. We should always use a try catch block when 

working with files, and we saw this when we looked at exception handling. In the  

code in Listing 18-24, we will use a try catch block while we attempt to read the serialized 

file we created during the serialization process.

 13. Amend the code, as in Listing 18-24.

Listing 18-24. Try catch block while reading the serialized file

      FileStream fileStreamToHoldTheData =

        new FileStream("CustomerSerializedData.ser",

        FileMode.Open, FileAccess.Read);

      try

      {

       using (fileStreamToHoldTheData)

       {

         myCustomer =  (CustomerBinary)binaryFormatterForTheClass.Deserializ

e(fileStreamToHoldTheData);

       } // End of the using block

      } // End of the try block

      catch

      {

      }// End of the catch block

    }//End of Main() method

Chapter 18  Serialization



747

Now that we have the deserialized data in a CustomerBinary object, we can display it 

using the property method of each member. In reality we will only use the get accessor to 

get the value and then display it along with a relevant message. The format for using the 

get accessor is to simply call the property of the member, for example:

• CustomerName calls the CustomerName property that will return the 

customerName private field.

• CustomerAge uses the get accessor of the customerAge member.

The format for using the set accessor, if we were to use it, is to simply assign the 

property of the member to a value, for example:

• CustomerName = "WHO" would use the set accessor of the 

customerName member.

• CustomerAge = 21 would use the set accessor of the 

customerAge member.

So let us now display the details obtained from the deserialized file. We will display 

each member of the deserialized CustomerBinary class to ensure that it contains the 

data that was written to the file during the serialization process.

 14. Amend the code, as in Listing 18-25.

Listing 18-25. Display the details of the deserialized CustomerBinary class

try

{

 using (fileStreamToHoldTheData)

 {

  myCustomer =

(Customer)binaryFormatterForTheClass.Deserialize(fileStreamToHoldTheData);

Console.WriteLine("Customer Details");

Console.WriteLine("Customer Name: " + myCustomer.CustomerName);

Console.WriteLine("Customer Age: " + myCustomer.CustomerAge);

Console.WriteLine("Customer Account No: " + myCustomer.

CustomerAccountNumber);

Console.WriteLine("Customer Address: " + myCustomer.CustomerAddress);

Chapter 18  Serialization



748

Console.WriteLine("Customer Years a Customer: " + myCustomer.

CustomerYearsWithCompany);

        } // End of the using block

      } // End of the try block

      catch

      {

      }// End of the catch block

 15. Amend the code, as in Listing 18-26, to add a message in the 

catch block.

Listing 18-26. Catch block message

      catch

      {

         Console.WriteLine("Error creating the Customer from the 

serialized file");

      }// End of the catch block

 16. Right-click the Chapter18 project in the Solution Explorer panel.

 17. Choose Properties.

 18. Set the Startup object to be the Chapter18.

DeserializedFileToCustomerObject in the drop-down list, as 

shown in Figure 18-5.

Figure 18-5. Set the startup program

Chapter 18  Serialization



749

 19. Close the Properties window.

 20. Click the File menu.

 21. Choose Save All.

 22. Click the Debug menu.

 23. Choose Start Without Debugging.

The console window will appear, as shown in Figure 18-6, and display the 

CustomerBinary object details, confirming that the deserialization has been successful.

Figure 18-6. Details from the deserialized file

 24. Press any key to close the console window that appears.

 Access Modifier [NonSerialized]
At the start of the chapter, we read that when we serialize, there may be some values we 

do not want to save to the file because the values may contain sensitive data or data that 

can be calculated again. We read that by adding the [NonSerialized] attribute to a field, 

the data will not be serialized. Now we will code using the [NonSerialized] attribute on 

the customerAge field, which has been designated as “secret,” and confirm that the data 

is not written to the serialized file.

 25. Open the CustomerBinary.cs class.

 26. Amend the code, as in Listing 18-27.

Chapter 18  Serialization



750

Listing 18-27. NonSerializable member

    private int customerAccountNumber;

    [NonSerialized] private int customerAge;

    private String customerName;

    private String customerAddress;

    private int customerYearsWithCompany;

 27. Click the File menu.

 28. Choose Save All.

Now set the SerializedCustomer.cs file as the Startup object and run the code again 

to create the new version of the CustomerSerializedData.ser file with the default value 

being written.

Now set the Startup object back to the DeserializedFileToCustomerObject.

 29. Click the Debug menu.

 30. Choose Start Without Debugging.

The console window will appear and display the CustomerBinary object details, as 

shown in Figure 18-7, confirming that the deserialization has been successful and that 

age has the default value.

Figure 18-7. Details from the deserialized file with age nonserialized

Brilliant! We can serialize and deserialize a class, or strictly speaking the instance 

of the class. But, as we were cautioned at the start of the chapter, due to security 

vulnerabilities in BinaryFormatter, the methods are now obsolete, so we will now look at 

serialization in a different way, using XML.

Chapter 18  Serialization



751

 Serialization Using XML
When we perform XML serialization, the serialization only applies to public fields and 

property values of an object, and the serialization does not include any type information  

 – no methods or private fields will be serialized. If we need to serialize all private fields, 

public fields, and properties of an object, then we can use the DataContractSerializer 

rather than XML serialization, but this will not be covered in this book.

When serializing an object to XML, certain rules apply:

• The class needs to have a default constructor. In the CustomerBinary 

class that we created earlier, we coded our own constructor, thereby 

overwriting the default constructor. This means that we will need to 

add a default constructor, a constructor that is parameterless.

• Only the appropriate public fields and properties of the class will be 

serialized.

 1. Right-click the CustomerBinary.cs file in the Solution 

Explorer panel.

 2. Choose Copy.

 3. Right-click the Chapter18 project in the Solution Explorer panel.

 4. Choose Paste.

 5. Right-click the new CustomerBinary – Copy.cs file.

 6. Choose Rename and rename the file as CustomerXML.cs.

Now we must ensure that the class name and constructor name are the same, 

CustomerXML, and that the class has an access modifier of public.

 7. Amend the CustomerXML file as in Listing 18-28, which has had 

the comments removed for ease of reading.

Listing 18-28. Change class name and constructor name to CustomerXML

using System;

namespace Chapter18

{

  [Serializable]

Chapter 18  Serialization



752

  public class CustomerXML

  {

   private int customerAccountNumber;

   [NonSerialized] private int customerAge;

   private string customerName;

   private string customerAddress;

   private int customerYearsWithCompany;

  public CustomerXML(int accountNumberPassedIn, int agePassedIn,

  String namePassedIn, String addressPassedIn, int yearsPassedIn)

    {

 8. Amend the file to include a default constructor, as in Listing 18-29.

Listing 18-29. Added a default constructor

 public class CustomerXML

 {

  private int customerAccountNumber;

  [NonSerialized] private int customerAge;

  private string customerName;

  private string customerAddress;

  private int customerYearsWithCompany;

  public CustomerXML()

  {

  }

  public CustomerXML(int accountNumberPassedIn, int agePassedIn,

  String namePassedIn, String addressPassedIn, int yearsPassedIn)

  {

Now we will make all fields public and remove the accessors.

 9. Amend the customerAge field to remove the [NonSerializable] 

and make all the fields public, as in Listing 18-30.

Chapter 18  Serialization



753

Listing 18-30. Make all fields public

    public int customerAccountNumber;

    public int customerAge;

    public string customerName;

    public string customerAddress;

    public int customerYearsWithCompany;

    public CustomerXML()

    {

    }

In Listing 18-31 that follows, the comment has been changed to make the code more 

relevant to XML serialization, but we do not need to change the comment in our copied 

file if we do not wish to do so.

 10. Amend the code to remove the unnecessary accessors, as in 

Listing 18-31.

Listing 18-31. Class with getters and setters removed

using System;

namespace Chapter18

{

    [Serializable]

    public class CustomerXML

    {

     /***********************************************************

      The fields are public because in XML serialization only the

      public fields and properties will be serialized

     ***********************************************************/

      public int customerAccountNumber;

      public int customerAge;

      public string customerName;

      public string customerAddress;

      public int customerYearsWithCompany;

Chapter 18  Serialization



754

    public CustomerXML()

    {

    }

    /**********************************************************

    Create a constructor for the Customer class.

    The constructor will over-write the default constructor.

    The constructor is used to accept the value passed into it

    from the code used to instantiate the class.

    The values passed into the constructor are used to

    initialise the values of fields (members, variables!).

    The keyword this is used in front of the field names.

    **********************************************************/

     public CustomerXML(int accountNumberPassedIn, int agePassedIn, string 

namePassedIn, string addressPassedIn, int yearsPassedIn)

    {

      customerAccountNumber = accountNumberPassedIn;

      customerAge = agePassedIn;

      customerName = namePassedIn;

      customerAddress = addressPassedIn;

      customerYearsWithCompany = yearsPassedIn;

    } // End of Customer constructor

  } // End of CustomerXML class

} // End of Chapter18 namespace

Now that the class being serialized to XML has the required elements, a default 

constructor, and public fields, we can create the serialize and deserialize code, which we 

will do in a similar way to binary serialization, using two separate classes.

Creating the Serialization Code
Before writing any code, we will look at the steps to be followed in order to create the 

code required to serialize the class object. These steps will be similar to the code we used 

in binary serialization:

Chapter 18  Serialization



755

• Create an instance of the CustomerXML class using our custom 

constructor to pass values to the fields in the class:

CustomerXML myCustomerObject =

new CustomerXML(123456, 45, "Gerry", "1 Any Street, " +

"Belfast, BT1 ANY", 10);

• Create an instance of the XmlSerializer informing it that we are using 

a class of type CustomerXML. This is like binary serialization when 

we used the BinaryFormatter or IFormatter:

XmlSerializer myXMLSerialiser = new XmlSerializer(typeof( 

CustomerXML));

• Create an instance of StreamWriter and pass it the name of the file we 

wish to add the XML to, in our case CustomerSerialisedData.xml:

StreamWriter myStreamWriter = new StreamWriter("Customer 

SerialisedData.xml");

• Call the serialize method of the XmlSerializer, passing it the 

StreamWriter name and the instance of the object to be serialized:

myXMLSerialiser.Serialize(myStreamWriter, myCustomerObject);

• Close the StreamWriter instance:

myStreamWriter.Close();

Now we can code the steps.

 11. Right-click the Chapter18 project in the Solution Explorer.

 12. Choose Add.

 13. Choose Class.

 14. Name the class XMLSerialisation.cs.

 15. Click the Add button.

 16. Amend the code, as in Listing 18-32, to add a Main() method and 

code the steps needed to serialize to XML.

Chapter 18  Serialization



756

Listing 18-32. Adding the code to serialize the CustomerXML object

using System.Xml.Serialization;

namespace Chapter18

{

  public class XMLSerialisation

  {

    static void Main(string[] args)

    {

      /*********************************************************

      Create an instance of the Customer class passing in the

      initial values that will be used to set the values of the

      members (fields) in the Customer object being created.

      As a matter of good practice we will use a .ser extension

      for the file name.

      *********************************************************/

      CustomerXML myCustomerObject =

          new CustomerXML(123456, 45, "Gerry", "1 Any Street, " +

          "Belfast, BT1 ANY", 10);

      // Create an instance of the XmlSerializer

      XmlSerializer myXMLSerialiser = new

                     XmlSerializer(typeof(CustomerXML));

      //Create an instance of the StreamWriter using the xml file

      StreamWriter myStreamWriter = new

                     StreamWriter("CustomerSerialisedData.xml");

      // Serialize the object using the StreamWriter

     myXMLSerialiser.Serialize(myStreamWriter, myCustomerObject);

      // Close the StreamWriter

      myStreamWriter.Close();

    } // End of Main() method

  } // End of XMLSerialisation class

} // End of Chapter18 namespace

Chapter 18  Serialization



757

 17. Right-click the Chapter18 project in the Solution Explorer panel.

 18. Choose Properties.

 19. Set the Startup object to be the XMLSerialisation in the drop-

down list.

 20. Exit the Properties window.

 21. Click the File menu.

 22. Choose Save All.

 23. Click the Debug menu.

 24. Choose Start Without Debugging.

 25. Press the Enter key to close the console window.

The serialized file should be displayed in the net6.0 folder, which is in the Debug 

folder, which is inside the bin folder, as shown in Figure 18-8.

Figure 18-8. XML serialized file

Brilliant! We have a serialized file containing XML, as shown in Listing 18-33. The 

XML file contains the state of the instance class; in other words, it has the CustomerXML 

details that we supplied when we used the constructor.

Chapter 18  Serialization



758

Listing 18-33. The XML data from the CustomerSerialisedData.xml file 

execution

<?xml version="1.0" encoding="UTF-8"?>

<CustomerXML xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

<customerAccountNumber>123456</customerAccountNumber> <customerAge>45 

</customerAge>

<customerName>Gerry</customerName>

<customerAddress>1 Any Street, Belfast, BT1 ANY</customerAddress> 

<customerYearsWithCompany>10</customerYearsWithCompany>

</CustomerXML>

Creating the Deserialization Code
Before writing any code, we will look at the steps to be followed in order to create 

the code required to deserialize, convert the XML to a class object. These steps will be 

similar to the code we used in binary deserialization:

• Create an instance of the CustomerXML class setting its value to null:

CustomerXML myCustomer = null;

• Create an instance of the XmlSerializer informing it that we are using 

a class of type CustomerXML, same code as in the serialization class:

XmlSerializer myXMLSerialiser = new XmlSerializer(typeof( 

CustomerXML));

• Create an instance of StreamReader and pass it the name 

of the file we wish to read the XML from, in our case 

CustomerSerialisedData.xml:

StreamReader myStreamReader = new StreamReader("Customer 

SerialisedData.xml");

• Call the deserialize method of the XmlSerializer, passing it the 

StreamReader name, then cast the returned value to a CustomerXML 

object, and assign this to the myCustomer instance of the 

CustomerXML object we created in the first step:

Chapter 18  Serialization



759

try

{

myCustomer = (CustomerXML)mySerialser.Deserialize(myStreamReader);

} // End of the try block

catch

{

Console.WriteLine("Error creating the Customer" +

     " from the serialised file");

}// End of the catch block

• As the deserialization may cause an exception, we will add the code 

within a try catch block.

• Now we will display the details of the object created from the 

XML file by calling the accessor from the myCustomer instance of 

the CustomerXML class, for example, customer name would be 

displayed using the code

Console.WriteLine("Customer Name: " +

      myCustomer.customerName);

We are not using accessors, so be careful with the field name – it has no capital letter.

• Close the StreamReader instance:

myStreamReader.Close();

Now we can code the steps.

 26. Right-click the Chapter18 project in the Solution Explorer panel.

 27. Choose Add.

 28. Choose Class.

 29. Name the class XMLDeserialisation.cs.

 30. Click the Add button.

 31. Amend the code, as in Listing 18-34, to add a Main() method and 

code the steps needed to deserialize to a CustomerXML object 

and then display the details of the customer.

Chapter 18  Serialization



760

Listing 18-34. Adding the code to deserialize XML to a CustomerXML object

using System.Xml.Serialization;

namespace Chapter18

{

  internal class XMLDeserialisation

  {

    static void Main(string[] args)

    {

    /*

    De-serialisation is the process of taking the serialized data

    (file) and returning it to an object as defined by the class.

    */

      // Create an instance of the Customer class

      CustomerXML myCustomer = null;

      // Create an instance of the XmlSerializer

XmlSerializer mySerialser = new XmlSerializer(typeof(CustomerXML));

    // Create an instance of the StreamReader using the xml file

       StreamReader myStreamReader = new StreamReader("CustomerSerialisedD

ata.xml");

 try

 {

  myCustomer = (CustomerXML)mySerialser.Deserialize(myStreamReader);

  Console.WriteLine("Deserialize completed"); ;

  Console.WriteLine("Customer Details");

  Console.WriteLine("Customer Name: " + myCustomer.customerName);

  Console.WriteLine("Customer Age: " + myCustomer.customerAge);

  Console.WriteLine("Customer Account No: " +

          myCustomer.customerAccountNumber);

  Console.WriteLine("Customer Address: " +

          myCustomer.customerAddress);

  Console.WriteLine("Customer Years a Customer: " +

          myCustomer.customerYearsWithCompany);

Chapter 18  Serialization



761

 } // End of the try block

 catch

  {

    Console.WriteLine("Error creating the Customer" +

      " from the serialised file");

  }// End of the catch block

  myStreamReader.Close();

} // End of Main() method

  } // End of XMLDeserialisation class

} // End of Chapter18 namespace

 32. Right-click the Chapter18 project in the Solution Explorer panel.

 33. Choose Properties.

 34. Set the Startup object to be the XMLDeserialisation in the drop-

down list.

 35. Exit the Properties window.

 36. Click the File menu.

 37. Choose Save All.

 38. Click the Debug menu.

 39. Choose Start Without Debugging.

The deserialized object should be displayed as shown in Figure 18-9.

Figure 18-9. XML file returned as a CustomerXML object

Chapter 18  Serialization



762

 40. Press the Enter key to close the console window.

Brilliant! We can now serialize and deserialize C# objects in two different ways. XML 

is widely used in the commercial environment, but there is also another widely used 

format called JSON, and we will now complete our chapter by looking at how we can 

serialize and deserialize using the JSON format.

 Serialization Using JSON
JSON is an acronym for JavaScript Object Notation and it is a widely used format to 

represent information. JSON can represent our data in a very easy-to-read format. Many 

applications in the commercial world will use JSON to represent data and transfer it as 

part of Hypertext Transfer Protocol (HTTP) requests and responses. But remember the 

important note at the start of the chapter where we saw the quote from the Microsoft site:

Stop using BinaryFormatter in your code. Instead, consider using 
JsonSerializer or XmlSerializer.

So now we will look at the JSON option. There are different “tools” we can use 

to serialize with JSON, but we will use the System.Text.Json namespace since it was 

specially created by Microsoft to be included as a built-in library from .NET Core 3.0. By 

using this library, we will not need to use external libraries, and we will have access to 

methods such as Serialize(), Deserialize(), SerializeAsync(), and DeserializeAsync(). All 

this is all we need.

 1. Right-click the Chapter18 project in the Solution Explorer panel.

 2. Choose Add.

 3. Choose Class.

 4. Name the class JSONSerialisation.cs.

 5. Click the Add button.

 6. Right-click the Chapter18 project in the Solution Explorer panel.

 7. Choose Add.

 8. Choose Class.

 9. Name the class CustomerJSON.cs.

 10. Click the Add button.

Chapter 18  Serialization

https://docs.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer
https://docs.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer


763

We will amend the CustomerJSON class to add the members with a get and set 

attached and a constructor to set the member values. We will also use the attribute 

[JsonIgnore] so that the customerAge field is not serialized. [JsonIgnore] therefore is the 

JSON equivalent of the [NonSerialized] attribute, which we used in a previous example.

 11. Double-click the CustomerJSON file to open it in the 

editor window.

 12. Amend the code as shown in Listing 18-35 to create the class and 

use a different way to get and set the member values.

Listing 18-35. Class that has auto-implemented properties and [JsonIgnore]

using System.Text.Json.Serialization;

namespace Chapter18

{

  public class CustomerJSON

  {

    /***********************************************************

    The [JsonIgnore] attribute is a 'modifier' which can be

    used in JSON serialization to ensure the member (type) will

    not be serialized.

    ***********************************************************/

    public int CustomerAccountNumber { get; set; }

    [JsonIgnore]

    public int CustomerAge { get; set; }

    public String CustomerName { get; set; }

    public String CustomerAddress { get; set; }

    public int CustomerYearsWithCompany { get; set; }

    /**********************************************************

    Create a constructor for the Customer class.

    The constructor will over-write the default constructor.

    The constructor is used to accept the value passed into it

    from the code used to instantiate the class.

    The values passed into the constructor are used to

Chapter 18  Serialization



764

    initialise the values of fields (members, variables!).

    The keyword this is used in front of the field names.

    **********************************************************/

    public CustomerJSON(int customerAccountNumber,

      int customerAge, String customerName,

      String customerAddress, int customerYearsWithCompany)

    {

      this.CustomerAccountNumber = customerAccountNumber;

      this.CustomerAge = customerAge;

      this.CustomerName = customerName;

      this.CustomerAddress = customerAddress;

      this.CustomerYearsWithCompany = customerYearsWithCompany;

    } // End of Customer constructor

  } // End of CustomerJSON class

} // End of Chapter18 namespace

We will amend the JSONSerialisation class:

• Add a Main() method

• Inside the Main() method, we will create an instance of the class 

CustomerJSON by passing values to the constructor.

• Call the JSON Serialize() method, passing it the instance of our 

CustomerJSON and assigning the returned JSON to a string variable 

called jsonString.

• Display the returned JSON to the console.

Let’s code these steps as shown in Listing 18-36.

 13. Amend the code, as in Listing 18-36, to add the Main() method 

and the class instantiation and perform the assignment.

Chapter 18  Serialization



765

Listing 18-36. Adding a Main() method and other code

using System.Text.Json;

namespace Chapter18

{

  internal class JSONSerialisation

  {

    public static  void Main()

    {

      CustomerJSON myCustomer =

        new CustomerJSON(123456, 45, "Gerry",

        "1 Any Street, Belfast, BT1 ANY", 10);

      //Serialize

      string jsonString =

        JsonSerializer.Serialize<CustomerJSON>(myCustomer);

      Console.WriteLine(jsonString);

    } // End of Main() method

  } // End of JSONSerialisation class

} // End of Chapter18 namespace

 14. Click the File menu.

 15. Choose Save All.

 16. Right-click the Chapter18 project in the Solution Explorer panel.

 17. Choose Properties.

 18. Set the Startup object to be the JSONSerialisation in the drop-

down list.

 19. Exit the Properties window.

 20. Click the Debug menu.

 21. Choose Start Without Debugging.

Chapter 18  Serialization



766

The console window will appear and display the object details in JSON format, as 

shown in Figure 18-10, confirming that the serialization has been successful with the 

customer age not included.

Figure 18-10. JSON format from the serialization displayed

 22. Press the Enter key to close the console window.

Great, but we haven’t written the JSON to a file. Obviously, we could have created 

the code for that within the code shown in Listing 18-36, but we will achieve it through 

a new method that we will create, and this will allow us to look at serializing using an 

asynchronous approach.

We will amend the class to

• Add an async method called CreateJSON(), which will accept a 

CustomerJSON object.

• Declare a string, assigning it the name of the file to be used.

• Use an instance of the FileStream class to create the file – this is 

our stream.

• Call the SerializeAsync() method, passing it the stream and the 

instance of our CustomerJSON object.

• Dispose of the unmanaged resource of the stream.

• Display the contents of the JSON file to the console.

 23. Amend the code, as in Listing 18-37, to add the new method 

outside the Main() method but inside the namespace.

Listing 18-37. Adding a CreateJSON() method

    } // End of Main() method

    public static async Task CreateJSON(CustomerJSON myCustomer)

    {

      string fileName = "Customer.json";

Chapter 18  Serialization



767

      using FileStream createStream = File.Create(fileName);

      await JsonSerializer.SerializeAsync(createStream, myCustomer);

      await createStream.DisposeAsync();

      Console.WriteLine(File.ReadAllText(fileName));

    } // End of CreateJSON() method

  } // End of JSONSerialisation class

} // End of Chapter18 namespace

 24. Amend the code, as in Listing 18-38, to call the CreateJSON() 

method from within the Main() method, passing it the 

myCustomer object. The Main() method will need to be async so 

that we can await properly.

Listing 18-38. Adding a call to the CreateJSON() method

    public static async Task Main()

    {

       CustomerJSON myCustomer = new CustomerJSON(123456, 45, "Gerry", "1 

Any Street, Belfast, BT1 ANY", 10);

      //Serialize

       string jsonString = JsonSerializer.Serialize<CustomerJSON>(my

Customer);

      Console.WriteLine(jsonString);

      await CreateJSON(myCustomer);

    } // End of Main() method

    public static async Task CreateJSON(CustomerJSON myCustomer)

    {

 25. Click the File menu.

 26. Choose Save All.

 27. Click the Debug menu.

Chapter 18  Serialization



768

 28. Choose Start Without Debugging.

The console window will appear and display the object details in JSON format, as 

shown in Figure 18-10.

 29. Press the Enter key to close the console window.

We also wrote the code so that a file was created, so we should also look in the net6.0 

folder, inside the Debug folder, inside the bin folder, and see that the Customer.json file 

has been created.

 30. Double-click the Customer.json file to open it in the 

editor window.

A raw form as displayed in Visual Studio 2022 is shown in Listing 18-39, while a 

“pretty” form of the Customer.json is shown in Listing 18-40.

Listing 18-39. JSON file contents as shown in Visual Studio 2022

{"customerAccountNumber":123456,"customerName":"Gerry","customerAddress":"1 

Any Street, Belfast, BT1 ANY","customerYearsWithCompany":10}

Listing 18-40. JSON file contents in “pretty” format

{

  "CustomerAccountNumber": 123456,

  "CustomerName": "Gerry",

  "CustomerAddress": "1 Any Street, Belfast, BT1 ANY",

  "CustomerYearsWithCompany": 10

}

Notice CustomerAge was a [JsonIgnore] field so it does not appear.

We will amend the class to

• Add a method called ReadJSON().

• Declare a string, assigning it the name of the file to be used.

• Use an instance of the FileStream class to open and read the file – this 

is our stream.

• Call the DeSerialize() method, passing it the stream.

• Display the contents of the JSON file to the console.

Chapter 18  Serialization



769

 31. Amend the code, as in Listing 18-41, to add the new method 

outside the Main() method but inside the namespace.

Listing 18-41. Adding a ReadJSON() method

} // End of CreateJSON() method

public static void ReadJSON()

{

 string fileName = "Customer.json";

 using FileStream myStream = File.OpenRead(fileName);

  CustomerJSON myCustomer = JsonSerializer.Deserialize<CustomerJSON>(

myStream);

Console.WriteLine("Customer Details");

Console.WriteLine("Customer Name: " + myCustomer.CustomerName);

Console.WriteLine("Customer Age: " + myCustomer.CustomerAge);

Console.WriteLine("Customer Account No: " +  myCustomer.

CustomerAccountNumber);

Console.WriteLine("Customer Address: " + myCustomer.CustomerAddress);

Console.WriteLine("Customer Years a Customer: " +

myCustomer.CustomerYearsWithCompany);

 } // End of ReadJSON() method

  } // End of JSONSerialisation class

} // End of Chapter18 namespace

 32. Amend the code, as in Listing 18-42, to call the 

ReadJSON() method.

Listing 18-42. Call the ReadJSON() method

      await CreateJSON(myCustomer);

      ReadJSON();

    } // End of Main() method

Chapter 18  Serialization



770

 33. Click the File menu.

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

The console window will appear and display the object details, as shown in 

Figure 18-11.

Figure 18-11. Deserialized object showing the [JsonIgnore] attributed worked

 37. Press the Enter key to close the console window.

 Chapter Summary
So, finishing this chapter on object serialization and deserialization, we should be 

familiar with the use of a class and the instantiation of the class to create an object. We 

realize that our object, instantiated class, will be treated like all the other objects we have 

in our code when the application is closed. When we close our application, our object 

and every other object will not be accessible. We saw in Chapter 16 that we could persist 

data by writing it to a text file, which is accessible to us after the application stops. So 

we can now think of serialization as a method to write the object with its real data to a 

file so we can reuse it at a later stage. We may want to transfer the object, with its state, 

to another computer over the network or Internet, and through serialization we can 

use different formats such as binary data, XML data, and JSON data. We also saw that 

deserialization allows us to reverse the process carried out by serialization, which means 

converting our serialized byte stream back to our object.

Chapter 18  Serialization

https://doi.org/10.1007/978-1-4842-8619-7_16


771

Wow, what an achievement. This is not basic coding. We are doing some wonderful 

things with our C# code. We should be immensely proud of the learning to date. In 

finishing this chapter, we have increased our knowledge further and we are advancing to 

our target.

 

Chapter 18  Serialization



773

CHAPTER 19

Structs

 Concept of a Struct as a Structure Type
In the previous chapter, we looked at serialization, which allows us to store the state of an 

object, where an object is an instance of a specific class. We looked at different ways to 

serialize and store the data, and two such formats were XML and JSON. We also learned 

how to deserialize the serialized data, which is usually stored in a file, and therefore 

convert it to the same class structure it was in originally. The reason we serialize an 

object or objects is to allow it to be transferred across a network or shared with other 

people. Serialization also works across programming languages. In Chapter 13  

we gained knowledge of classes and objects, which formed the foundations for the 

serialization and deserialization processes. Classes are a structure, and in this chapter 

we will extend our knowledge of structures by looking at the C# struct.

In C# a struct is a lightweight alternative to a class, but it is not a class. The struct 

can have members and methods, or put another way, we say it can have data and 

functionality. A struct in C# is defined using the keyword struct. Interestingly, we have, 

without thinking, used simple structs already when coding our applications, since all the 

value types we have used – for example, int, float, double, bool, char, etc. – are structs. 

Before we begin, let us take a look at the difference between value types and reference 

types in relation to structs and classes.

Value and Reference Types
Structs are value types, whereas a class is a reference type, and they are dealt with by 

the runtime in different ways:

• When a value type instance is made, there is one single space allocated 

in memory to store the value. We have discussed primitive data types 

such as int and float and these are value types like a struct. When the 

runtime deals with the value type, it is dealing directly with the data.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_19

https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_19#DOI


774

• On the other hand, with reference types, an object is created in 

memory and dealt with through a pointer.

Example for a Struct

CustomerStruct myCustomerStruct = new CustomerStruct();

Here one single space is allocated in memory to store the 

myCustomerStruct, and if we were to copy the struct object to a new 

variable as

CustomerStruct myCustomer2Struct = myCustomerStruct;

then myCustomer2Struct would be completely independent of 

myCustomerStruct and have its own fields.

Example for a Class

CustomerClass myCustomerClass= new CustomerClass();

Here two spaces are allocated in memory. One stores the 

CustomerClass object, and the other stores its reference 

myCustomerClass. So we could show the example code like this:

CustomerClass myCustomerClass;

myCustomerClass = new CustomerClass();

Now if we were to copy the class object to a new variable as

CustomerClass myCustomer2Class = myCustomerClass;

then myCustomer2Class would be simply a copy of the 

reference CustomerClass, and therefore myCustomerClass and 

myCustomer2Class point to the same object.

 Difference Between Struct and Class
Some ways in which structs differ from classes are as follows:

• Structs are value types, and we use the actual struct. On the other 

hand, a class is a reference type, and we point to the actual class.

Chapter 19  StruCtS



775

• Structs cannot be coded by us to have a constructor that has no 

parameters, a default constructor, since the default constructor is 

automatically defined and not available to change.

• Structs cannot inherit from other structs or classes, whereas a class 

can inherit from other classes.

• Structs can implement one or more interfaces.

• Structs cannot declare a finalizer, which is a destructor used to 

garbage collect.

• If we use the new keyword to create an object of the struct, the 

default constructor is called and the object is created. A struct can be 

instantiated without using the new keyword, whereas a class cannot 

be instantiated without using the new keyword.

• If the struct is used without the new keyword, the members of the 

struct will remain unassigned and we cannot use the struct object 

until we have initialized all the members.

• Members, fields, cannot be initialized, for example, public int policy_

number = 0; causes an error in C# 10 or lower.

In writing our code, there may be times when we wish to access an object directly, 

in the same way that value types are accessed. To address these concerns, C# offers the 

structure as described previously and, in our programming, we would use structs to 

represent more simple data structures. The format of the struct declaration is

struct name

{

  member declarations

  constructor if required

}

Let's code some C# and build our programming muscle.
We will create a Customer struct in a similar manner to the Customer class we 

created when we completed Chapter 13 on classes and objects.

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

Chapter 19  StruCtS

https://doi.org/10.1007/978-1-4842-8619-7_13


776

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter19 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter19 project within the solution called CoreCSharp.

 10. Right-click the Chapter19 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter19 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to CustomerExample.cs.

 15. Press the Enter key

 16. Double-click the CustomerExample.cs file to open it in the 

editor window.

 Struct with a Default Constructor Only
We will now add a Main() method. Then we will add a struct called Customer, which is 

outside the class but inside the namespace and will hold the variables we require. In the 

code in Listing 19-1, the Customer struct has been created above the Main() method, but 

it could also have been created below the Main() method. The Customer struct will not 

be given a constructor in our code, but the default constructor still exists.

Chapter 19  StruCtS



777

 17. Amend the code, as in Listing 19-1.

Listing 19-1. Customer struct inside namespace

namespace Chapter19

{

  struct Customer

  {

    public int AccountNo;

    public int Age;

    public string Name;

    public string Address;

    public int LoyaltyYears;

  } // End of Customer struct

  internal class CustomerExample

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of CustomerExample class

} // End of Chapter19 namespace

We will now add code inside the Main() method to create an instance of the 

Customer struct, then assign values to the Customer struct fields, and then display the 

Customer struct values in a formatted display. This should all look familiar to us as we 

have coded applications using classes and objects.

 18. Amend the code, as in Listing 19-2.

Listing 19-2. Assign values to the Customer struct fields and display the data

  internal class CustomerExample

  {

    static void Main(string[] args)

    {

      // Create an object, myCustomer, of type struct Customer

      Customer myCustomer;

Chapter 19  StruCtS



778

      // Assign values to the myCustomer properties

      myCustomer.AccountNo = 123456;

      myCustomer.Age = 30;

      myCustomer.Name = "Gerry Byrne";

      myCustomer.Address = "1 Any Street";

      myCustomer.LoyaltyYears = 10;

      // Display the myCustomer struct details

       Console.WriteLine($"{"Customer account number is",-30} {myCustomer.

AccountNo,15}");

      Console.WriteLine($"{"Customer age is",-30} {myCustomer.Age,15}");

      Console.WriteLine($"{"Customer name is",-30} {myCustomer.Name,15}");

       Console.WriteLine($"{"Customer address is",-30} {myCustomer.

Address,15}");

       Console.WriteLine($"{"Customer loyalty years",-30} {myCustomer.

LoyaltyYears,9} years");

    } // End of Main() method

  } // End of CustomerExample class

 19. Click the File menu.

 20. Choose Save All.

 21. Click the Debug menu.

 22. Choose Start Without Debugging.

The console window will appear, as shown in Figure 19-1, and show details of this 

Customer instance.

Figure 19-1. Struct details displayed for the instance

 23. Press the Enter key to close the console window.

Chapter 19  StruCtS



779

 Struct with a User Constructor
As we have seen, a C# struct is a value type. This means that when we create an instance 

of the struct, we must pass to it values for each of its members. This can be achieved by

• Using the default constructor method to give default values of 

the members

• Having a user-defined constructor method to assign values to 

the members

We will code an example of an insurance policy that we might have for our home 

building insurance, home contents insurance, car insurance, travel insurance, etc. 

All these policy types will have common data that needs to be stored for the specific 

customer policy, the policy object. We will create a sample C# policy struct and include a 

constructor, which we did not use in the last example.

 24. Right-click the Chapter19 project in the Solution Explorer window.

 25. Choose Add.

 26. Choose Class.

 27. Name the class PolicyExample.cs.

 28. Open the PolicyExample.cs file in the editor window.

 29. Amend the code, as in Listing 19-3, to create a Policy struct 

outside the class and inside the namespace.

Listing 19-3. Create a struct called Policy

namespace Chapter19

{

  struct Policy

  {

    public int policyNumber;

    public string policyType;

    public double monthlyPremium;

    public string policyEndDate;

  } // End of Policy struct

Chapter 19  StruCtS



780

  internal class PolicyExample

  {

  } // End of PolicyExample class

} // End of Chapter19 namespace

 Struct Instantiation Without the New Keyword
We will now create a Main() method inside the class and instantiate the struct WITHOUT 

using the new keyword, and then we will display the four struct values in the console.

 30. Amend the code as in Listing 19-4.

Listing 19-4. Instantiate the Policy struct without using the new keyword

  internal class PolicyExample

  {

    static void Main(string[] args)

    {

      /*

      Using an instance without the new keyword

      if the struct is used without the new keyword the members

        of the struct will remain unassigned, no values, and

        we cannot use the struct object until we have

        initialised all the members

        Using the code below we will see that

          - myPolicy is an instance of Policy

          - myPolicy.PolicyNumber is unassigned but

          - doing myPolicy.PolicyNumber = 123456 means it exists

          - same applies for all members

      */

      Policy myPolicy;

      Console.WriteLine(myPolicy.policyNumber);

      Console.WriteLine(myPolicy.policyType);

      Console.WriteLine(myPolicy.monthlyPremium);

Chapter 19  StruCtS



781

      Console.WriteLine(myPolicy.policyEndDate);

    } // End of Main() method

  } // End of PolicyExample class

Now if we look at the code, we will see that under the four struct member names, we 

will have a red underline indicating there are errors.

 31. Hover over the policyNumber code that has the red underline and 

look at the error message, as shown in Figure 19-2.

Figure 19-2. Errors because of unassigned values

The message tells us what we already know from reading the earlier sections of this 

chapter:

If the struct is used without the new keyword, the members of the struct will 
remain unassigned and we cannot use the struct object until we have ini-
tialized all the members.

 Struct Instantiation with the New Keyword
We will now instantiate the struct WITH the new keyword and then display the four 

struct values to the console.

 32. Amend the code, as in Listing 19-5. Only one line of code needs 

amended.

Listing 19-5. Instantiate the Policy struct using the new keyword

      Policy myPolicy = new Policy();

      Console.WriteLine(myPolicy.policyNumber);

      Console.WriteLine(myPolicy.policyType);

      Console.WriteLine(myPolicy.monthlyPremium);

      Console.WriteLine(myPolicy.policyEndDate);

    } // End of Main() method

Chapter 19  StruCtS



782

As we will see, the four struct member names are error-free. We read earlier that if 

we use the new keyword to create an object of the struct, the default constructor is called 

and the object is created, and the members will be assigned the default value for their 

specific data type. The default values for our struct members will be 0 for an int and null 

for a string, which will therefore display nothing. Let us see if this is the case by running 

the code.

 33. Right-click the Chapter19 project in the Solution Explorer panel.

 34. Choose Properties from the pop-up menu.

 35. Choose the Chapter19.PolicyExample class in the Startup object 

drop-down list.

 36. Close the Properties window.

 37. Click the File menu.

 38. Choose Save All.

 39. Click the Debug menu.

 40. Choose Start Without Debugging.

The console window will appear, as shown in Figure 19-3, and show details of the 

policy. The display shows the default values of 0 for the int and double and null for the 

two strings.

 41. Press the Enter key to close the console window.

Figure 19-3. Struct default values 0 and null by using the default constructor

Chapter 19  StruCtS



783

 Creating a Constructor
The default constructor is automatically defined and not available for change. 

Remember, a default constructor is parameterless; it accepts no values. However, a struct 

allows a constructor to be added that contains parameters.

We will now add a custom constructor to the struct and this constructor will accept 

values for all the struct members. The constructor will therefore have four parameters, 

which will accept the values passed to it when a new instance of the struct is created.

 42. Amend the code, as in Listing 19-6.

Listing 19-6. Add a constructor to the struct

  struct Policy

  {

    public int policyNumber;

    public string policyType;

    public double monthlyPremium;

    public string policyEndDate;

    public Policy(int policyNumber, string policyType,

      double monthlyPremium, string policyEndDate)

    {

      this.policyNumber = policyNumber;

      this.policyType = policyType;

      this.monthlyPremium = monthlyPremium;

      this.policyEndDate = policyEndDate;

    } // End of user constructor

  } // End of Policy struct

We should note that the existing code we have, where we are creating an instance 

of the Policy, Policy myPolicyNew = new Policy();, still works because the 

default constructor still exists. However, we will amend this code line to pass the new 

constructor four values for this new policy.

 43. Amend the code to add the four values to be passed to the 

constructor of the struct. Only the one line of code needs 

amended, as Listing 19-7:

Chapter 19  StruCtS



784

Listing 19-7. Instantiate using the custom constructor

       Policy myPolicy = new Policy(123456, "Computer Hardware", 9.99, 

"31/12/2021");

      Console.WriteLine(myPolicy.policyNumber);

      Console.WriteLine(myPolicy.policyType);

      Console.WriteLine(myPolicy.monthlyPremium);

      Console.WriteLine(myPolicy.policyEndDate);

    } // End of Main() method

  } // End of PolicyExample class

 44. Click the File menu.

 45. Choose Save All.

 46. Click the Debug menu.

 47. Choose Start Without Debugging.

The console window will appear, as shown in Figure 19-4, and show details of the 

policy with the new initialized values passed to the constructor from the instance.

 48. Press the Enter key to close the console window.

 Creating Member Properties (Get and Set Accessors)
Members of a struct can, like members of a class, have a property, which is used to get 

and set the value of the member. We saw this being used in Chapter 13 on classes, so 

now we will see it in action with structs. We also saw in the last chapter that there can be 

several flavors of properties.

Figure 19-4. Struct values as set by the instance using the custom constructor

Chapter 19  StruCtS

https://doi.org/10.1007/978-1-4842-8619-7_13


785

 49. Amend the code, as in Listing 19-8, to make the members of the 

struct have access modifiers of private.

Listing 19-8. Make members private

  struct Policy

  {

    private int policyNumber;

    private string policyType;

    private double monthlyPremium;

    private string policyEndDate;

Look at the display lines of the code where we have used the dot notation to access 

the struct members, and we will see that we have errors. Hovering over one of the errors, 

as shown in Figure 19-5, tells us what we should realize the member is not accessible as 

it is private to the struct.

Figure 19-5. Inaccessible members due to access modifier

We will now create the property for each member, and because we are more 

experienced in our understanding of C# code, we will use the Visual Studio 2020 help, in 

the form of Quick Actions and Refactorings, which we discussed in Chapter 6.

 50. Highlight the four members of the struct.

 51. Right-click in the highlighted code.

 52. Choose Quick Actions and Refactorings as shown in Figure 19-6.

Chapter 19  StruCtS

https://doi.org/10.1007/978-1-4842-8619-7_6


786

Figure 19-6. Quick Actions and Refactorings to add properties

 53. Choose Encapsulate field (but still use field).

The property for each member will appear either above or below the constructor. 

Either is fine, as shown in Listing 19-9. The struct will now have the members, the 

constructor, and the properties, just like a class can have these.

Listing 19-9. Member properties created, the get and the set

struct Policy

  {

    private int policyNumber;

    private string policyType;

    private double monthlyPremium;

    private string policyEndDate;

    public Policy(int policyNumber, string policyType,

      double monthlyPremium, string policyEndDate)

    {

      this.policyNumber = policyNumber;

      this.policyType = policyType;

      this.monthlyPremium = monthlyPremium;

      this.policyEndDate = policyEndDate;

    } // End of user constructor

    public int PolicyNumber

    {

      get => policyNumber;

      set => policyNumber = value;

    }

Chapter 19  StruCtS



787

    public string PolicyType

    {

      get => policyType;

      set => policyType = value;

    }

    public double MonthlyPremium

    {

      get => monthlyPremium;

      set => monthlyPremium = value;

    }

    public string PolicyEndDate

    {

      get => policyEndDate;

      set => policyEndDate = value;

    }

  } // End of Policy struct

Now we need to change the dot notation in the WriteLine() code lines that refer 

to the members directly and refer them instead to the property of the member. The 

property uses the capitalized form of the member.

 54. Amend the code, as in Listing 19-10, to refer to the property.

Listing 19-10. Call the property, not the member, with a capital letter

      Console.WriteLine(myPolicy.PolicyNumber);

      Console.WriteLine(myPolicy.PolicyType);

      Console.WriteLine(myPolicy.MonthlyPremium);

      Console.WriteLine(myPolicy.PolicyEndDate);

    } // End of Main() method

  } // End of PolicyExample class

} // End of Chapter19 namespace

 55. Click the File menu.

 56. Choose Save All.

 57. Click the Debug menu.

Chapter 19  StruCtS



788

 58. Choose Start Without Debugging.

The console window will appear, as shown in Figure 19-7, and details of the policy 

will be displayed.

Figure 19-7. Values retrieved using property accessors

 59. Press the Enter key to close the console window.

 Encapsulation
The code we have just run produced the same result as the previous example, but we 

have made use of the properties, get and set, for the private variables. This has therefore 

given us a little exposure to encapsulation, where we refer to encapsulation as hiding the 

variables of a class or struct so that they can only be accessed from outside the class or 

struct by special methods called properties. We achieve encapsulation, as we have just 

seen, by making the access modifier of the fields private and then generating a property 

for each member. We do not need to have a property for every member if we do not want 

to, and we do not have to have a get and a set in each property. This will depend on what 

we wish for the given situation.

A struct can include concrete methods just like classes can include concrete 

methods. We have not included methods in our examples, but it would be easy to do so, 

in the same way we did when we coded the applications in Chapter 13 on classes and 

objects.

 Readonly Struct
When we want to limit access to the struct data, we can make the struct readonly. The 

keyword readonly is therefore a modifier indicating that something cannot be changed. 

With structs we can use the readonly modifier with the

Chapter 19  StruCtS

https://doi.org/10.1007/978-1-4842-8619-7_13


789

• struct – In which case the whole struct is readonly. We could 

therefore say that the structure is immutable; it is “final.” In this 

case all the members are readonly, and consequently every member 

property does not require a set accessor, a setter – remember 

YAGNI. The only way to change the member values is at the time 

of creating the instance object, which calls the constructor whose 

purpose is to set the initial values of the members. The members 

of the readonly struct are readonly, and therefore no method in the 

struct can change its value, which essentially means that we will not 

see a statement like myPolicy.PolicyType = "Jewellery".

• Member of the struct – From C# 8, a member can be set to readonly, 

in which case the value of the member cannot be changed. If the 

member is readonly, then its property does not require a set accessor, 

a setter. Allowing readonly members means we do not need to make 

the whole struct readonly.

 Creating a Readonly Struct
We will use the PolicyExample as our starting point for this exercise on readonly structs.

 60. Open the PolicyExample.cs file in the Chapter19 project.

 61. Amend the code, as in Listing 19-11, to make the Policy struct 

readonly.

Listing 19-11. Readonly struct

  readonly struct Policy

  {

    private int policyNumber;

    private String policyType;

    private double monthlyPremium;

    private String policyEndDate;

Now we will see that there are errors indicated under the struct members because 

they will need to be made readonly as well. Hovering over the error will display the error 

message, as shown in Figure 19-8.

Chapter 19  StruCtS



790

Figure 19-8. Readonly struct needs readonly fields

 62. Amend the code, as in Listing 19-12, to make the member fields 

readonly.

Listing 19-12. Readonly fields

  readonly struct Policy

  {

    readonly int policyNumber;

    readonly String policyType;

    readonly double monthlyPremium;

    readonly String policyEndDate;

Now we will see that the errors for the members are removed. However, we will also 

see errors in the set accessor of each member property. We will now correct the set errors 

by commenting the code. This is not a normal programming practice (YAGNI), but we 

will keep the code for reference.

 63. Amend the code, as in Listing 19-13, to comment the setters.

Listing 19-13. Setters are not required; comment them

   public int PolicyNumber

    {

      get => policyNumber;

      //set => policyNumber = value;

    }

    public string PolicyType

Chapter 19  StruCtS



791

    {

      get => policyType;

      //set => policyType = value;

    }

    public double MonthlyPremium

    {

      get => monthlyPremium;

      //set => monthlyPremium = value;

    }

    public string PolicyEndDate

    {

      get => policyEndDate;

      //set => policyEndDate = value;

    }

  } // End of Policy struct

Within the Main() method, the code that uses the members is accessing them 

through the property of the member, really the get accessor of the property, so this will 

still work because we do have the getters but not the setters as the struct is readonly. 

Perfect! Our code should work well.

 64. Click the File menu.

 65. Choose Save All.

 66. Click the Debug menu.

 67. Choose Start Without Debugging.

The console window will appear displaying details of the policy, as shown in 

Figure 19-9.

Figure 19-9. Readonly struct, readonly fields with no setters – code works

Chapter 19  StruCtS



792

 68. Press the Enter key to close the console window.

We have achieved the same result, but we have seen the use of a readonly struct, with 

readonly members and member properties that only require a get accessor since the 

member values cannot be changed, unless it is done through the constructor. Now we 

will try and assign a new value to a readonly struct member.

 69. Amend the code in the Main() method to attempt to assign a new 

value to the policyNumber as shown in Listing 19-14.

Listing 19-14. Attempt to assign a value to a readonly struct

      Console.WriteLine(myPolicy.PolicyEndDate);

      myPolicy.PolicyNumber =

    } // End of Main() method

  } // End of PolicyExample class

} // End of Chapter19 namespace

Even before we have completed the line of code, we will see that the compiler 

is complaining, and this is indicated in Visual Studio 2022 by the red underline. On 

hovering over the red underline, a pop-up window with a message appears, and we 

should note that we are being told it is not possible to assign a value, because we are 

dealing with a readonly struct member.

 70. Hover over the red underline of PolicyNumber as shown in 

Figure 19-10.

Figure 19-10. Cannot change readonly struct member

 71. Remove the partial line of code.

 72. Click the File menu.

 73. Choose Save All.

Chapter 19  StruCtS



793

 C# 8 readonly Members
Prior to C# 8 we could have a readonly struct and all the fields had to be readonly, as we 

have just seen in the example we coded. From C# 8 we were introduced to a new feature 

for the struct, which allows us to declare members of the struct as readonly without the 

struct being readonly. This has the advantage of making the code more specific and 

more granular, because we target those fields that need to be readonly rather than having 

to make all the fields readonly.

We will now use the same Policy struct code we used earlier, to illustrate the use 

of the readonly field without the struct being readonly. As we already have a Policy 

struct in the namespace, we will have to rename the struct from Policy, so we will call it 

PolicyReadOnlyMembers.

 74. Right-click the Chapter19 project in the Solution Explorer window.

 75. Choose Add.

 76. Choose Class.

 77. Name the class PolicyExampleReadOnlyMember.cs.

We will now amend the code to add a struct, which will have two readonly fields, two 

private fields, and a property for each field with a get for all fields and a set for the non- 

readonly fields.

 78. Amend the PolicyExampleReadOnlyMember class code, as shown 

in Listing 19-15.

Listing 19-15. Creating the struct with readonly fields

namespace Chapter19

{

  struct PolicyReadOnlyMembers

  {

    private readonly int policy_number;

    private string policyType;

    private double monthlyPremium;

    private readonly string policyEndDate;

Chapter 19  StruCtS



794

    public PolicyReadOnlyMembers(int policy_number,

    string policyType, double monthlyPremium,

           string policyEndDate)

    {

      this.policy_number = policy_number;

      this.policyType = policyType;

      this.monthlyPremium = monthlyPremium;

      this.policyEndDate = policyEndDate;

    } // End of user constructor

    // Properties used to get and set the members

    public int Policy_number

    {

      get => policy_number;

    } // End of Policy_number property

    public string PolicyType

    {

      get => policyType;

      set => policyType = value;

    } // End of PolicyType property

    public double MonthlyPremium

    {

      get => monthlyPremium;

      set => monthlyPremium = value;

    } // End of MonthlyPremium property

    public string PolicyEndDate

    {

      get => policyEndDate;

    } // End of PolicyEndDate property

  } // End of PolicyReadOnlyMembers struct

  internal class PolicyExampleReadOnlyMember

  {

  } // End of PolicyExampleReadOnlyMember class

} // End of Chapter19 namespace

Chapter 19  StruCtS



795

We will now add a Main() method that will contain the code to instantiate the struct 

and have two lines of code to set the values of the two readonly fields.

 79. Amend the class code, as in Listing 19-16.

Listing 19-16. Instantiate the struct and try to assign values to readonly fields

  internal class PolicyExampleReadOnlyMember

  {

    static void Main(string[] args)

    {

      PolicyReadOnlyMembers PolicyReadOnlyMember =

        new PolicyReadOnlyMembers(123456, "Computer Hardware",

                                  9.99, "31/12/2021");

      Console.WriteLine(PolicyReadOnlyMember.Policy_number);

      Console.WriteLine(PolicyReadOnlyMember.PolicyType);

      Console.WriteLine(PolicyReadOnlyMember.MonthlyPremium);

      Console.WriteLine(PolicyReadOnlyMember.PolicyEndDate);

      PolicyReadOnlyMember.Policy_number = 567890;

      PolicyReadOnlyMember.PolicyType = "Monitor";

      PolicyReadOnlyMember.MonthlyPremium = 5.99;

      PolicyReadOnlyMember.PolicyEndDate = "01/01/2099";

    } // End of Main() method

  } // End of PolicyExampleReadOnlyMember class

} // End of Chapter19 namespace

Now look at the assignment lines that are trying to set the values of the readonly 

fields; they have a red underline indicating a problem. If we hover over the red underline 

of any of the assignments, we will see a message telling us we cannot assign a value to a 

readonly field.

 80. Hover of the red underline of any of the assignment lines, and 

note the message, as shown in Figure 19-11.

Chapter 19  StruCtS



796

Figure 19-11. Readonly error message only on readonly fields

This is the C# 8 readonly field of a struct in action. The struct is not readonly, but the 

fields marked with the readonly keyword are, and as we know, we cannot change the 

value of a readonly member.

 81. Comment the two lines that are causing the error, as in 

Listing 19-17.

Listing 19-17. Comment the lines causing the error (or delete them)

      //PolicyReadOnlyMember.Policy_number = 567890;

      PolicyReadOnlyMember.PolicyType = "Monitor";

      PolicyReadOnlyMember.MonthlyPremium = 5.99;

      //PolicyReadOnlyMember.PolicyEndDate = "01/01/2099";

    } // End of Main() method

  } // End of PolicyExampleReadOnlyMember class

} // End of Chapter19 namespace

 82. Right-click the Chapter19 project in the Solution Explorer panel.

 83. Choose Properties from the pop-up menu.

 84. Choose the PolicyExampleReadOnlyMember class in the Startup 

object drop- down list.

 85. Close the Properties window.

 86. Click the File menu.

 87. Choose Save All.

 88. Click the Debug menu.

 89. Choose Start Without Debugging.

Chapter 19  StruCtS



797

Figure 19-12 shows the console window displaying the details of the policy.

Figure 19-12. Using readonly fields

So we have shown that readonly members cannot be assigned new values. The 

values are set through the custom constructor, if there is one, or the parameterless 

default constructor.

 C# 8 Nullable Reference Types
In Chapter 6 on data types, we looked at conversion and parsing, and we read about the 

C# 8 nullable reference type. We read how we could use the ? to ensure that a null value 

was acceptable, given that from C# 8, reference types are non-nullable by default. In 

our reading we used two code examples using strings, one using the ? and the other not 

using it:

Example 1 was

  /*

  This will cause a warning as all reference types are

  non-nullable by default. The warning will be similar to:

  Converting null literal or possible null value to

  non-nullable reference type.

  */

 string policyId = null;

Example 2 was

  /*

  This will not cause a warning as null is acceptable

  */

  string? policyId = null;

Chapter 19  StruCtS

https://doi.org/10.1007/978-1-4842-8619-7_6


798

For some reinforcement, we will apply the nullable reference type to the struct 

example we have just completed, but this will require the project to have Nullable 

enabled, which is done within the project’s .csproj file.

The Microsoft site says

Null-state analysis and variable annotations are disabled by default for 
existing projects – meaning that all reference types continue to be nullable. 
Starting in .NET 6, they're enabled by default for new projects.

The line of code, <Nullable>enable</Nullable>, would need to be added to the 

.csproj file, but as we have been using .NET 6, we will not need to make this change, as 

Nullable is enabled by default. Listing 19-18 shows the contents of our Chapter19.csproj 

file, and we can see that Nullable is indeed enabled.

Listing 19-18. Enable Nullable in the .csproj file

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <OutputType>Exe</OutputType>

    <TargetFramework>net6.0</TargetFramework>

    <ImplicitUsings>enable</ImplicitUsings>

    <Nullable>enable</Nullable>

    <StartupObject>Chapter19.PolicyExampleReadOnlyMember</StartupObject>

  </PropertyGroup>

</Project>

We can also enable or disable the nullable reference type within the code of a .cs 

file. This is achieved by using the code line #nullable enable above any line where the 

action is required or #nullable disable above any line where the action is not required. 

This can be seen in this code snippet where the nullable reference type has been 

disabled for the policyId field because it was enabled at the project level:

      #nullable disable

      string policyId = null;

Chapter 19  StruCtS



799

The Microsoft site also says

The nullable annotation context and nullable warning context can be set 
for a project using the <Nullable> element in your .csproj file. This element 
configures how the compiler interprets the nullability of types and what 
warnings are emitted.

Note:

Deference warnings occur when the application deferences (tries to obtain the 

address of something held in a location from a pointer) and expects it to be valid but is 

returned a null.

An assignment warning is issued when we try to assign incorrectly, for example, 

in an if construct, we might try to do if(amount = amountLimit) but we would get an 

assignment warning as it should be if(amount == amountLimit).

The Microsoft site also gives us details about the contexts we can use:

If we use disable, then

• All reference types are nullable.

• We do not need to use the ? suffix.

• Deference warnings are disabled.

• Assignment warnings are disabled.

If we use enable, then

• All reference types are non-nullable unless declared using the ?.

• We can use the ? suffix.

• Deference warnings are enabled.

• Assignment warnings are enabled.

If we use warnings, then

• All reference types are nullable but members are considered not null 

at the opening brace of methods.

• We can use the ? suffix but it produces a warning.

• Deference warnings are enabled.

• Assignment warnings are not applicable.

Chapter 19  StruCtS

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/language


800

If we use annotations, then

• All reference types are non-nullable unless declared using the ?.

• We can use the ? suffix and it declares the nullable type.

• Deference warnings are disabled.

• Assignment warnings are disabled.

 90. Amend the PolicyReadOnlyMembers struct so that the policyType 

is assigned a null value within the constructor, as in Listing 19-19.

Listing 19-19. Assign a null value to the policyType field

    public PolicyReadOnlyMembers(int policy_number,

      string policyType, double monthlyPremium,

             string policyEndDate)

    {

      this.policy_number = policy_number;

      //this.policyType = policyType;

      this.policyType = null;

      this.monthlyPremium = monthlyPremium;

      this.policyEndDate = policyEndDate;

    } // End of user constructor

Hovering over the word null will show a pop-up window with a message, and reading 

this message tells us that we cannot have a nullable – the string field policyType cannot 

be assigned a null value.

 91. Hover over the word null, as in Figure 19-13, and read the warning 

message.

Figure 19-13. Null literal error message

Chapter 19  StruCtS



801

We will now amend the declaration of the policyType within the struct, so that the 

type string is marked with the ?:

private string? policyType;

This will enable the policyType to accept a null value.

 92. Amend the code, as in Listing 19-20.

Listing 19-20. Using the ? to permit a null value

  struct PolicyReadOnlyMembers

  {

    readonly private int policy_number;

    private string? policyType;

    private double monthlyPremium;

    readonly private String policyEndDate;

Notice the warning under the null in the code has disappeared.

 93. Click the File menu.

 94. Choose Save All.

 95. Click the Debug menu.

 96. Choose Start Without Debugging.

The console window will appear displaying details of the policy, as shown in 

Figure 19-14. We can see that the nullable value has been accepted, and this is where the 

second line is displaying as “empty.”

Figure 19-14. Null value used for policyType field

Chapter 19  StruCtS



802

 Chapter Summary
So, finishing this chapter on structs, we can see the similarity with classes and objects. 

A struct is a value type, which must have a default parameterless constructor, but they 

can also have custom constructors. The fields can be set to private and we can use 

properties, getters and setters, to access them. The whole struct can be set to readonly 

and this means all fields must also be readonly, but from C# 8 we can have readonly 

fields without the struct being readonly. Finally, we looked at nullable references and the 

use of the ? to permit null values.

Wow, what an achievement. This is not basic coding. We are doing some wonderful 

things with our C# code. We should be immensely proud of the learning to date. In 

finishing this chapter, we have increased our knowledge further and we are advancing to 

our target.

 

Chapter 19  StruCtS



803

CHAPTER 20

Enumerations

 Concept of Enumerations
In the last chapter, we learned about the struct, which is a C# type and is similar to a 

class, encapsulating data and functionality, that is, variables and methods. We saw that 

a struct can have a custom constructor, but will always have a default parameterless 

constructor, and the struct can contain properties for accessing the private members. 

In terms of accessibility, we saw that the struct could be made readonly, which means 

all fields automatically become set as readonly. However, we learned that from C# 8 

individual fields could be set to have the readonly access, thereby leaving other fields to 

remain readable and writeable. Finally, we learned that structs are value types, whereas 

a class is a reference type.

We will now look at another structure called the enumeration, or enum as it is also 

called. Enumerations are essentially a group of integer values, which have been assigned 

names with the aim of making the code more readable. In Chapter 10 on iteration, 

we talked about magic numbers and how they are not acceptable when we wish to 

have clean code. Well, the enumeration helps us avoid the use of “magic numbers” by 

assigning names to them.

We use the keyword enum to identify the enumeration, which is used to hold a set 

of named integer constants. In C# an enumeration is a value data type, which means 

it will not inherit and has its own values. As we know from constants, the values do not 

change, so when we declare the constants in an enumeration, they cannot be changed 

in the code. As we said earlier, the “nice thing” about using an enumeration to declare 

constants is that we use descriptive names for the constants, thereby making them more 

user-friendly and helping the code to be more readable. We could say that they fit in well 

with the concept of clean code.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_20

https://doi.org/10.1007/978-1-4842-8619-7_10
https://doi.org/10.1007/978-1-4842-8619-7_20#DOI


804

 Defining an Enumeration
In its basic form, the simplest way to declare an enumeration is to give the enumeration 

a name and then list all the possible names in a set of braces after the enumeration's 

name. We use the enum keyword as a prefix to the enumeration name, so that the 

compiler understands that the definition is an enumeration. By default, an enumeration 

list makes the first item in the curly braces have a value of 0 with each remaining value 

being incremented by 1.

 Enumeration Examples

Example 1
A declaration defining a constant for every day of the week, which means 0 is 

Sunday, 1 is Monday, etc. as shown in the following:

  //

  // Summary:

  //     Specifies the day of the week.

  public enum DayOfWeek

  {

    //

    // Summary:

    //     Indicates Sunday.

    Sunday = 0,

    //

    // Summary:

    //     Indicates Monday.

    Monday = 1,

    //

    // Summary:

    //     Indicates Tuesday.

    Tuesday = 2,

    //

    // Summary:

    //     Indicates Wednesday.

    Wednesday = 3,

    //

Chapter 20  enumerations



805

    // Summary:

    //     Indicates Thursday.

    Thursday = 4,

    //

    // Summary:

    //     Indicates Friday.

    Friday = 5,

    //

    // Summary:

    //     Indicates Saturday.

    Saturday = 6

  }

Now we will see that this enumeration called DayOfWeek can be used in a C# 

application as shown in the code snippet:

// Create a Policy renewal date

DateTime dt = new DateTime(2018, 7, 04);

Console.WriteLine("Policy is due for renewal on {0:d}", dt);

/*

Use the DayOfWeek enumeration to find the day of the

Day of the week

*/

Console.WriteLine("This date is a is {0}",  dt.DayOfWeek);

We will use this example in our code later, but what we might be surprised to hear is 

that the DayOfWeek enumeration is part of .NET. So enumerations exist in the real world.

Example 2
A declaration defining a constant for every month of the year, which means 0 is Jan, 1 

is Feb, etc.:

  enum Month

  {

    Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

  }

Chapter 20  enumerations



806

Example 3
A declaration defining a constant for every suit in a deck of cards, which means 0 is 

Diamonds, 1 is Hearts, etc.:

  enum Suit

  {

    Diamonds, Hearts, Spades, Clubs

  }

Example 4
A declaration defining a constant for every examination possibility, which means 0 is 

Pass, 1 is Fail, etc.:

  enum Result

  {

    Pass, Fail, Resit

  }

Example 5
A declaration defining a constant for insurance types, which means 0 is Home, 1 is 

Auto, etc.:

  enum InsuranceType

  {

    Home, Auto, Travel, Computing, Jewellery

  }

 Enumerated Values: Use and Scope
In C# we declare an enumeration anywhere and, like other items declared within a 

class, the methods of the class are able to use the values of the enumeration list. Our 

application code simply needs to use the name of the enumeration and the value of the 

item within the list.

Let's code some C# and build our programming muscle.

Chapter 20  enumerations



807

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter20 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter20 project within the solution called CoreCSharp.

 10. Right-click the Chapter20 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter20 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Chapter20 project.

 13. Choose Add.

 14. Choose Item.

 15. Choose Class.

 16. Name the class Enumerations.cs.

 17. Amend the code to have a different namespace and have 

the Month enumeration within this namespace, as shown in 

Listing 20-1.

Chapter 20  enumerations



808

Listing 20-1. Declaring the enumeration in a different namespace

namespace Enumerations

{

  public enum Month

  {

    Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

  } // End of enum

} // End of namespace

 18. Right-click the Program.cs file in the Solution Explorer window.

 19. Choose Rename.

 20. Change the name to MonthExample.cs.

 21. Press the Enter key.

 22. Double-click the MonthExample.cs file to open it in the 

editor window.

 23. Amend the code, as in Listing 20-2, to use the Enumerations 

namespace through the using statement on the first line, add the 

namespace for this class, and add the Main() method.

Listing 20-2. Declaring the enumeration and Main() method

using Enumerations;

namespace Chapter20

{

  internal class MonthExample

  {

    static void Main(string[] args)

    {

    } //End of Main() method

  } // End of MonthExample class

} // End of Chapter20 namespace

Now we will investigate some of the methods from the System.Enum abstract class 

that we can use when working with enumerations.

Chapter 20  enumerations



809

 Enumeration Methods
Three of the methods we can use with an enumeration are

• The GetNames(Type) method of the Enum class, which is used 

to return a String array with the names of the constants in the 

enumeration.

• The GetName(Type, value) method of the Enum class, which is 

used to return the name of the constant in the enumeration with the 

specified value.

• The ToString() method, which will convert the value of the enum 

instance to its equivalent string representation. This method may be 

an easier option than the GetName().

We will now set the starting point of our enumeration to be Jan, which is constant 

value 0, and then we will iterate the enumeration displaying each value of the 

enumeration to the console.

 24. Amend the code, as in Listing 20-3.

Listing 20-3. Set starting value of the enumeration, iterate, and display items

    static void Main(string[] args)

    {

      Month month = Month.Jan;

      Console.WriteLine("Using iteration with hard coded value");

      for (int counter = 0; counter < 12; counter++)

      {

        Console.Write($" {month++} \t");

      } //End of iteration

    } //End of Main() method

In the code in Listing 20-3, we are iterating through our enumeration and displaying 

the items in the enumeration to the console. We use the name of the enumeration 

instance, in this case month, and increment it. In the console output, as shown in 

Figure 20-1, we see the names of the items of the enumeration, converted to string. In a 

later example, we will use the “index” of the item.

Chapter 20  enumerations



810

 25. Click the File menu.

 26. Choose Save All.

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

Figure 20-1. Iterated items

 29. Press the Enter key to close the console window.

This works fine, but what about our discussion in a previous chapter about the 

“magic number”? The iteration of the enumeration is hard-coded to stop at less 

than 12, but 12 just appears. We know that 12 is the number of items in the Month 

enumeration, the length, so can we use the length in the iteration, in a similar manner to 

when we discussed arrays? Yes, indeed we can, but it is not just as easy as using Length. 

We effectively need to look at the enumeration as an array and then get the length 

of the array. We can do this using the Enum class, which has a static method called 

GetNames(), which will return an array object to us. Finally, we can easily get the length 

of the array using the Length property. Our line of code to get the enumeration length, 

the number of names in the enumeration, is

int enumMonthLength = Enum.GetNames(typeof(Month)).Length;

Now we will add this line to our code and amend the iteration so that it refers to the 

enumeration length variable we will create.

 30. Amend the code, as in Listing 20-4.

Listing 20-4. Using the enum length

    static void Main(string[] args)

    {

      Month month = Month.Jan;

       Console.WriteLine("Using an iteration based on the enum Length from 

GetNames");

Chapter 20  enumerations



811

      int enumMonthLength = Enum.GetNames(typeof(Month)).Length;

      for (int counter = 0; counter < enumMonthLength; counter++)

      {

        Console.Write($" {month++} \t");

      } //End of iteration

      Console.WriteLine();

    } //End of Main() method

 31. Click the File menu.

 32. Choose Save All.

 33. Click the Debug menu.

 34. Choose Start Without Debugging.

Figure 20-2 shows we have the same output as before but we have cleaner code.

Figure 20-2. Iterated items using Enum.GetNames(typeof(Month)).Length

 35. Press the Enter key to close the console window.

 Using the foreach Iteration
We have used a for iteration in our code application, but we could also have used the 

foreach iteration, both of which we read about and used in Chapter 10 on iteration. In 

Listing 20-4 we used the GetNames() method to return a string array and then we used 

the Length property. If we use the foreach iteration, we remove the need to know the 

enumeration length.

 36. Amend the code, as in Listing 20-5.

Chapter 20  enumerations

https://doi.org/10.1007/978-1-4842-8619-7_10


812

Listing 20-5. Foreach iteration

      int enumMonthLength = Enum.GetNames(typeof(Month)).Length;

      for (int counter = 0; counter < enumMonthLength; counter++)

      {

        Console.Write($" {month++} \t");

      } //End of iteration

      Console.WriteLine();

      Console.WriteLine("Using a foreach iteration which" +

                        " handles the length for us");

      // Returns a String[] array so type is String

      foreach (String valueFound in Enum.GetNames(typeof(Month)))

      {

        Console.Write($" {valueFound} \t");

      } //End of foreach

      Console.WriteLine();

    } //End of Main() method

 37. Click the File menu.

 38. Choose Save All.

 39. Click the Debug menu.

 40. Choose Start Without Debugging.

Once again, we will see from Figure 20-3 that we have the same output, but in our 

code we did not need the length to be known, as the foreach construct handles this for 

us, but we might also suggest that we have cleaner code.

Figure 20-3. Iterated items using the foreach construct

Chapter 20  enumerations



813

 41. Press the Enter key to close the console window.

We will now use the GetName() method where we pass the enum object and the 

value, which in this example will be the counter value, and we will be given the constant 

name in the enumeration at that position.

 42. Amend the code, as in Listing 20-6, to add a new iteration that 

uses the GetName() method.

Listing 20-6. Use the GetName() to find the constant name at a specific position

      // Returns a String[] array so type is String

      foreach (String valueFound in Enum.GetNames(typeof(Month)))

      {

        Console.Write($" {valueFound} \t");

      }

      Console.WriteLine();

      // Using GetName() to find name of the value

      for (int counter = 0; counter < enumMonthLength; counter++)

      {

        Console.WriteLine(Enum.GetName(typeof(Month), counter));

      } //End of iteration

      Console.WriteLine();

    } //End of Main() method

  } // End of MonthExample class

} // End of Chapter20 namespace

 43. Click the File menu.

 44. Choose Save All.

 45. Click the Debug menu.

 46. Choose Start Without Debugging.

Figure 20-4 shows the names that were assigned to the constants are displayed.

Chapter 20  enumerations



814

Figure 20-4. GetName() returns the name of the constant at a particular value

 47. Press the Enter key to close the console window.

 Enumeration Values: GetValues()
We will now use the GetValues(Type) method of the Enum class to return an array of the 

values in the enumeration, and then we can iterate the array to display the values. We 

will code a new iteration that uses the GetValues() method of the Enum class to get the 

integer values rather than the names.

 48. Amend the code, as in Listing 20-7.

Listing 20-7. Use the GetValues() to find the constant values

      // Using GetName() to fund name of the value

      for (int counter = 0; counter < enumMonthLength; counter++)

      {

        Console.WriteLine(Enum.GetName(typeof(Month), counter));

      } //End of iteration

      Console.WriteLine();

       Console.WriteLine("Using a foreach iteration to display the Month 

values");

Chapter 20  enumerations



815

      foreach (int integerFound in Enum.GetValues(typeof(Month)))

      {

        Console.Write($" {integerFound} \t");

      }

      Console.WriteLine();

    } //End of Main() method

  } // End of MonthExample class

} // End of Chapter20 namespace

 49. Click the File menu.

 50. Choose Save All.

 51. Click the Debug menu.

 52. Choose Start Without Debugging.

Figure 20-5 shows that the constant values are displayed using the 

GetValues() method.

Figure 20-5. GetValues() gives us the value of the constant

 53. Press the Enter key to close the console window.

 Assigning Our Own Values to the Enumeration
It is possible for us to assign different values to the months, for example, we may wish 

April to be month 0 as it might be the first month of a tax year. We will now amend the 

existing enumeration to assign a value to the Apr name, and then on executing our code, 

we will see the effect this has on the other names in the enumeration. We will see that the 

default values for the names after Apr have been automatically amended.

 54. Amend the code, as in Listing 20-8.

Chapter 20  enumerations



816

Listing 20-8. In the Enumerations namespace, change the Apr constant

internal class MonthExample

{

  enum Month

  {

   Jan, Feb, Mar, Apr = 4, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

  };

 55. Click the File menu.

 56. Choose Save All.

 57. Click the Debug menu.

 58. Choose Start Without Debugging.

We see from the output, as shown in Figure 20-6, that the months are displayed as 

their integer value starting with 0, then 1, then 2, and then 4, as we assigned the integer 4 

to April. From this point on, all the values are altered to their new consecutive value, 5, 6, 

7, 8, 9, 10, 11, and 12.

Figure 20-6. GetValues() gives us the value of the constant with April changed

 59. Press the Enter key to close the console window.

In the code in Listing 20-8, one value was altered, but we could have assigned 

different values to more than one or all of the enumeration names. An example is shown 

in Listing 20-9.

Listing 20-9. Change the values for all constants

enum Suit { Diamonds = 1, Hearts = 2, Spades = 4, Clubs = 8 };

Chapter 20  enumerations



817

 Use the GetName() and GetValues() Methods
If we know the integer value of an item in the enumeration, we can get the name that 

is associated with it. Remember what we said earlier, the GetNames() method returns 

a string array of the names in the enumeration and the GetName() method is passed a 

value and uses the value to get the assigned name. The GetValues() method returns an 

array of the values in the enumeration.

 60. Amend the code, as in Listing 20-10, to use the GetValues() and 

GetName() methods.

Listing 20-10. GetName() and GetValues() methods

  Console.WriteLine("Using a foreach iteration to display the Month 

values");

  foreach (int integerFound in Enum.GetValues(typeof(Month)))

  {

    Console.Write($" {integerFound} \t");

  }

  Console.WriteLine();

  Console.WriteLine("Get the enumeration name from the value");

  foreach (int integerFound in Enum.GetValues(typeof(Month)))

  {

     Console.WriteLine($"The integer value of {integerFound} is the value 

{Enum.GetName(typeof(Month), integerFound)}");

   }

   Console.WriteLine();

 } //End of Main() method

  } // End of MonthExample class

} // End of Chapter20 namespace

 61. Click the File menu.

 62. Choose Save All.

Chapter 20  enumerations



818

 63. Click the Debug menu.

 64. Choose Start Without Debugging.

Figure 20-7 shows the output displaying the integer value in the enumeration 

alongside its equivalent assigned name. The value is coming from the GetValues() 

method, while the name is coming from the GetName() method.

 65. Press the Enter key to close the console window.

 Sample Application Using Enumerations
We will now code an application that will have three enumerations to hold data for

• Five types of computer hardware

• Three types of policy offered for computer hardware

• Five factors required to calculate a quote (essentially 0, 1, 2, 3, 4, 5)

The enumerations are the constants that we will use in our code.

The application will also ask the user to input the

• Hardware type

• Policy type

• Hardware value

Figure 20-7. GetName() and GetValues() methods

Chapter 20  enumerations



819

The application will then calculate the monthly premium based on the formula

hardwareTypeFactor * policyTypeFactor * hardwareValueFactor;

• where the hardwareTypeFactor is obtained from the logic

 Laptop is 5, Large_Screen is 5, Desktop is 4, Printer is 3, Small_

Screen is 2

• where the policyTypeFactor is obtained from the logic

 Gold is 5, Silver is 3, Bronze is 2

• where the hardwareValueFactor is obtained from the logic

 Hardware value divided by 5000

Note
This is just an example to reinforce some of the features of C# enumerations. 

The code has not been written with attention being made to clean code. It is about 

reading the code as we enter it and understanding what is happening in terms of the 

enumeration concepts we have looked at.

 1. Right-click the Chapter20 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class ComputerInsurance.cs.

 5. Click the Add button.

 6. Amend the code, as in Listing 20-11, to create a Main() method 

within the class and import the Enumerations namespace.

Listing 20-11. Three enumerations and a Main() method

using Enumerations;

namespace Chapter20

{

  internal class ComputerInsurance

  {

    static void Main(string[] args)

    {

Chapter 20  enumerations



820

    } //End of Main() method

  } // End of ComputerInsurance class

} // End of Chapter20

 7. Amend the Enumerations.cs code, as in Listing 20-12, to create the 

additional enumerations we will be using.

Listing 20-12. Three additional enumerations

namespace Enumerations

{

  public enum Month

  {

   Jan, Feb, Mar, Apr = 4, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

  } // End of enum

  enum HardwareType

  {

    Laptop, Large_Screen, Desktop, Printer, Small_Screen

  }

  enum PolicyType

  {

    Gold, Silver, Bronze

  }

  enum Factors

  {

    Zero, One, Two, Three, Four, Five

  }

} // End of namespace

 8. Amend the ComputerInsurance class code to add the class-level 

variables as in Listing 20-13.

Chapter 20  enumerations



821

Listing 20-13. Add the required class-level variables

  internal class ComputerInsurance

  {

    static double hardwareValue, monthlyPremiumAmount;

    static int hardwareType, policyType;

    static void Main(string[] args)

    {

    } //End of Main() method

 9. Amend the class, as in Listing 20-14, to add the method, outside 

the Main() but inside the namespace, that will ask for user input.

Listing 20-14. Method that accepts user input

} //End of Main() method

public static void AcceptUserInput()

{

Console.WriteLine("0. Laptop");

Console.WriteLine("1. Large_Screen");

Console.WriteLine("2. Desktop ");

Console.WriteLine("3. Printer ");

Console.WriteLine("4. Small_Screen");

Console.WriteLine("What is the int value of the hardware type?");

hardwareType = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("0. Gold");

Console.WriteLine("1. Silver");

Console.WriteLine("2. Bronze");

Console.WriteLine("What policy type is required?");

policyType = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("What is the estimated value of the hardware?");

 hardwareValue = Convert.ToDouble(Console.ReadLine());

 }  // End of AcceptUserInput method

} // End of ComputerInsurance class

} // End of Chapter20 namespace

Chapter 20  enumerations



822

 10. Amend the class, as in Listing 20-15, to add the method that will 

calculate the hardware type factor.

Listing 20-15. Method that calculates the hardware type factor

    }  // End of AcceptUserInput method

    public static int CalculateHardwareTypeFactor()

    {

      switch (hardwareType)

      {

        case 0:

          return (int)Factors.Five;

        case 1:

          return (int)Factors.Five;

        case 2:

          return (int)Factors.Four;

        case 3:

          return (int)Factors.Three;

        case 4:

          return (int)Factors.Two;

        default:

          return (int)Factors.Zero;

      } // End of switch statement

    }// End of CalculateHardwareTypeFactor method

  } // End of ComputerInsurance class

} // End of Chapter20 namespace

 11. Amend the class, as in Listing 20-16, to add the method that will 

calculate the policy type factor.

Listing 20-16. Method that calculates the policy type factor

    }// End of calculateHardwareTypeFactor method

    public static int CalculatePolicyTypeFactor()

    {

Chapter 20  enumerations



823

      switch (policyType)

      {

        case 0:

          return (int)Factors.Five;

        case 1:

          return (int)Factors.Three;

        case 2:

          return (int)Factors.Two;

        default:

          return (int)Factors.Zero;

      } // End of switch statement

    }// End of CalculatePolicyTypeFactor method

  } // End of ComputerInsurance class

} // End of Chapter20 namespace

 12. Amend the class, as in Listing 20-17, to add the method that will 

calculate the hardware value factor.

Listing 20-17. Method that calculates the hardware value factor

    }// End of CalculatePolicyTypeFactor method

    public static double CalculateValueFactor()

    {

      return hardwareValue / 5000;

    }// End of CalculatePolicyTypeFactor method

  } // End of ComputerInsurance class

} // End of Chapter20 namespace

 13. Amend the class, as in Listing 20-18, to add the method that will 

calculate the monthly premium.

Chapter 20  enumerations



824

Listing 20-18. Method that calculates the monthly premium

    }// End of CalculatePolicyTypeFactor method

     public static void CalculateMonthlyPremium(int hardwareTypeFactor, int 

policyTypeFactor, double hardwareValueFactor)

    {

      if (hardwareTypeFactor == 0 || policyTypeFactor == 0)

      {

        Console.WriteLine("Hardware or policy type incorrect");

      }

      else

      {

         monthlyPremiumAmount = hardwareTypeFactor * policyTypeFactor * 

hardwareValueFactor;

         Console.WriteLine($"Monthly premium for a {Enum.

GetName(typeof(HardwareType), hardwareType)}({hardwareType}) {Enum.

GetName(typeof(PolicyType), policyType)} ({policyType}) policy is 

${monthlyPremiumAmount: 0.00}");

         Console.WriteLine($"HardwareType enumeration at position 

{hardwareType} is {Enum.GetName(typeof(HardwareType), 

hardwareType)}");

         Console.WriteLine($"PolicyType enumeration at position {policyType} 

is {Enum.GetName(typeof(PolicyType), policyType)}");

      }

    }// End of CalculateMonthlyPremium method

  } // End of ComputerInsurance class

} // End of Chapter20 namespace

 14. Amend the code, as in Listing 20-19, to add the calls to the 

methods from within the Main() method and assign them to 

method-level variables.

Chapter 20  enumerations



825

Listing 20-19. Call the methods

    static void Main(string[] args)

    {

      int hardwareTypeFactor, policyTypeFactor;

      double hardwareValueFactor;

      AcceptUserInput();

      hardwareTypeFactor = CalculateHardwareTypeFactor();

      policyTypeFactor = CalculatePolicyTypeFactor();

      hardwareValueFactor = CalculateValueFactor();

       CalculateMonthlyPremium(hardwareTypeFactor, policyTypeFactor,hardware

ValueFactor);

    } //End of Main() method

 15. Right-click the Chapter20 project in the Solution Explorer panel.

 16. Choose Properties from the pop-up menu.

 17. Choose the ComputerInsurance class in the Startup object drop-

down list.

 18. Close the Properties window.

 19. Click the File menu.

 20. Choose Save All.

 21. Click the Debug menu.

 22. Choose Start Without Debugging.

We will see in Figure 20-8 that the console has the request for information.

 23. Type 0, representing a Laptop, for the hardware type, as in 

Figure 20-8.

Chapter 20  enumerations



826

Figure 20-10. Third entry for the hardware value

Figure 20-8. First menu – select Laptop by typing 0 as the enumeration value

 24. Press the Enter key to move to the next menu.

 25. Type 0, representing a Gold policy, for the policy type, as in 

Figure 20-9.

Figure 20-9. Second menu – select Gold by typing 0 as the enumeration value

 26. Press the Enter key to move to the next input request.

 27. Type 1000 for the laptop value, as Figure 20-10, and press the 

Enter key.

Figure 20-11 shows the console window displaying the monthly premium for our 

chosen hardware type, policy type, and the estimated value.

Chapter 20  enumerations



827

Figure 20-11. Output from sample application that uses three enumerations

 28. Press the Enter key to close the console window.

Are we sure this is the correct premium amount?
Laptop has a factor of  5.

Gold  has a factor of 5.

1000 has a factor of  1000/5000  =  0.2.

MonthlyPremium is  5 X 5 x 0.2  =  5.00.

Figure 20-11 therefore does show the correct answer, so our code looks great. Let's 

try different options.

 29. Click the File menu.

 30. Choose Save All.

 31. Click the Debug menu.

 32. Choose Start Without Debugging.

We will see in Figure 20-12 that the console has the request for information.

 33. Type 4, representing a Small_Screen, for the hardware type

 34. Press the Enter key.

 35. Type 2, representing a Bronze policy, for the policy type .

 36. Press the Enter key.

 37. Type 100 for the screen value.

 38. Press the Enter key.

Chapter 20  enumerations



828

Figure 20-12. Output from sample application that uses three enumerations

Figure 20-12 shows the console window displaying the monthly premium for our 

chosen hardware type, policy type, and the estimated value.

Are we sure this is the correct premium amount?
Small_Screen has a factor of  2.

Bronze  has a factor of 2.

100 has a factor of  100/5000  =  .02.

MonthlyPremium is  2 X 2 x 0.02  =  0.08.

Figure 20-12 therefore does show the correct answer, so our code looks great.

Now let's try to use a different way to “convert” an integer value to the corresponding 

name in an enumeration. This is just another option, so rather than using the

Enum.GetName(typeof(HardwareType), hardwareType)

we will use

(Enumeration Name)integer value

 39. Amend the monthly premium method to add the new casting 

style to the display lines, as in Listing 20-20.

Chapter 20  enumerations



829

Listing 20-20. Casting style for conversion

 Console.WriteLine($"PolicyType enumeration at " +

   $"position {policyType} is " +

   $"{Enum.GetName(typeof(PolicyType), policyType)}");

  Console.WriteLine("*****Casting the enumeration VALUE to the enumeration 

NAME*****");

  Console.WriteLine($"HardwareType enumeration at position {hardwareType} is 

{(HardwareType)hardwareType}");

  Console.WriteLine($"PolicyType enumeration at position {policyType} is 

{(PolicyType)policyType}");  }

}// End of calculateMonthlyPremium method

} // End of ComputerInsurance class

} // End of Chapter20 namespace

 40. Click the File menu.

 41. Choose Save All.

 42. Click the Debug menu.

 43. Choose Start Without Debugging.

We will see in Figure 20-13 that the console has the request for information.

 44. Type 4, representing a Small_Screen, for the hardware type.

 45. Type 2, representing a Bronze policy, for the policy type.

 46. Type 100 for the screen value.

Figure 20-13. Output from the casting-style conversion

Chapter 20  enumerations



830

Figure 20-13 shows the console window displaying the monthly premium for 

our chosen hardware type, policy type, and the estimated value. It also confirms that 

the casting, (HardwareType)hardwareType and (PolicyType)policyType, has been 

successful.

 Chapter Summary
So, finishing this chapter on enumerations, we can see that an enumeration is a value 

data type. We use an enumeration to declare constants with a descriptive name for the 

constants. In its basic form, an enumeration has a name, followed by a set of braces, 

which will contain a list of all the possible names. We use the enum keyword as a prefix 

to the enumeration name so that the compiler understands that the definition is an 

enumeration. By default, an enumeration will make the first item within the curly braces 

have a value 0, with each remaining value being incremented by 1. We can use the 

methods of the Enum abstract class to get the names and values of the constants, and we 

use GetName(), GetNames(), and GetValues() as well as the Length property.

Once again, another dive into an advanced feature of programming, which can be 

applied to our C# code helping make it more readable and easier to maintain. We should 

be immensely proud of our learning to date. In finishing this chapter, we have increased 

our knowledge further and we are advancing to our target.

 

Chapter 20  enumerations



831

CHAPTER 21

Delegates

 Concept of Delegates
In the last chapter, we learned about enumerations and saw how they allow us to assign 

meaningful names to constants. In their basic form, the first name will represent the 

value 0 and each subsequent name will have a value of one more, but it is possible 

to assign different values to the names and thereby change the default values. 

Enumerations, we learned, help make code more readable, and we can use methods 

of the Enum class to get the name or value of an item or items in the enumeration. 

Finally, we also saw that an enumeration is a “special” data type, which is defined by the 

developer.

In this chapter we will look at delegates, which are also a type, but they are a 

reference type that holds a reference to a method.

The Microsoft site explains delegates as follows:

A delegate is a type that represents references to methods with a particular 
parameter list and return type. When you instantiate a delegate, you can 
associate its instance with any method with a compatible signature and 
return type. You can invoke (or call) the method through the delegate 
instance.

Put in more simple terms, we should think of a delegate as being a type that is used 

to represent a method with a return type and method signature. We read in Chapter 14 

with interface methods, we wrote them as a line of code showing the return type 

followed by the method signature. Examples of method signatures we looked at are

• VatCalculation(double itemPrice)

• CalculateTax(double itemPrice, int quantity)

• CalculateTax(int quantity, double itemPrice)

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_21

https://doi.org/10.1007/978-1-4842-8619-7_14
https://doi.org/10.1007/978-1-4842-8619-7_21#DOI


832

When we added the return type in front of the method signature, we had the 

interface method:

• double VatCalculation(double itemPrice)

• void CalculateTax(double itemPrice, int quantity)

• double CalculateTax(int quantity, double itemPrice)

Now, also thinking back Chapter 12, we saw that we could pass arguments to a 

method, and the method accepted the arguments as its parameters. The arguments and 

parameters are types, for example, an int or a string or a float. However, we never read 
about passing a method as an argument to another method, which would accept the 
method as its parameter. Well, this is where we could use a delegate, to pass a method 

to another method. The Microsoft site also says

Delegates are used to pass methods as
arguments to other methods.

The ability to pass methods as arguments makes the delegate a perfect candidate 

when defining what are referred to as callback methods, as we will see throughout the 

examples we code. When we develop code that needs to work with a delegate, we will 

use three stages to achieve this:

• Declare the delegate with its return type and method signature.

• Then set a target method for the delegate, having created the instance 

of the delegate.

• Then invoke the delegate because it has been defined and points to 

a method.

When we declare a delegate, it will have a similar format to declaring an abstract 

method, a return type followed by the method signature. Some examples of delegate 

declarations are

• public delegate int VATCalculation(double itemPrice);

• private delegate int CalculationTax(double itemPrice, int quantity);

• internal delegate int CalculateTax(int quantity, double itemPrice);

Chapter 21  Delegates

https://doi.org/10.1007/978-1-4842-8619-7_12


833

Even just on what we have read so far, we can think of delegates as

• Having an access modifier of public, private, or internal

• Allowing methods to be passed as arguments to a method that 

accepts them as parameters

• Being used when we wish to use callback methods

But they can also

• Be joined, chained, so that multiple methods can be called from a 

single delegate, and this is referred to as multicast delegates

• Be assigned to any method that matches the delegate’s signature, for 

example, if the delegate declaration is

delegate double Calculation(int valueOne, double 

valueTwo);

then either or both of these methods can be assigned to an instance 

of Calculation

public static double CalculateTax(int quantity, double 

itemPrice)

{

   return quantity * itemPrice * 0.20;

}

public static double CalculateTotalBeforeVAT(int quantity, 

double itemPrice)

{

  return quantity * itemPrice;

}

since both methods match the delegate signature.

On the other hand, the method shown in the following cannot 

be assigned to the Calculation delegate as the method signature 

is different; it has a double followed by an int rather than an int 

followed by a double:

Chapter 21  Delegates



834

public static double calculateTotalBeforeVAT(double

itemPrice, int quantity)

    {

      return quantity * itemPrice;

 }

Let’s code some C# and build our programming muscle.
Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter21 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter21 project within the solution called CoreCSharp.

 10. Right-click the Chapter21 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter21 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

Amend the name of the Program.cs file, remembering the coding principle of “self- 

documenting” code.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to Delegates.cs.

 15. Press the Enter key.

Chapter 21  Delegates



835

 Single Delegate
Looking back to Chapter 13 on classes, we had two methods as shown in the following:

/******************* METHOD TWELVE ******************/

 public double AccumulateClaimAmount(double

 claimAmountPassedIn, double totalOfAllClaims)

 {

   totalOfAllClaims += claimAmountPassedIn;

   return totalOfAllClaims;

 }// End of method AccumulateClaimAmount()

/******************* METHOD THIRTEEN ******************/

  public double DetermineVATAmount(double totalValueOfClaimsPassedIn, double 

vatAmount)

 {

   vatAmount = totalValueOfClaimsPassedIn -

                      (totalValueOfClaimsPassedIn / 1.20);

   return vatAmount;

 } // End of method DetermineVATAmount()

}  // End of Chapter13 namespace

We will now use these two methods, in a modified form, to work with delegates.

 Declare the Delegate with Its Return Type and Method Signature

We will now declare a delegate, outside the class but inside the namespace, and create a 

Main() method.

 16. Amend the code as in Listing 21-1.

Listing 21-1. Declare a delegate

namespace Chapter21

{

  /*

  A delegate is a type used to represent a method with a

  return type and method signature.

  Here the delegate is called Calculation and the return type

Chapter 21  Delegates

https://doi.org/10.1007/978-1-4842-8619-7_13


836

  is double and the two parameters are double

  */

  delegate double Calculation(double itemPrice, double vatAmount);

  internal class Delegates

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Delegates class

} // End of Chapter21 namespace

 Instantiate the Delegate and Set Its Target Method

We will now add the “old” method 13 code with amendments, outside the Main() but 

inside the class, that will become the target for the delegate.

 17. Amend the code, as in Listing 21-2.

Listing 21-2. Add the method that will be the target for the delegate

    } // End of Main() method

    /******************* METHOD THIRTEEN ******************/

     public static double DetermineVATAmount(double 

totalValueOfClaimsPassedIn, double vatAmount)

    {

       vatAmount = totalValueOfClaimsPassedIn - (totalValueOfClaimsPassedIn 

/ 1.20);

       Console.WriteLine($"The DetermineVATAmount method is executing using 

the parameter {totalValueOfClaimsPassedIn} \nand the output produced 

is ${vatAmount} which represents the VAT amount\n");

      return vatAmount;

    } // End of method DetermineVATAmount()

  } // End of Delegates class

} // End of Chapter21 namespace

Chapter 21  Delegates



837

We will now instantiate the delegate and then set the target method for the delegate 

instance to be the method we have just added, DetermineVATAmount(), but without 

using the ().

 18. Amend the code as in Listing 21-3.

Listing 21-3. Instantiate the delegate and set the target method

   static void Main(string[] args)

    {

      // Instantiate the delegate

      Calculation myCalculationDelegate;

      /*

      Point the delegate object myCalculationDelegate to

      the method DetermineVATAmount

      We are making a reference to the method

      */

      myCalculationDelegate = DetermineVATAmount;

    } // End of Main() method

 Invoke the Delegate

We will now invoke the delegate using our delegate instance. The call will be made and 

the returned value will be assigned to a local variable. We will then display the returned 

value from within a WriteLine method.

 19. Amend the code, as in Listing 21-4.

Listing 21-4. Invoke the delegate

   myCalculationDelegate = DetermineVATAmount;

   /*

   Invoke the delegate - in other words the delegate

   points to the method that accepts a double data type,

   performs its business logic and then returns a double.

   So here we invoke our myCalculationDelegate delegate

   passing it the value 120.00

Chapter 21  Delegates



838

   */

   Console.WriteLine("Invoking myCalculationDelegate \n");

   double vatAmount = myCalculationDelegate(120.00, 0.00);

   Console.WriteLine($"Invoked delegate returned VAT of ${vatAmount}");

 } // End of Main() method

 20. Click the File menu.

 21. Choose Save All.

 22. Click the Debug menu.

 23. Choose Start Without Debugging.

The console output will be as shown in Figure 21-1, and we can see that the method, 

DetermineVATAmount(), has taken the 120 and the 0.00 and calculated that 20 of this 

120 is VAT so the 0.00 was the VAT amount going in and it comes out of the method as 20.

Figure 21-1. Output from the casting-style conversion

 24. Press the Enter key to close the console window.

Very good, we might be thinking. But couldn't we just have called the method directly 

as we did in Chapter 12 and as we do with methods like the WriteLine()? Yes, we could. 

So why use a delegate then? Simply put, because we can use a delegate to pass a method 

to another method, and we will see this later when we code an example related to 

filtering policies. This example was just used to get us started with delegates.

 Multicast Delegates
At the start of the chapter, we read that delegates can be joined or chained, so that 

multiple methods can be called from a single delegate, and this is also referred to as 

Chapter 21  Delegates

https://doi.org/10.1007/978-1-4842-8619-7_12


839

multicast delegates. If we think of it another way, we could say a multicast delegate is a 

delegate that has references to more than one method. This means that when we invoke 

a multicast delegate, all the methods it is pointing to will be invoked in the order they 

have been declared.

 25. Amend the code, as in Listing 21-5, to add a local variable that the 

method will use.

Listing 21-5. Add a local level variable to be used by the new method

    static void Main(string[] args)

    {

      // Create the variables we need

      double totalOfAllClaims;

 26. Amend the code, as in Listing 21-6, to add another method 

that will become the target for the delegate – this was the “old” 

method 12.

Listing 21-6. Add a second method that will become a target for the delegate

    } // End of method DetermineVATAmount()

    /*

    Create the method that will be the target of the

    delegate, this was Method 12

    */

     public static double AccumulateClaimAmount(double claimAmountPassedIn, 

double totalOfAllClaims)

    {

      totalOfAllClaims += claimAmountPassedIn;

       Console.WriteLine($"The AccumulateClaimAmount method is executing 

using the parameter {claimAmountPassedIn} \nand the output produced 

is ${totalOfAllClaims} which represents the total claims\n");

      return totalOfAllClaims;

    } // End of AccumulateClaimAmount method

  } // End of Delegates class

} // End of Chapter21 namespace

Chapter 21  Delegates



840

 Instantiate the Delegate Again and Set the New Instances’ 
Target Method

 27. Amend the code, as in Listing 21-7, to instantiate the delegate 

again for two more instances calling them myAccumulateDelegate 

and myMulticastDelegate:

Listing 21-7. Instantiate the delegate twice more

    static void Main(string[] args)

    {

      // Instantiate the delegates

      Calculation myCalculationDelegate, myAccumulateDelegate,

      myMulticastDelegate;

 28. Amend the code, as in Listing 21-8, to set the target method for 

the new myAccumulateDelegate instance, that is, point it to the 

target method.

Listing 21-8. Point the myAccumulateDelegate to the new method

  /*

  Point the delegate object myCalculationDelegate to

  the method DetermineVATAmount

  We are making a reference to the method

  */

  myCalculationDelegate = DetermineVATAmount;

  /*

  Point the delegate object myAccumulateDelegate to the

  method AccumulateClaimAmount

  We are making a reference to the method

  */

  myAccumulateDelegate = AccumulateClaimAmount;

Chapter 21  Delegates



841

 Chain the Delegates

We will now chain the delegates, which effectively means we join the delegates to 

“compound” the action. The chaining creates a multicast delegate.

 29. Amend the code, as in Listing 21-9.

Listing 21-9. Chain the delegates

  /*

  Point the delegate object myAccumulateDelegate to the

  method AccumulateClaimAmount

  We are making a reference to the method

  */

  myAccumulateDelegate = AccumulateClaimAmount;

  /*

   The two delegates, myCalculationDelegate and myAccumulateDelegate, are 

combined into form myMultipleDelegate

  */

 myMulticastDelegate = myCalculationDelegate + myAccumulateDelegate;

 Invoke the Multicast Delegate

 30. Amend the code, as in Listing 21-10, to invoke the multicast 

delegate through our delegate instance, passing it the value 1500, 

which is the claim amount, and the value 0.00, which will be used 

in the first method as the vatAmount and in the second method as 

the totalOfAllClaims.

Listing 21-10. Invoke the multicast delegate

      Console.WriteLine("Invoking myCalculationDelegate \n");

      double vatAmount = myCalculationDelegate(120.00, 0.00);

      Console.WriteLine($"Invoked delegate returned VAT of ${vatAmount}");

Chapter 21  Delegates



842

      Console.WriteLine("-------------------------------");

      Console.WriteLine("Invoking myMulticastDelegate:");

      myMulticastDelegate(1500, 0.00);

    } // End of Main() method

 31. Click the File menu.

 32. Choose Save All.

 33. Click the Debug menu.

 34. Choose Start Without Debugging.

The console output will be as shown in Figure 21-2.

Figure 21-2. Multicast delegate invoked

 35. Press the Enter key to close the console window.

Great, we have an understanding on what a delegate is, how to declare a delegate, 

how to set the target for the delegate instance, and how to invoke the delegate. We have 

also coded a multicast delegate that invokes multiple methods. Yes, this example could 

be improved, but it has helped us understand the concept of multicast delegates.

 More Complex Example
Now we will look at a more complex example, which

• Uses a Policy class.

• Creates six instances of the Policy class, each of which passes 

different values to the constructor.

Chapter 21  Delegates



843

• Adds the six instances to a list that holds objects of type Policy.

• Creates a delegate that accepts a Policy.

• Creates a method that accepts the delegate as one of its parameters 

and assigns it to a method. The first time we use the method, 

we pass it the HardwareType method. The second time, it will 

be the PolicyDueForRenewal method, and lastly it will be the 

PremiumGreaterThanTwenty method:

• Inside the method the delegate is invoked and therefore calls the 

HardwareType() method or the PolicyDueForRenewal() method or 

the PremiumGreaterThanTwenty() method.

• When any of the three methods are called, they are passed a Policy.

• The HardwareType method returns those items in the list that 

contain the string Laptop, as their PolicyType, while the other 

methods check for a date or a value.

So, when we asked the question, "Why use a delegate?", this example will show that it 

allows us to pass a method to a method.

Create a Policy class.

 1. Right-click the Chapter21 project in the Solution Explorer panel.

 2. Choose Add.

 3. Choose Class.

 4. Name the class Policy.cs.

 5. Amend the Policy.cs class to have members, a constructor, and a 

property for each member containing a get and a set accessor for 

the private members, as in Listing 21-11.

Listing 21-11. Policy class with constructor, members, and property accessors

namespace Chapter21

{

  internal class Policy

  {

    private int policyNumber;

Chapter 21  Delegates



844

    private String policyType;

    private double monthlyPremium;

    private String policyEndDate;

    public Policy(int policyNumber, string policyType,

      double monthlyPremium, string policyEndDate)

    {

      this.PolicyNumber = policyNumber;

      this.PolicyType = policyType;

      this.MonthlyPremium = monthlyPremium;

      this.PolicyEndDate = policyEndDate;

    } // End of user constructor

    public int PolicyNumber

    {

      get => policyNumber;

      set => policyNumber = value;

    }

    public string PolicyType

    { get => policyType;

      set => policyType = value;

    }

    public double MonthlyPremium

    { get => monthlyPremium;

      set => monthlyPremium = value;

    }

    public string PolicyEndDate

    { get => policyEndDate;

      set => policyEndDate = value;

    }

  } // End of Policy class

} // End of Chapter21 namespace

 6. Right-click the Chapter21 project in the Solution Explorer panel.

 7. Choose Add.

 8. Choose Class.

Chapter 21  Delegates



845

 9. Name the class DelegatePolicy.cs.

 10. Amend the DelegatePolicy.cs class to have a Main() method and 

the imports, as in Listing 21-12.

Listing 21-12. DelegatePolicy class with the Main() method

using System.Collections.Generic;

namespace Chapter21

{

  internal class DelegatePolicy

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of DelegatePolicy class

} // End of Chapter21 namespace

We will now, at the class level, declare a delegate with the return type bool, which 

accepts a Policy as its parameter in the method signature.

 11. Amend the DelegatePolicy.cs class, as in Listing 21-13.

Listing 21-13. Declare a delegate that accepts a Policy object

  internal class DelegatePolicy

  {

    /*

    Declare the delegate we will use.

    In this case we have a return type of bool and the method

    signature states that the method must accept a Policy object

    */

    internal delegate bool FindByDelegate(Policy policy);

    static void Main(string[] args)

Chapter 21  Delegates



846

We will now, within the Main() method, create six instances of the Policy class.

 12. Amend the class, as in Listing 21-14.

Listing 21-14. Create six instances of the Policy class

  static void Main(string[] args)

  {

    /*

    Create 6 objects of type Policy - Policy is a separate class

    The Policy class has 4 members - policy_number, policyType

    monthlyPremium and the policyEndDate;

    */

    // Laptops

    Policy myPolicyOne = new Policy(123456, "Laptop", 19.99, "31/12/2021");

     Policy myPolicyFive = new Policy(156790, "Laptop", 18.99, 

"30/12/2021");

    Policy myPolicySix = new Policy(123456, "Laptop", 15.99, "15/12/2021");

    // Need renewed

     Policy myPolicyTwo = new Policy(267890, "Printer", 15.99, 

"01/11/2021");

     Policy myPolicyThree = new Policy(345908, "Small_Screen", 9.99, 

"01/10/2021");

    // Monthly premium greater than $20

     Policy myPolicyFour = new Policy(455666, "Large_Screen", 29.99, 

"01/12/2021");

  } // End of Main() method

We will now continue adding code within the Main() method to declare and create 

a list that will hold the six instances of the Policy class. The list can be thought of as a 

collection of a specific type.

 13. Amend the class, as in Listing 21-15.

Chapter 21  Delegates



847

Listing 21-15. Create a list to hold the six Policy instances

   // Monthly premium greater than $20

    Policy myPolicyFour = new Policy(455666, "Large_Screen", 29.99, 

"01/12/2021");

   /*

   Create a strongly typed List to hold the six Policy objects.

   The List of policies will be iterated later

   */

   List<Policy> policies = new List<Policy>()

   { myPolicyOne, myPolicyTwo, myPolicyThree,

     myPolicyFour, myPolicyFive, myPolicySix

   };

 } // End of Main() method

We will now create a method that will find the list of policies based on the delegate 

passed to the method. First, as we are inside the Main() method, we will call the method 

we will be creating, three times, passing in different delegates in each call.

 14. Amend the class, as in Listing 21-16, to call the not-yet-

created method.

Listing 21-16. Call a method, passing it the Policy list and delegate

List<Policy> policies = new List<Policy>()

{ myPolicyOne, myPolicyTwo, myPolicyThree,

  myPolicyFour, myPolicyFive, myPolicySix

};

/*

Call the FindPolicesByGivenDelegate method passing

it the delegate to be used

*/

FindPolicesByGivenDelegate("The list of Laptops policies are", policies, 

HardwareType);

FindPolicesByGivenDelegate("The list of policies due for renewal are", 

policies, PolicyIsDueForRenewal);

Chapter 21  Delegates



848

FindPolicesByGivenDelegate("The list of policies with a premium greater 

than $20.00 are", policies, PremiumGreaterThanTwenty);

} // End of Main() method

Now we need to create the method that will

• Accept a string value to be used as a heading.

• Accept the list of policies that will be used

• Accept the delegate that is to be used. This will be in the form of 

an instantiation – FindByDelegate filterMethodToBeUsed – so the 

filterMethodToBeUsed will be one of the methods. It will be the 

method HardwareType() or the method PolicyIsDueForRenewal() or 

the method PremiumGreaterThanTwenty().

• Iterate the list of policies, six policies in our example.

• Invoke the method referred to by the delegate, which will pass back a 

true or false, and this calling method then displays the details for the 

policy if the returned value was true.

• Use a “divider” at the end of the method before the next call is made.

 15. Amend the class, as in Listing 21-17, to create the method, outside 

the Main() method but inside the class.

Listing 21-17. Create the method that accepts the Policy list and delegate

    } // End of Main() method

    /*

    In this method we use the delegate, FindByDelegate to

    invoke the method it is pointing to.

    The delegate method name is passed to this method.

    */

    static void FindPolicesByGivenDelegate(string title,

      List<Policy> policies, FindByDelegate filterMethodToBeUsed)

    {

      Console.WriteLine(title);

      foreach (Policy policy in policies)

Chapter 21  Delegates



849

      {

        if (filterMethodToBeUsed(policy))

        {

          Console.WriteLine($"\t{policy.PolicyType} policy " +

            $"number {policy.PolicyNumber} is due for renewal " +

            $"on {policy.PolicyEndDate} and the current " +

            $"premium is {policy.MonthlyPremium}");

        } // End of if construct

      } // End of foreach iteration

      // Separate the three filters for display purposes

      Console.WriteLine("----------------------------");

    } // End of FindPolicesByGivenDelegate

  } // End of DelegatePolicy class

} // End of Chapter21 namespace

Now we need to create the method to find those policies that are Laptops when the 

delegate passed in is HardwareType. Remember the delegate is pointing to a method; it 

refers to a method.

 16. Amend the class to create this method called HardwareType, 

outside the Main() method, as in Listing 21-18.

Listing 21-18. Create the HardwareType method

 } // End of FindPolicesByGivenDelegate

 /*********************************************************

 *    Methods that will be pointed to by the delegate     *

 *********************************************************/

 //Check if the policy type is a laptop and return true or false

  static bool HardwareType(Policy policyPassedIn)

  {

    return policyPassedIn.PolicyType.Equals("Laptop");

  } // End of HardwareType method

  } // End of DelegatePolicy class

} // End of Chapter21 namespace

Chapter 21  Delegates



850

Now we need to create the method to find those policies whose renewal date is less 

than or equal to a given date. In this case we have hard-coded the data as 30/11/2021, 

when the delegate passed in is PolicyIsDueForRenewal.

 17. Amend the class to create this method called 

PolicyIsDueForRenewal, outside the Main() method, as in 

Listing 21-19.

Listing 21-19. Create the PolicyIsDueForRenewal method

    } // End of HardwareType method

    /*

    Check if policy is due for renewal and return true or false

    Here we have, for simplicity hard coded a date

    */

    static bool PolicyIsDueForRenewal(Policy policyPassedIn)

    {

      string today = "30/11/2021";

       return DateTime.Parse(policyPassedIn.PolicyEndDate)<= DateTime.

Parse(today);

    } // End of PolicyIsDueForRenewal method

  } // End of DelegatePolicy class

} // End of Chapter21 namespace

Now we need to create the method to find those policies whose monthly premium is 

greater than 20.00.

 18. Amend the class, as in Listing 21-20, to create this method called 

PremiumGreaterThanTwenty, outside the Main() method.

Listing 21-20. Create the PremiumGreaterThanTwenty method

    } // End of PolicyIsDueForRenewal method

    /*

    Check if the monthly premium is greater than $20

    and return true or false

    */

Chapter 21  Delegates



851

    static bool PremiumGreaterThanTwenty(Policy policyPassedIn)

    {

      return policyPassedIn.MonthlyPremium > 20.00;

    } // End of PremiumGreaterThanTwenty method

  } // End of DelegatePolicy class

} // End of Chapter21 namespace

 19. Right-click the Chapter21 project in the Solution Explorer panel.

 20. Choose Properties from the pop-up menu.

 21. Choose the DelegatePolicy class in the Startup object drop-

down list.

 22. Close the Properties window.

 23. Click the File menu.

 24. Choose Save All.

 25. Click the Debug menu.

 26. Choose Start Without Debugging.

The console window will appear, as shown in Figure 21-3, displaying the details from 

the invoked methods as referred to by the delegate.

Figure 21-3. Multicast delegate invoked – complex example

 27. Press the Enter key to close the console window.

Now that really was a complex application using delegates, so we will probably need 

to read the code carefully, several times, to fully appreciate what is going on.

Chapter 21  Delegates



852

 Chapter Summary
So, finishing this chapter on delegates, we should see that we have extended our 

knowledge of methods and that we can use delegates to pass methods to methods. 

We have seen that when we declare a delegate, it has a similar format to declaring an 

abstract method, a return type followed by the method signature. We also learned how 

delegates could be chained, so that multiple methods could be called from a single 

delegate. This is referred to as multicast delegates.

Wow, what an achievement. This is definitely not basic coding. We are seriously 

doing some elaborate things with our C# code. We should be immensely proud of the 

learning to date. In finishing this chapter, we have increased our knowledge further. We 

are getting very close to our target, which once seemed so far away.

 

Chapter 21  Delegates



853

CHAPTER 22

Events

 Concept of Events
 Publisher and Subscriber
In the last chapter, we learned about delegates, which when created allow us to pass a 

method as a parameter to other methods. A delegate is really a class that encapsulates 

a method signature. We saw how to create a delegate, reference it to a method, and 

then invoke the delegate, which therefore calls the method. We saw that we could chain 

delegates so we could call multiple methods and this has the name multicast delegates. 

In this chapter we will look at events, and delegates are intrinsically linked to events.

Let us think about some everyday situations we may be familiar with and relate them 

to events:

• Think about watching television and then deciding to increase 

the volume. We pick up the television remote control and press 

the button that is programmed to control the volume. We press 

the + button and the volume increases. The event is pressing the 

button and sending a message to an electronic part in the television 

circuitry. The remote control + volume button is a sender of the 

message, and the electronic part in the television circuitry is the 

receiver. We can take this terminology a little further by saying that 

we have a publisher and a subscriber.

• Think about being on the Internet and signing up to a newsletter of 

a news channel, using our email address. As new material becomes 

available from the publisher, it will be pushed to us as the subscriber 

at our email address. The event is triggered at the publisher end when 

a new newsletter is published.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_22

https://doi.org/10.1007/978-1-4842-8619-7_22#DOI


854

• What about the Internet of Things (IoT)? We have our phone and 

we can switch on and off a connected plug or thermostat, we can 

open and close our curtains, and we can activate our indoor security 

camera. With the Internet of Things, we have events with senders and 

receivers.

So, when we think of events in C#, we can think of activities we might undertake, 

like moving our mouse, clicking a button, or pressing a key. And we can also think about 

events that happen within the system we use, like an icon of a battery with a red bar 

generated by the phone software when the battery is in need of recharging. When we do 

something like clicking a button, we are raising an event, which will be managed in the 

application code by an event handler. When the operating system on the phone checks 

the battery level and it is below a specified level, it raises an event, which is handled by 

an event handler, a method, that acts upon it.

In our real-life examples, and any other we can think about, we will see a trend 

where there is an action that will be delegated when the event takes place. We could even 

have our phone that is connected to our Internet of Things devices, switch on all the 

connected lights, and turn on the heating. This is the concept of multicast delegates that 

we looked at in the previous chapter on delegates.

Now using C# programming terminology, we can say that an object raises an event, 

while another object or multiple objects handle the event. The object that raises the 

event is called the publisher, while the object(s) that handles the event is called the 

subscriber(s). The publisher does not know who the subscribers are or even if there 

are any subscribers; it simply knows that there is a method it must notify about the 

raised event. The subscribers do not need to worry about the published event; they 

simply know that the event has occurred and they need to act on it. This concept of 

“not knowing or caring about the other part” is ideal when we wish to develop loosely 
coupled applications. By acting on the event, the subscriber might do nothing, because 

that is what has been coded, or it might do something. Either way, the subscriber is 

notified and it takes an appropriate action. The way that we connect the publisher and 

the subscriber is by using a “contract,” which in reality means we use a delegate. As 

we saw and coded in Chapter 21, a delegate is a reference, a pointer, to a method, and 

remember that a single delegate can point to more than one method, which is called 

a multicast delegate. Great, so now we know that the publisher is an object and the 

publisher talks to the delegate, which knows the specific method or methods to work 

with. When the delegate and method are in a class, we say that it is the subscriber class.

Chapter 22  events

https://doi.org/10.1007/978-1-4842-8619-7_21


855

Considering all that we have read about events so far and thinking back to Chapter 21, 

we can see that methods are a common feature. Delegates reference a method, and 

events are handled by an event handler, so it will be no surprise to us when we realize that 

delegates and events are interlinked.

An event is a special kind of multicast delegate that can only be invoked from within 

the class (or derived classes) or struct where it is declared (the publisher class). If other 

classes or structs subscribe to the event, their event handler methods will be called when 

the publisher class raises the event. The event can be made static so it is available to any 

caller and there is no need to instantiate the class. An event can also be a virtual event 

by using the virtual keyword, and this enables any derived class to override the event 

behavior by using the override keyword. An event overriding a virtual event can also be 

sealed, which specifies that for derived classes it is no longer virtual.

If an event is declared abstract, this will mean that the compiler will not generate the 

add and remove event accessor blocks, which means the derived classes must provide 

their own implementation.

When we used a delegate, we declared it outside the class, but with an event it must 

be part of the class, a member, which ensures that the event will only be invoked by some 

part of the class it is a member of, the publisher class.

Think about a publisher and subscriber in relation to a customer changing their 

bank details with their utility company. The customer logs on to the company website 

and completes a form to change their bank details. The company system that accepts the 

change notifies the accounts department of the change. So the initial class that accepts 

the change is the publisher, and the accounts department class will be the subscriber. 

There may be other subscribers who have been registered and they will pick up that the 

publisher has raised an event. A sample flow of the Publisher, Event, and Subscriber is 

shown in Figure 22-1.

Figure 22-1. Publisher, Event, and Subscriber flow

Chapter 22  events

https://doi.org/10.1007/978-1-4842-8619-7_21


856

 Declare an Event
When dealing with events, we have an event listener that listens for a specific event 

and then notifies an event handler, which is a method containing code written by the 

developer that will be executed in response to the event that occurs in the application.

The event is connected to its event handler by using an event delegate, and we 

looked at delegates in the last chapter. To make the event and the response work 

correctly, we need the delegate that links the event to the handler method, and we need 

the class that holds the event data. We will see how we add the delegate instance to the 

event object using the += operator, and this means the event handler is called when 

the event happens. The event handler delegate will have two parameters representing 

the object instance that raised the event and the object that holds the event data. The 

signature of the delegate and event handler methods must match.

In declaring an event we can use different syntax:

<access modifier> event keyword <delegate type> event name

• Example

public event EventHandler CollectPolicyData

Here the delegate type is an EventHandler.

• Example

public event Action CollectPolicyData

Here the delegate type is an Action that accepts no arguments.

• Example

public event Action<int> CollectPolicyData

Here the delegate type is an Action that accepts one argument.

• Example

public event Func<int, int>  CollectPolicyData

Here the delegate type is an Func and it accepts two arguments.

In the preceding examples, we have seen the use of two different delegate types, 

the EventHandler that we also read handled an event and the Action, but we can use 

any delegate type within C#. We can also use Func instead of Action since a Func is a 

Chapter 22  events



857

delegate that points to a method that accepts one or more arguments and returns a 

value, whereas Action is a delegate that points to a method that in turn accepts one or 

more arguments but returns no value. In other words, we can use Action when our 
delegate points to a method that returns void.

Table 22-1 shows where we declare a delegate called Calculation and then we use 

this delegate as the event using the event keyword.

Table 22-1. Delegate declaration and event using the delegate

Example

the delegate declaration public delegate void Calculation();

the event declaration public event Calculation Calculateevent

 Raise an Event
Using multicasting we can have multiple event handlers attached to an event, which is a 

great concept, having a single delegate that invokes more than one method. The downside 

is that we do not have any control over the order in which the events get executed.

Now, as we should know, when we have our event, we will want to raise it at some stage. 

To raise the event we need to invoke the event delegate, for example, CalculateEvent.

Invoke();, and then subscribe using the += operator. The += operator has nothing to do 

with arithmetic operators. Unsubscribing from the event involves using the -= operator.

 Handle an Event
When an event is raised, it will need to be handled, and this is where we need an event 

handler. The event handler will have the code required to respond to the event. In the 

application code we will enter shortly, the following will occur:

• The Main() method creates a new Customer, passing relevant details 

to the Customer constructor.

• The Customer constructor sets the initial values of the Customer 

members, fields.

• The Customer class declares a delegate called 

ActivatePolicyEventHandler.

Chapter 22  events



858

• The Customer class links an event called AccountStatusToggled to 

the delegate.

• In the Policy class, we will associate the event with the method called 

ChangeAccountStatus().

• The Customer class has a ToString() method that will display details 

about the Customer.

• The Main() method creates a new Policy, passing it the Customer we 

have created.

• The Policy class then associates an event handler with the event we 

created.

• The method we have associated with the event is then created and in 

essence it changes the status to true.

• Finally in the Main() method, we call the ToggleAccountStatus() 

method of the Customer class, which has code to raise the event, 

which then causes any event handler attached to the event to 

be called. In this scenario we will have only one event handler 

associated with the event, ChangeAccountStatus(). When executed 

we see a message displayed that confirms the change in status.

Let’s code some C# and build our programming muscle.
Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter22 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

Chapter 22  events



859

 9. Click the Create button.

Now we should see the Chapter22 project within the solution called CoreCSharp.

 10. Right-click the project Chapter22 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter22 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to EventsExample.cs.

 15. Press the Enter key.

 16. Double-click the EventsExample.cs file to open it in the 

editor window.

We will be creating a Customer class and a Policy class as we code this example, 

but first we will add the namespace and the Main() method and will instantiate the 

Customer and Policy classes.

 17. Amend the code, as in Listing 22-1.

Listing 22-1. Create the Main() method; instantiate the Customer and 

Policy classes

namespace Chapter22

{

  class EventsExample

  {

    static void Main(string[] args)

    {

      /*

      Create a new instance of the Customer class

      i.e we have a new Customer.

      */

      Customer myNewCustomer = new Customer(123456, "Gerry Byrne", false);

Chapter 22  events



860

      /*

      Create a new instance of the Policy class

      i.e. a new Policy for the new Customer.

      */

      Policy myNewPolicy = new Policy(myNewCustomer);

      /*

      Call the Customer method that will change the

      status of the Customer account

      */

      myNewCustomer.ToggleAccountStatus();

    } // End of Main() method

  } // End of EventsExample class

} // End of Chapter22 namespace

Now we will create the Customer class, which will be created outside the 

EventsExample class but within the namespace. We will also add the member 

declarations and a constructor.

 18. Amend the code, as in Listing 22-2.

Listing 22-2. Create the Customer class with members and constructor

    } // End of Main() method

    // Customer class - the Publisher class

    class Customer

    {

      // Declare the members, fields

      public int accountNo;

      public string name;

      public bool status = false;

      // Create a constructor used to initialise all the members

      public Customer(int accountNo, string name, bool status)

      {

        this.accountNo = accountNo;

        this.name = name;

Chapter 22  events



861

        this.status = status;

      }  // End of Customer constructor

    } // End of Customer class

} // End of Chapter22 namespace

In terms of the ToString() method, the Microsoft documentation says

Object.ToString is the major formatting method in the .NET Framework. It 
converts an object to its string representation so that it is suitable for dis-
play. Default implementations of the Object.ToString method return the 
fully qualified name of the object's type.

We would prefer to see more than the fully qualified name of our object so we will 

override the ToString() method.

 19. Amend the Customer class to have a ToString() method that 

overrides the default ToString(), as in Listing 22-3.

Listing 22-3. Create a ToString() method in the Customer class

      }  // End of Customer constructor

      /*

      Override the ToString() method of the class to

      display details of the customer

      */

      public override string ToString()

      {

        return ($"The customer details are:\n\tAccount number\t{this.

accountNo}\n\tCustomer name\t{this.name}\n\tAccount status\t{this.

status}\n");

      } // End of ToString() method

    } // End of Customer class

} // End of Chapter22 namespace

 20. Amend the Customer class, as in Listing 22-4, to declare the 

delegate we will use.

Chapter 22  events



862

Listing 22-4. Declare the delegate

      } // End of ToString() method

      /*

      Define the delegate. We name the delegate using the name

      of our event and add the phrase EventHandler. So here we

      are saying the event will be called ActivatePolicy.

      */

      public delegate void ActivatePolicyEventHandler();

    } // End of Customer class

} // End of Chapter22 namespace

 21. Amend the Customer class, as in Listing 22-5, to declare the event 

we will use and associate it with the delegate we have just created.

Listing 22-5. Declare the event to be associated with the delegate

  public delegate void ActivatePolicyEventHandler();

  /*

  Think of the event as being a restricted delegate and

  classes can choose to subscribe or unsubscribe from

  the event. The event is a member of the class.

  */

  public event ActivatePolicyEventHandler AccountStatusToggled;

    } // End of Customer class

} // End of Chapter22 namespace

 22. Amend the Customer class, as in Listing 22-6, to create the 

method that will be called when the event is raised.

Listing 22-6. Create the method to be called when the event is raised

    public event ActivatePolicyEventHandler AccountStatusToggled;

    // Create the method to be called when the event is raised.

    public void ToggleAccountStatus()

Chapter 22  events



863

    {

      this.status = true;

      AccountStatusToggled();

    } // End of ToggleAccountStatus()

  } // End of Customer class

} // End of Chapter22 namespace

Create the Policy class.
We will now create the Policy class, which will have a constructor that accepts a 

Customer object. The class will be created outside the Customer class but within the 

namespace.

 23. Amend the code, as in Listing 22-7.

Listing 22-7. Create the Policy class

    } // End of Customer class

    class Policy

    {

      // Store the Customer instance

      Customer myCustomer;

      public Policy(Customer customer)

      {

        /*

         Inject a Customer object into the Policy

        i.e. the Policy can reference the instance of Customer

        */

        myCustomer = customer;

      } // End of Policy constructor

    } // End of Policy class

} // End of Chapter22 namespace

Chapter 22  events



864

 Add a Method to an Event Using +=
In the Policy constructor, we will now add a reference to the method called 

ChangeAccountStatus, which will be created and will be used when the event is raised. 

We are actually chaining the method to the event. The += is used to add the reference, 

or we could say it subscribes to the event. The method on the right-hand side of our += 

will be added to the list of delegates, and ultimately when the event is executed, all the 

delegates in the internal list will be called.

 24. Amend the code, as in Listing 22-8.

Listing 22-8. Add a reference to the method ChangeAccountStatus

        myCustomer = customer;

        /*

        We have the event and we will now add a reference to

        the method that will be used when the event is raised.

        So, we are chaining the new method onto the event,

        even though presently there is only one method

        associated with the event.

        */

        myCustomer.AccountStatusToggled += ChangeAccountStatus;

      } // End of Policy constructor

    } // End of Policy class

We will now create the ChangeAccountStatus() method in the Policy class. This 

method contains business logic that changes the status to true and displays a message 

and the details of the new Customer object.

 25. Amend the code, as in Listing 22-9.

Listing 22-9. Create the ChangeAccountStatus method to be called by the event

      } // End of Policy constructor

      /*

      Create the method that is referred to by the event when

      it is raised. Here we change the Customer field to true

Chapter 22  events



865

      indicating that the account has been set up.

      */

      public void ChangeAccountStatus()

      {

         Console.WriteLine($"The account status was updated to {myCustomer.

status}\n");

        Console.WriteLine(myCustomer.ToString());

      } // End of changeAccountStatus() method

    } // End of Policy class

 26. Click the File menu.

 27. Choose Save All.

 28. Click the Debug menu.

 29. Choose Start Without Debugging.

The console window will appear, as Figure 22-2, and display the details from the 

invoked method as referred to by the delegate.

 30. Press the Enter key to close the console window.

 Refer the Event to a Second Method Using +=
In the Policy class, we will create a second method called EmailNotification(), which will 

“simulate” the process of sending an email notification. The EmailNotification() will be 

added to the event and will therefore be called when the event is fired.

Figure 22-2. Delegate invoked the method

Chapter 22  events



866

 31. Amend the code, as in Listing 22-10.

Listing 22-10. Create the EmailNotification() method to be called by the event

      } // End of changeAccountStatus() method

      /*

      Create a second method that is referred to by the event

      when it is raised. Here we 'emulate' an email being sent,

      we write a message to the console.

      */

      public void EmailNotification()

      {

        Console.WriteLine("Email sent to accounts department");

      } // End of EmailNotification() method

    } // End of Policy class

} // End of Chapter22 namespace

 32. Amend the code, as in Listing 22-11, to add the EmailNotification() 

method to the event within the Policy constructor.

Listing 22-11. Add the EmailNotification() method to the event

        myCustomer.AccountStatusToggled += ChangeAccountStatus;

        myCustomer.AccountStatusToggled += EmailNotification;

      } // End of Policy constructor

 33. Click the File menu.

 34. Choose Save All.

 35. Click the Debug menu.

 36. Choose Start Without Debugging.

Figure 22-3 shows the console window displaying the details from the invoked 

methods as referred to by the delegate. The additional method shows the email 

notification.

Chapter 22  events



867

Figure 22-3. Delegate invoked both methods

 37. Press the Enter key to close the console window.

 Refer the Event to a Third Method Using +=
We will now send the customer a text message so we will create a TextMessage class 

where we will create a method called TextMessageNotification(), which will “simulate” 

the process of sending a text notification. The TextMessageNotification() will be added to 

the event and will therefore be called when the event is fired.

 38. Amend the code, as in Listing 22-12, to add the new TextMessage class.

Listing 22-12. Add a TextMessage class and use += to attach the 

TextMessageNotification() method

 } // End of Policy class

 class TextMessage

 {

   // Store the Customer instance

   Customer myCustomer;

   public TextMessage(Customer customer)

   {

     /*

     Inject a Customer object into the TextMessage

     i.e. the TextMessage can reference the instance of Customer

        */

Chapter 22  events



868

    myCustomer = customer;

    myCustomer.AccountStatusToggled += TextMessageNotification;

   } // End of TextMessage constructor

   /*

   Create a  method that is referred to by the event

   when it is raised. Here we 'emulate' a text being sent,

   we write a text message to the console.

   */

   public void TextMessageNotification()

   {

     Console.WriteLine("Text message sent to customer");

   } // End of TextMessageNotification() method

} // End of TextMessage class

} // End of Chapter22 namespace

 39. Amend the code, as in Listing 22-13, to instantiate the 

TextMessage class passing it the Customer object.

Listing 22-13. Instantiate the TextMessage class

    /*

    Create a new instance of the Policy class

    i.e. a new Policy for the new Customer.

    */

    Policy myNewPolicy = new Policy(myNewCustomer);

    /*

    Create a new instance of the TextMessage class

    i.e. a new TextMessage for the new Customer.

    */

    TextMessage myNewEmailer = new TextMessage(myNewCustomer);

     /*

     Call the Customer method that will change the

     status of the Customer account

     */

     myNewCustomer.ToggleAccountStatus();

   } // End of Main() method

Chapter 22  events



869

 40. Click the File menu.

 41. Choose Save All.

 42. Click the Debug menu.

 43. Choose Start Without Debugging.

Figure 22-4 shows the console window displaying the details from the invoked 

methods as referred to by the delegate. The additional method shows the text 

notification.

Figure 22-4. Multicast delegate invoked method from new class

 Remove a Method from an Event Using -=
We will now remove the EmailNotification() method from the event.

 44. Amend the code, as in Listing 22-14.

Listing 22-14. Remove a method from an event

    myCustomer.AccountStatusToggled += ChangeAccountStatus;

    myCustomer.AccountStatusToggled += EmailNotification;

    // Remove an event using -= followed by the method name

    myCustomer.AccountStatusToggled -= EmailNotification;

  } // End of Policy constructor

Chapter 22  events



870

 45. Click the File menu.

 46. Choose Save All.

 47. Click the Debug menu.

 48. Choose Start Without Debugging.

The console window will appear and display the details from the invoked methods as 

referred to by the delegate, and as we have removed the EmailNotification() method, the 

message will not appear, as shown in Figure 22-5.

Figure 22-5. Method has been removed from the event

 49. Press the Enter key to close the console window.

 Chapter Summary
So, finishing this chapter on events, we should see the relationship between events 

and delegates and indeed with methods as well. The event is used to trigger a method 

or multiple methods. We saw that in C# programming terminology, we can say that an 

object raises an event, while another object or multiple objects handle the event. We also 

learned about the publish and subscribe concept where the object that raises the event 

is called the publisher and the object that handles the event is called the subscriber. We 

saw that in the publish and subscribe architecture, the publisher does not know who the 

subscribers are; it simply knows that there is a method it must notify about the raised 

event. The subscriber does not worry about the publisher of the event; it simply knows 

that the event has occurred and it needs to act on it.

Chapter 22  events



871

Wow, what an achievement. This is really good. We are touching on some very 

intricate topics and applying them in C# code. We should be immensely proud of the 

learning to date. In finishing this chapter, we have increased our knowledge further. We 

are getting very close to our target, which once seemed so far away.

 

Chapter 22  events



873

CHAPTER 23

Generics

 Concept of Generics
In the last chapter, we learned about events and how there is a relationship between 

events and delegates, which themselves have a strong relationship with methods. 

We learned that events trigger event handlers, so the action of the event is to trigger a 

method. We also learned that we have a publish and subscribe relationship where the 

object that raises the event is the publisher, while the object that handles the event is the 

subscriber. Now in this chapter, we will look at a very useful concept called generics.

When we see the word generics in C#, we should think of the word general. So, in 

C# when we define a data type specification that uses generic parameters, we should 

look on them as substitute parameter types. The real parameter type will replace these 

generic parameters when we need to use the data type in our code. The C# language 

allows us to define generic interfaces, generic abstract classes, generic classes, generic 

events, generic delegates, generic fields, generic methods, etc. The generic type will 

appear in a set of open and close angle brackets, < >, so we could have something like 

this in our code:

public class PolicyClass<T>

where T is the parameter type.

Let us now consider a PolicyMatcher class based on a policy matching routine where

• The PolicyMatcher class has one method called checkIfTheSame().

• The method only accepts integer values.

• The method is used to check if the policy numbers passed in 

are equal.

• It uses a selection construct to display an appropriate message.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_23

https://doi.org/10.1007/978-1-4842-8619-7_23#DOI


874

The PolicyMatcher class can be instantiated from within the Main() method and we 

can then call the checkIfTheSame() method, passing it our two integer values. Now let us 

code this example.

Let’s code some C# and build our programming muscle.
Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter23 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter23 project within the solution called CoreCSharp.

 10. Right-click the project Chapter23 in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Notice how the Chapter23 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to Generics1.cs.

 15. Press the Enter key.

 16. Double-click the Generics1.cs file to open it in the editor window.

Chapter 23  GeneriCs



875

We will now create the namespace, the class, and the Main() method within the 

Generics1 class. We will also create a PolicyMatcher class outside the Generics1 

class, and it will contain the method to check if the values are the same. The code is 

commented to explain what is being done in each line or block of code.

 17. Amend the Generics1.cs, as in Listing 23-1.

Listing 23-1. Class with the Main() method and try block

namespace Chapter23

{

  class Generics1

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Generics1 class

    class PolicyMatcher

    {

      /*

      A method which is not generic because it has specified 

      the parameter data types. The method cannot be used

      when passing floats etc. It is specific not generic.

      */

      public string checkIfTheSame(int itemOne, int itemTwo)

      {

        if (itemOne.Equals(itemTwo))

        {

           return ($"The {itemOne.GetType()} values {itemOne} and {itemTwo} 

are equal");

        }

        else

        {

           return ($"The {itemOne.GetType()} values {itemOne} and {itemTwo} 

are not equal");

        }

Chapter 23  GeneriCs



876

      }// End of checkIfTheSame() method

    } // End of PolicyMatcher class

} // End of Chapter23 namespace

We will now amend the code to create an instance of the PolicyMatcher class and 

then call the checkIfTheSame() method, passing it two integer values.

 18. Amend the class as in Listing 23-2.

Listing 23-2. Create instance of PolicyMatcher class and call checkIfTheSame()

 static void Main(string[] args)

 {

 // Instantiate the PolicyMatcher class

 PolicyMatcher myPolicyMatcher = new PolicyMatcher();

 /*

 Call the add method passing it the two policy values

 with the correct data type

 */

 Console.WriteLine(myPolicyMatcher.checkIfTheSame(10000, 20000));

 } // End of Main() method

 19. Click the File menu.

 20. Choose Save All.

 21. Click the Debug menu.

 22. Choose Start Without Debugging.

Figure 23-1 shows the console window displaying the details returned from 

the method.

Figure 23-1. Method returns its message

Chapter 23  GeneriCs



877

 23. Press the Enter key to close the console window.

We have just shown that this application code works well because it gives us the 

correct output as shown in Figure 23-1. However, this is a method that is specific 

in its parameter data types and, while this might be fine for now, because we are 

only checking integer values, we have a tightly coupled method. Tight coupling in 

programming is not good, and it would be better if we could make the method generic, 

so that it could accept different data types. If we could achieve this, we would have 

loosely coupled code. Thankfully, when we wish to have similar logic for similar types, 

this is where generics come to the rescue.

 Generic Class, Generic Method, Generic Parameters

 24. Right-click the Generics1 filename in the Solution Explorer panel.

 25. Choose Copy.

 26. Right-click the Chapter23 project name.

 27. Choose Paste.

 28. Right-click the Generics1 – Copy file.

 29. Choose Rename.

 30. Name the class Generics2.cs and leave it in the same location.

 31. Open the Generics2.cs file in the editor window.

We will now amend the copied file.

 32. Amend the class name in the file to be Generics2 as in 

Listing 23-3.

Listing 23-3. Amended Generics1 class name

namespace Chapter23

{

  class Generics2

  {

Chapter 23  GeneriCs



878

 33. Amend the PolicyMatcher class name to be PolicyMatcherGeneric 

as shown in Listing 23-4.

Listing 23-4. Amended PolicyMatcher class name

Console.WriteLine(myPolicyMatcher.checkIfTheSame(10000, 20000));

    } // End of Main() method

  } // End of Generics2 class

  class PolicyMatcherGeneric

  {

 34. Amend the instantiation to reference PolicyMatcherGeneric, as 

shown in Listing 23-5.

Listing 23-5. Amended instantiation to PolicyMatcherGeneric

    static void Main(string[] args)

    {

      // Instantiate the PolicyMatcher class

      PolicyMatcherGeneric myPolicyMatcher = new PolicyMatcherGeneric();

We will now amend the code so that the class accepts the type <OurGenericType>. 

OurGenericType is a made-up name, a generic name, and it is used so we can replace it 

with a specific data type when required. The amended code is shown in Listing 23-6.

Listing 23-6. Class accepts <OurGenericType> type

    } // End of Main() method

  } // End of Generics2 class

  class PolicyMatcherGeneric<OurGenericType>

  {

Now we will amend the method code, so that the two parameters are of the type 

<OurGenericType>.

 35. Amend the code as shown in Listing 23-7.

Chapter 23  GeneriCs



879

Listing 23-7. Amended method to accept the type <OurGenericType>

  class PolicyMatcherGeneric<OurGenericType>

    {

      /*

      A method which is not generic because it has specified

      the parameter data types. The method cannot be used

      when passing floats etc. It is specific not generic.

      */

       public string checkIfTheSame(OurGenericType itemOne, OurGenericType 

itemTwo)

Now that we have amended our class, we must change the way we have instantiated 

it. Here we will be using integer values so we will have the data type shown as <int>, 

but remember we are dealing with generics so we should be able to use any data type. 

We will also call the checkIfTheSame() method of the instance, displaying the returned 

value to the console.

 36. Amend the code, as in Listing 23-8.

Listing 23-8. Instantiate the class using the int type

    static void Main(string[] args)

    {

      // Instantiate the PolicyMatcher class

      PolicyMatcherGeneric<int> myPolicyMatcher =

      new PolicyMatcherGeneric<int>();

  /*

  Call the add method passing it the two policy values

  with the correct data type

  */

Console.WriteLine(myPolicyMatcherString.checkIfTheSame( 10000, 20000));

    } // End of Main() method

Here we have passed in an int type. If we wished to pass in a string or a double, could 

we do this? Yes, we have made the class generic by using the <OurGenericType>, and 

therefore we can instantiate the class using <int>, <string>, <double>, etc.

Chapter 23  GeneriCs



880

Now we will instantiate the class again, but this time we will have string types rather 

than int types. We will then call the checkIfTheSame() method of the instance, displaying 

the returned value to the console.

 37. Amend the code in the Main() method, as in Listing 23-9.

Listing 23-9. Instantiate the class a second time to accept string type

 Console.WriteLine(myPolicyMatcher.checkIfTheSame(10000, 20000));

 // Instantiate the PolicyMatcher class for strings

  PolicyMatcherGeneric<string> myPolicyMatcherString =

    new PolicyMatcherGeneric<string>();

  /*

  Call the add method passing it the two policy values

  with the correct data type

  */

Console.WriteLine(myPolicyMatcherString.checkIfTheSame( "PL123456", 

"PL123456"));

    } // End of Main() method

When we hover over either of the two method calls, we will see that the parameter 

types have adapted to those specified in our instantiation. Figures 23-2 and 23-3 show 

this adaptation in action. Amazing!

Figure 23-2. Method can accept an int followed by an int

Chapter 23  GeneriCs



881

Figure 23-3. Method can accept a string followed by a string

The generic class and its generic method have served us well since we can now pass 

in a policy numeric value or a policy string value and so on and the method still works. 

No need for separate methods to suit all the different data types. Loosely coupled indeed.

 38. Click the File menu.

 39. Choose Save All.

 40. Right-click the Chapter23 project in the Solution Explorer panel.

 41. Choose Properties from the pop-up menu.

 42. Choose the Generics2 class in the Startup object drop-down list.

 43. Close the Properties window.

 44. Click the Debug menu.

 45. Choose Start Without Debugging.

The console window will appear, as shown in Figure 23-4, and display the details 

returned from both method calls.

Figure 23-4. Method returns the two messages, one for each call to it

 46. Press the Enter key to close the console window.

Brilliant.
Now that we have an understanding of generics, let us look at what we might see 

when we look at generics example code on the Microsoft or another website. We will see 

that often the letter T is used to represent the type. The T is a generic type parameter; 

T is not a C# reserved keyword. In our Listing 23-7 example, we used the name 

Chapter 23  GeneriCs



882

OurGenericType rather than T. So in our code we could replace the OurGenericType 

with the letter T and the code should still work fine.

Amend the PolicyMatcherGeneric class code to use the <T> instead of the existing 

<OurGenericType> and have the method use the T for the type of the parameters as 

shown in Listing 23-10.

Listing 23-10. Class with <T> and method using generic T

  class PolicyMatcherGeneric<T>

  {

    /*

    A method which is not generic because it has specified

    the parameter data types. The method cannot be used

    when passing floats etc. It is specific not generic.

    */

    public string checkIfTheSame(T itemOne, T itemTwo)

    {

      if (itemOne.Equals(itemTwo))

      {

        return ($"The {itemOne.GetType()} values {itemOne} " +

          $"and {itemTwo} are equal");

      }

      else

      {

        return ($"The {itemOne.GetType()} values {itemOne}" +

          $" and {itemTwo} are not equal");

      }

    }// End of checkIfTheSame() method

In this example our class is generic, PolicyMatcherGeneric<T>. The T allows any 

type. T is just a placeholder for a type, and therefore our class can represent a collection 

of objects, the type of which will be dictated when we create the class. An example is 

shown for reference in Listings 23-11 and 23-12.

Chapter 23  GeneriCs



883

Listing 23-11. Type is int

The specific type being defined as int:

PolicyMatcherGeneric<int> myPolicyMatcher = new

                                PolicyMatcherGeneric<int>();

Listing 23-12. Type is string

The specific type being defined as string:

PolicyMatcherGeneric<string> myPolicyMatcher = new

                                  PolicyMatcherGeneric<string>();

 Generic Class, Generic Method, Mixed Parameter Types
We will now create another method called checkIfTheSame(), but it will have a specified 

parameter type, followed by a generic parameter type, followed by a specified data type 

parameter. This is an example of method overloading.

 47. Amend the PolicyMatcherGeneric class to add the new method, 

as in Listing 23-13.

Listing 23-13. New overloaded method called checkIfTheSame()

  }// End of checkIfTheSame() method

/*

 A method which is generic because one parameter is of type T.

 This specifies that the parameter data types could be used

 when passing floats, strings etc. as the second argument.

 It is generic.

 */

 public string checkIfTheSame(string itemOne, T itemTwo, double premium)

 {

   /*

    The contains method returns true if the itemTwo is

    contained in itemOne otherwise it returns false

   */

Chapter 23  GeneriCs



884

   if (itemOne.Contains(itemTwo.ToString()))

   {

      return ($"The policy value {itemOne} corresponds with the value 

{itemTwo} and the premium is {premium}");

   }

   else

   {

      return ($"The policy {itemOne} does not correspond with the value 

{itemTwo} and the premium is {premium}");

   }

 }// End of second checkIfTheSame() method

We will now call the new overloaded method from within the Main() method. As we 

are using the int type, we will use the <int> version of the instantiation, which we named 

as myPolicyMatcher.

 48. Amend the Main() method as in Listing 23-14.

Listing 23-14. Call the overloaded checkIfTheSame()

/*

Call the add method passing it the two policy values

with the correct data type

*/

Console.WriteLine(myPolicyMatcherString.checkIfTheSame("PL123456", 

"PL123456"));

/*

Call the new method passing it the two policy values

with the correct data type

*/

Console.WriteLine(myPolicyMatcher.checkIfTheSame("PL123456", 

123456, 9.99));

    } // End of Main() method

  } // End of Generics2 class

 49. Click the File menu.

Chapter 23  GeneriCs



885

 50. Choose Save All.

 51. Click the Debug menu.

 52. Choose Start Without Debugging.

The console window will appear, as shown in Figure 23-5, and display the details 

returned from the overloaded method call, which was passed an int to replace the 

generic T.

Figure 23-5. Overloaded method returns its message

 53. Press the Enter key to close the console window.

 Generic Method Only
Think about a RenewalMatcher class that will have a method that can

• Check if the first parameter is a string.

• Convert the string to a date to see if it contains the current month:

• If it does have this month, then the policy is due for renewal and a 

renewal message will be displayed.

• Otherwise, a message stating the month of renewal will be 

displayed.

• If it is not a date, it must be a double.

• The first parameter is converted to a double.

• The second parameter represents the percentage increase, for 

example, 10 means 10%.

• The new monthly premium is calculated.

The class is not defined as generic, but the method is made generic and has two 

generic parameters.

Chapter 23  GeneriCs



886

 54. Amend the code, as in Listing 23-15, to add the 

RenewalMatcher class, inside the namespace of the 

Generics2 class. The class has one method, which is called 

checkIfRenewalDateOrPremiumIncrease().

Listing 23-15. RenewalMatcher class added

  } // End of PolicyMatcherGeneric  class

  // Declare the class

  class RenewalMatcher

  {

    /*

    A method which is generic because of the <T>

    The method has parameters of type T.

    The method can be used when passing floats, strings etc.

    It is generic.

    */

    public string checkIfRenewalDateOrPremiumIncrease<T>(T

      itemOne, T itemTwo)

    {

      /*

      The is operator checks if the result of an expression

      is compatible with a given type

      */

      if (itemOne is string)

      {

        DateTime renewalDate = Convert.ToDateTime(itemOne);

        if (renewalDate.Month == DateTime.Now.Month)

        {

          return ($"The customers {itemTwo} " +

            $"policy is due for renewal this month ");

        }

        else

Chapter 23  GeneriCs



887

        {

          return ($"The customers {itemTwo} policy is not " +

            $"due for renewal until month {renewalDate.Month}");

        }

      }

      else

      {

  double monthlyPremium = Convert.ToDouble(itemOne.ToString());

  double premiumIncrease = Convert.ToDouble(itemTwo.ToString());

  double newMonthlyPremium = monthlyPremium

          + (monthlyPremium * premiumIncrease / 100);

 return ($"The new monthly premium is {newMonthlyPremium:0.00}");

      }

    }// End of checkIfRenewalDateOrPremiumIncrease() method

  } // End of RenewalMatcher class

} // End of Chapter23 namespace

Now we will make three calls, from the Main() method, to the method in our 

new class:

• The first call passes a string followed by a string with the month being 

05, but we should change the month in this string to match the 
current month on our computer.

• The second call passes a string followed by a string with the month 

being 06, but we should change the month in this string so it does 
not match the current month on our computer.

• The third call passes a double followed by an int.

 55. Amend the Main() method to instantiate the new class, as in 

Listing 23-16.

Listing 23-16. Instantiate the RenewalMatcher class added

      /*

      Call the new method passing it the two policy values

      with the correct data type

Chapter 23  GeneriCs



888

      */

       Console.WriteLine(myPolicyMatcher.checkIfTheSame(“PL123456”, 

123456, 9.99));

      // Instantiate the RenewalMatcher class

      RenewalMatcher myRenewalMatcher = new RenewalMatcher();

    } // End of Main() method

 56. Amend the Main() method to call the new class method three 

times, as in Listing 23-17.

Listing 23-17. Call the new method three times

Console.WriteLine(myPolicyMatcher.checkIfTheSame("PL123456", 

123456, 9.99));

// Instantiate the RenewalMatcher class

RenewalMatcher myRenewalMatcher = new RenewalMatcher();

// Call the checkIfRenewalDateOrPremiumIncrease three times

Console.WriteLine(myRenewalMatcher.

checkIfRenewalDateOrPremiumIncrease("01/02/2021", "Life Insurance"));

       Console.WriteLine(myRenewalMatcher.

checkIfRenewalDateOrPremiumIncrease("01/06/2021", "Home Insurance"));

       Console.WriteLine(myRenewalMatcher.

checkIfRenewalDateOrPremiumIncrease(9.99, 10));

    } // End of Main() method

 57. Click the File menu.

 58. Choose Save All.

 59. Click the Debug menu.

 60. Choose Start Without Debugging.

The console window will appear, as in Figure 23-6, and display the details returned 

from the three method calls.

Chapter 23  GeneriCs



889

Figure 23-6. Method with two generic parameters executed

So we have just used a generic method within a normal class, but we should look at 

the code of this method and see that it could and should be divided into two overloaded 

methods because what we are passing is a string followed by a string or double followed 

by an int. This method should not be doing different things depending on the types. At 

the start of the chapter, we said this, “Thankfully, when we wish to have similar logic for 
similar types, this is where generics come to the rescue.”

So let us create overloaded methods to split out the business logic in the 

current method.

 61. Amend the RenewalMatcher class so it now contains the two 

overloaded methods, as in Listing 23-18.

Listing 23-18. Overloaded methods to separate the business logic

  } // End of PolicyMatcherGeneric class

  class RenewalMatcher

    {

      /*

      Method overloading

      */

       public string checkIfRenewalDateOrPremiumIncrease<T>(string itemOne, 

T itemTwo)

      {

        /*

        The is operator checks if the result of an expression

        is compatible with a given type

        */

        DateTime renewalDate = Convert.ToDateTime(itemOne);

Chapter 23  GeneriCs



890

        if (renewalDate.Month == DateTime.Now.Month)

        {

           return ($"The customers {itemTwo} policy is due for renewal this 

month");

        }

        else

        {

           return ($"The customers {itemTwo} policy is not due for renewal 

until month {renewalDate.Month}");

        }

      }// End of checkIfRenewalDateOrPremiumIncrease() method

      /*

      Method overloading

      */

       public string checkIfRenewalDateOrPremiumIncrease<T>(double itemOne, 

T itemTwo)

      {

        double monthlyPremium = Convert.ToDouble(itemOne.ToString());

        double premiumIncrease = Convert.ToDouble(itemTwo.ToString());

         double newMonthlyPremium = monthlyPremium + (monthlyPremium * 

premiumIncrease / 100);

        return ($"The new monthly premium is {newMonthlyPremium:0.00}");

      }// End of checkIfRenewalDateOrPremiumIncrease() method

    } // End of RenewalMatcher class

}  // End of Chapter 23 namespace

 62. Click the File menu.

 63. Choose Save All.

 64. Click the Debug menu.

 65. Choose Start Without Debugging.

The console window will appear, as in Figure 23-7, and display the same details 

returned from the three method calls, but we have used overloaded methods.

Chapter 23  GeneriCs



891

Figure 23-7. Overloaded methods used

 Chapter Summary
So, finishing this short chapter on generics, we should have seen much of what we have 

covered in the previous chapters on methods and classes and objects. We have seen a 

class that is generic and a method that is generic, and the methods we looked at could 

have fully generic parameters or a mixture of generic parameters and non-generic 

parameters. We have seen that generics give us great flexibility when we program an 

application, so instead of having different methods that accept different types, we can 

make one method that accepts different types through the use of generic types.

Wow, seriously, what an achievement. This really is elaborate programming with 

advanced C# features and concepts. We should be immensely proud of the learning to 

date. In finishing this chapter, we have increased our knowledge further. We are getting 

incredibly close to our target, which once seemed so far away.

 

Chapter 23  GeneriCs



893

CHAPTER 24

Common Routines

 Common Programming Routines with C#
Now as we come to the end of our book and we reach our learning target, we have the 

core skills required to write applications in C#. We will now turn our attention to using 

the skills we have learned and apply them to search and sort routines that developers 

may commonly use when programming commercial applications. Firstly, we will look at 

two common search routines, linear search and binary search, and then we will look at 

two common sorting algorithms, bubble sort and insertion sort.

 Linear Search
A linear search is used to search a series of elements in a data structure for a specified 

element. While a linear search can be used successfully, it will generally be slower than 

a binary search, which we will also look at. The linear search can be thought of as a 

“brute-force” algorithm since it simply compares each item in the data structure with 

the element being searched for. It does not need to have the state of the data structure 

changed before it begins, for example, it does not need to have a sorted set of elements in 

a chronological or alphabetical order.

If we were to see an academic or technical interview question based on a linear 

search, it might be in the form of a scenario like this:

Starting with an array of n integers and having a value to find, 

decide if the value to be found exists within the given array using 

the linear search algorithm. If the target exists in the array, display 

the array index of the required value.

The algorithm to solve this problem using a linear search is as follows:

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_24

https://doi.org/10.1007/978-1-4842-8619-7_24#DOI


894

 1. Start at the first array element.

 2. Check if the value being searched for matches this current value of 

the data structure.

 3. If there is a match, the value has been found, and we return the 

index of the current data structure value and display it.

 4. If there is no match, the value has not been found, and –1 is 

returned.

 5. Move to the next array value.

 6. Repeat from step 2 to step 5 until the end of the array has 

been met.

Let’s code some C# and build our programming muscle.

 Create an Application That Will Implement a Linear Search

Add a new project to hold the code for this chapter.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter24 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter24 project within the solution called CoreCSharp.

 10. Right-click the Chapter24 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

Chapter 24  Common routines



895

Notice how the Chapter24 project name has been made to have bold text, indicating 

that it is the new startup project and that it is the Program.cs file within it that will be 

executed when we run the debugging.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to LinearSearch.cs.

 15. Press the Enter key.

 16. Double-click the LinearSearch.cs file to open it in the 

editor window.

We will now create the namespace, the class, and the Main() method.

 17. Amend the code as shown in Listing 24-1.

Listing 24-1. Namespace with class and Main() method

namespace Chapter24

{

  internal class LinearSearch

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of Customer class

} // End of Chapter24 namespace

We will now add a comment block, create an array, and initialize the values.

 18. Amend the code as in Listing 24-2.

Listing 24-2. Comment added and array declared and initialized

namespace Chapter24

{

  /*

  A Linear search is a simple searching algorithm that searches

  for an element in a list in sequential order. The linear

Chapter 24  Common routines



896

  search starts at the start of the list and checks each

  element until the desired element is not found.

  */

  internal class LinearSearch

  {

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

       int[] claimValues = { 6000, 9000, 3000, 4000, 8000, 1000, 2000, 

5000, 7000 };

    } // End of Main() method

  } // End of Customer class

} // End of Chapter24 namespace

 19. Amend the code, as in Listing 24-3, to create the variable that will 

hold the value to be found, the key.

Listing 24-3. Declare a variable and assign it the value to be found

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

       int[] claimValues = { 6000, 9000, 3000, 4000, 8000, 1000, 2000, 

5000, 7000 };

      // Value to be located using linear search

      int valueToBeLocated = 1000;

    } // End of Main() method

 20. Amend the code, as in Listing 24-4, to call a method that will 

display the elements of the array.

Listing 24-4. Call a method that will display the array elements

      // Value to be located using linear search

      int valueToBeLocated = 1000;

      // Display the elements of the array

Chapter 24  Common routines



897

      DisplayArrayElements(claimValues);

    } // End of Main() method

  } // End of Customer class

} // End of Chapter24 namespace

We will now call a method that will perform a linear search of the array looking for a 

specified value and then assign the returned value to a variable.

 21. Amend the code as in Listing 24-5.

Listing 24-5. Call a method that will perform a linear search

   // Display the elements of the array

   DisplayArrayElements(claimValues);

   /*

   Call the linear search method passing it the array and the

   value to be located and store the returned value in a variable

   called returnedValue

   */

   int returnedValue = SearchForTheValue(claimValues, valueToBeLocated);

    } // End of Main() method

  } // End of Customer class

} // End of Chapter24 namespace

We will now display one message if the returned value is –1 and another message if 

the returned value is not –1. The –1 value means no match was found.

 22. Amend the code as in Listing 24-6.

Listing 24-6. Display an appropriate message based on the returned value

int returnedValue = SearchForTheValue(claimValues, valueToBeLocated);

   // Display the appropriate message (located or not)

   if (returnedValue == -1)

   {

     Console.WriteLine("The value is not present in array");

   }

Chapter 24  Common routines



898

   else

   {

     // Using an interpolated string

      Console.WriteLine($"The value was located at index {returnedValue} 

(position {returnedValue + 1})");

   } // End of if else construct

} // End of Main() method

  } // End of Customer class

} // End of Chapter24 namespace

We will now create the method that will search the array for the required value. The 

method will have the array passed to it, as well as the value that is to be searched for. It 

is a parameter method, and it will return an integer value. The method will be created 

outside the Main() method.

 23. Amend the code as in Listing 24-7.

Listing 24-7. Create the method that will search the array

} // End of Main() method

    /*

    This value method takes in an array of integers and the

    int value of the item to be found

    */

public static int SearchForTheValue(int[] claimValuesPassedIn, int 

valueToBeLocatedPassedIn)

  {

   for (int counter = 0; counter < claimValuesPassedIn.Length;

    counter++)

    {

     /*

     This line is used to display the values being

     compared, remove when completed

     */

      Console.WriteLine($"Comparing {claimValuesPassedIn[counter]} and 

{valueToBeLocatedPassedIn}");

Chapter 24  Common routines



899

     if(claimValuesPassedIn[counter] == valueToBeLocatedPassedIn)

     {

          return counter;

      } // End of if block

      } // End of for block

      return -1;

    } // End of SearchForTheValue() method

  } // End of Customer class

} // End of Chapter24 namespace

Great, that will have one of the red underlined messages in the Main() method 

satisfied, because the method being called now exists. So we will now create the second 

method that will display the array values, and this will clear the red underlined message 

we still have.

 24. Amend the code as in Listing 24-8.

Listing 24-8. Create the method that will display the array values

      return -1;

    } // End of SearchForTheValue() method

    /* Prints the array */

    static void DisplayArrayElements(int[] claimValuesPassedIn)

    {

       for (int counter = 0; counter < claimValuesPassedIn.Length; 

++counter)

      {

        Console.WriteLine($"{claimValuesPassedIn[counter]}");

      }

    } // End of DisplayArrayElements

  } // End of Customer class

} // End of Chapter24 namespace

 25. Click the File menu.

 26. Choose Save All.

Chapter 24  Common routines



900

 27. Click the Debug menu.

 28. Choose Start Without Debugging.

Figure 24-1 shows the console window, and we can see that the first method to 

display all array elements has worked and that the second method has compared 

the value 1000 with the array elements and then stopped when it has found the first 

occurrence, which is at position 6, index 5.

Figure 24-1. Array elements shown; comparisons find 1000 at index 5

 29. Press the Enter key to close the console window.

 Binary Search (Iterative Binary Search)
A binary search is used to search a series of elements in a data structure for a specified 

value, sometimes called the key. Unlike the linear search, the binary search only works 

when the array is sorted. The binary search starts with the full sorted array and checks if 

the search value is less than the item in the middle of the array:

Chapter 24  Common routines



901

• If it is, the search is narrowed to the lower half of the array, the 

left side.

• If it is not, then we use the upper half, the right side, and we repeat 

the process, until the value is found or there are no elements to halve.

The binary search represents a divide-and-conquer algorithm, and the algorithm 

will discard one half of the array in each iteration.

If we were to see an academic or technical interview question based on a binary 

search, it might be in the form of a scenario like this:

Starting with a sorted array of n integers and having a value to 

find, decide if the value to be found exists within the given array 

using the binary search algorithm. If the target exists in the array, 

display the array index of the value.

The algorithm to solve this problem using a binary search is as follows:

• If the value to be found = array[middle value], return the 

middle value.

• If the value to be found < array[middle value], then discard the 

elements of the array to the right of the middle value including the 

middle value.

• If the value to be found > array[middle value], then discard the 

elements of the array to the left of the middle value including the 

middle value.

Let’s code some C# and build our programming muscle.

 1. Right-click the Chapter24 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class BinarySearch.cs.

 5. Click the Add button.

The BinarySearch class code will appear in the editor window and will be similar to 

Listing 24-9.

Chapter 24  Common routines



902

Listing 24-9. Namespace with BinarySearch class

namespace Chapter24

{

  internal class BinarySearch

  {

  } // End of BinarySearch class

} // End of Chapter24 namespace

 6. Create a Main() method within the class, as in Listing 24-10, since 

this was not produced automatically, and delete the unwanted 

imports.

Listing 24-10. Main() method added to class

namespace Chapter24

{

  internal class BinarySearch

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of BinarySearch class

} // End of Chapter24 namespace

 7. Amend the code, as in Listing 24-11, to add a comment block, 

create an array, and initialize the values.

Listing 24-11. Comment block added, array created with initial values

namespace Chapter24

{

  /*

  With a binary search we must first ensure the array is sorted.

  The binary search starts with the whole array and checks if

  the value of our search key is less than the item in the

  middle of the array.

Chapter 24  Common routines



903

    If it is, the search is narrowed to the lower

    (left) half of the array.

    If it is not, then we use the upper (right) half.

  We repeat the process until the value is found or there

  are elements left to half.

  */

  internal class BinarySearch

  {

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

       int[] claimValues = {6000, 9000, 3000, 4000, 8000, 1000, 2000, 

5000, 7000};

    } // End of Main() method

  } // End of BinarySearch class

 8. Amend the code, as in Listing 24-12, to create the variable that will 

hold the value to be found, the key.

Listing 24-12. Declare a variable and assign it the value to be found

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

       int[] claimValues = {6000, 9000, 3000, 4000, 8000, 1000, 2000, 

5000, 7000};

      // Value to be located using binary search

      int valueToBeLocated = 6000;

    } // End of Main() method

  } // End of BinarySearch class

We will now sort the array since a binary search requires a sorted array to perform a 

search correctly.

 9. Amend the code to sort the array as in Listing 24-13.

Chapter 24  Common routines



904

Listing 24-13. Sort the array prior to doing a binary search

      // Value to be located using binary search

      int valueToBeLocated = 6000;

      // Sort the array as this is essential for a Binary search

      Array.Sort(claimValues);

    } // End of Main() method

 10. Amend the code, as in Listing 24-14, to call a method that will 

display the array.

Listing 24-14. Call the method that will display the elements of the array

      // Sort the array as this is essential for a Binary search

      Array.Sort(claimValues);

      // Display the elements of the array

      DisplayArrayElements(claimValues);

    } // End of Main() method

  } // End of BinarySearch class

We will now call the method that will perform a binary search of the array looking for 

a specified value and then assign the returned value to a variable.

 11. Amend the code as in Listing 24-15.

Listing 24-15. Call the method that will do the binary search

      // Display the elements of the array

      DisplayArrayElements(claimValues);

      /*

      Call the binary search method passing it the array and the

      value to be located and store the returned value in a

      variable called returnedValue

      */

       int returnedValue = PerformBinarySearch(claimValues, 

valueToBeLocated);

Chapter 24  Common routines



905

    } // End of Main() method

  } // End of BinarySearch class

We will perform a selection that will display one message if the returned value is –1 

and a different message if the returned value is not –1. A –1 value means no match has 

been found.

 12. Amend the code as in Listing 24-16.

Listing 24-16. Perform a selection and display an appropriate message

       int returnedValue = PerformBinarySearch(claimValues, 

valueToBeLocated);

      // Display the appropriate message (located or not)

      if (returnedValue == -1)

      {

        Console.WriteLine("The value is not present in array");

      }

      else

      {

        // Using an interpolated string

         Console.WriteLine($"The value was located at index {returnedValue} 

(position { returnedValue + 1})");

       } // End of if else construct

    } // End of Main() method

  } // End of BinarySearch class

We will now create the method that will binary search the array for the required 

value. In this example we are using an iterative method to perform the binary search, 

but there is an alternative recursive method that will work. The method will be created 

outside the Main() method.

 13. Amend the code as in Listing 24-17.

Chapter 24  Common routines



906

Listing 24-17. Create the method to perform a search and return a value

    /*

    This value method takes in an array of integers and the

    int value of the item to be found

    */

     public static int PerformBinarySearch(int[] claimValuesPassedIn,  

int valueToBeLocatedPassedIn)

    {

      int firstPosition = 0;

      int lastPosition = claimValuesPassedIn.Length - 1;

      int middlePosition = (firstPosition + lastPosition) / 2;

      while (firstPosition <= lastPosition)

      {

        if (claimValuesPassedIn[middlePosition] < valueToBeLocatedPassedIn)

        {

          firstPosition = middlePosition + 1;

        }

         else if (claimValuesPassedIn[middlePosition] == 

valueToBeLocatedPassedIn)

        {

          break;

        }

        else

        {

          lastPosition = middlePosition - 1;

        }

        middlePosition = (firstPosition + lastPosition) / 2;

      } // End of while iteration

      if (firstPosition > lastPosition)

      {

        middlePosition = -1;

      }

Chapter 24  Common routines



907

      return middlePosition;

    } // End of PerformBinarySearch() method

  } // End of BinarySearch class

Great, that will have one of the red underlined messages satisfied in the Main() 

method because the method being called now exists. So let us now create the second 

method that will display the array values, and this will clear the red underlined message 

we still have. The method will be created outside the Main() method.

 14. Amend the code as in Listing 24-18.

Listing 24-18. Create the method to display the array values

      return middlePosition;

    } // End of PerformBinarySearch() method

    /* Prints the array */

    static void DisplayArrayElements(int[] claimValuesPassedIn)

    {

       for (int counter = 0; counter < claimValuesPassedIn.Length; 

++counter)

      {

        Console.WriteLine($"{claimValuesPassedIn[counter]}");

      }

    } // End of DisplayArrayElements

  } // End of BinarySearch class

Now that we have all the code we require, we can run the application to ensure it 

works as expected.

 15. Right-click the Chapter24 project in the Solution Explorer panel.

 16. Choose Properties from the pop-up menu.

 17. Choose the BinarySearch class in the Startup object drop-

down list.

 18. Close the Properties window.

 19. Click the File menu.

 20. Choose Save All.

Chapter 24  Common routines



908

 21. Click the Debug menu.

 22. Choose Start Without Debugging.

Figure 24-2 shows the console, and we can see that 6000 was correctly identified as 

being at array index 5, which is position 6.

Figure 24-2. Array elements shown and 6000 found at index 5

 23. Press the Enter key to close the console window.

 Bubble Sort
A bubble sort is a simple sorting algorithm that works by comparing two adjacent 

elements of an array, and if the first element is numerically greater than the next one, the 

elements are swapped. The process is then repeated to move across all the elements of 

the array. In Chapter 11 on arrays, we saw the sort method being used through code as 

Array.Sort(). Now we are going to look at how such a sort method might work “under 

the hood.”

If we were to see an academic or technical interview question based on a bubble 

sort, it might be in the form of a scenario like this:

Starting with an array of n integers, use a bubble sort to arrange 

the array values in ascending order.

Chapter 24  Common routines

https://doi.org/10.1007/978-1-4842-8619-7_11


909

The algorithm to solve this problem using a bubble sort is as follows:

 1. Pick the first value in the array.

 2. Compare this current value with the next value.

 3. If the next value is smaller than the current value, swap the two 

values; otherwise, leave the values as they are.

 4. Move to the next number in the array.

 5. Repeat steps 2–4 until we reach the last value in the array.

Let’s code some C# and build our programming muscle.

 1. Right-click the Chapter24 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class BubbleSort.cs.

 5. Click the Add button.

The BubbleSort class code will appear in the editor window and will be similar to 

Listing 24-19.

Listing 24-19. Namespace with BubbleSort class

namespace Chapter24

{

  internal class BubbleSort

  {

  } // End of BubbleSort class

} // End of Chapter24 namespace

 6. Create a Main() method within the class, as in Listing 24-20, since 

this was not produced automatically, and delete the unwanted 

imports.

Chapter 24  Common routines



910

Listing 24-20. BubbleSort class with Main() method

namespace Chapter24

{

  internal class BubbleSort

  {

    static void Main(string[] args)

    {

    }// End of Main() method

  } // End of BubbleSort class

} // End of Chapter24 namespace

 7. Amend the code, as in Listing 24-21, to add a comment block, 

create an array, and initialize the values.

Listing 24-21. Create the array and add a comment block

namespace Chapter24

{

  /*

  A Bubble sort is a simple algorithm which compares

  two adjacent elements of the array. If the first element

  is numerically greater than the next one, the elements

  are swapped. The process is then repeated to move across

  all the elements of the array.

  */

  internal class BubbleSort

  {

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

       int[] claimValues = {6000, 9000, 3000, 4000, 8000, 1000, 2000, 

5000, 7000 };

    }// End of Main() method

  } // End of BubbleSort class

} // End of Chapter24 namespace

Chapter 24  Common routines



911

We will now call the method that will perform a bubble sort of the array.

 8. Amend the code, as in Listing 24-22.

Listing 24-22. Call the bubble sort method

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

       int[] claimValues = {6000, 9000, 3000, 4000, 8000, 1000, 2000, 

5000, 7000 };

      /*

      Pass the array of claim values to the

      method BubbleSortTheArray()

      */

      BubbleSortOfTheArray(claimValues);

    }// End of Main() method

  } // End of BubbleSort class

 9. Amend the code, as in Listing 24-23, to call a method that will 

display the array.

Listing 24-23. Call the method that displays the array items

     BubbleSortOfTheArray(claimValues);

     Console.WriteLine("The sorted array is");

    //Pass the array to the method DisplayArrayElements()

     DisplayArrayElements(claimValues);

   }// End of Main() method

 } // End of BubbleSort class

} // End of Chapter24 namespace

We will now create the method that will bubble sort the array. The method will be 

created outside the Main() method.

Chapter 24  Common routines



912

 10. Amend the code, as in Listing 24-24.

Listing 24-24. Create the method to perform a bubble sort

}// End of Main() method

    static void BubbleSortOfTheArray(int[] claimValuesPassedIn)

    {

       for (int outerCounter = 0; outerCounter < claimValuesPassedIn.

Length - 1;outerCounter++)

      {

        for (int innerCounter = 0; innerCounter < claimValuesPassedIn.

Length - outerCounter - 1; innerCounter++)

                {

         if (claimValuesPassedIn[innerCounter] > claimValuesPassedIn[inner 

Counter + 1])

        {

          // Swap the two values

          int temporaryValue = claimValuesPassedIn[innerCounter];

           claimValuesPassedIn[innerCounter] = claimValuesPassedIn[inner 

Counter + 1];

          claimValuesPassedIn[innerCounter + 1] = temporaryValue;

          DisplayArrayElements(claimValuesPassedIn);

        } // End of if construct

      } // End of for iteration inner iteration

    } // End of for iteration inner iteration

  } // End of BubbleSortTheArray method

} // End of BubbleSort class

} // End of Chapter24 namespace

Great, that will have one of the red underlined messages in the Main() method 

removed, because the method being called now exists. So we will now create the second 

method that will display the array values, and this will clear the red underlined message 

we still have. The method will be created outside the Main() method.

 11. Amend the code, as in Listing 24-25.

Chapter 24  Common routines



913

Listing 24-25. Create the method to display the array items

    } // End of for iteration inner iteration

  } // End of BubbleSortTheArray method

    /* Prints the array */

    static void DisplayArrayElements(int[] claimValuesPassedIn)

    {

       for (int counter = 0; counter < claimValuesPassedIn.Length; 

++counter)

      {

        Console.WriteLine($"{claimValuesPassedIn[counter]}");

      }

    } // End of DisplayArrayElements

  } // End of BubbleSort class

} // End of Chapter24 namespace

Now that we have all the code we require, we can run the application to ensure it 

works as expected.

 12. Right-click the Chapter24 project in the Solution Explorer panel.

 13. Choose Properties from the pop-up menu.

 14. Choose the BubbleSort class in the Startup object drop-down list.

 15. Close the Properties window.

 16. Click the File menu.

 17. Choose Save All.

 18. Click the Debug menu.

 19. Choose Start Without Debugging.

Figure 24-3 shows the last part of the console window, with the final version of the 

sorted array displayed.

Chapter 24  Common routines



914

Figure 24-3. Array elements sorted using a bubble sort

 20. Press the Enter key to close the console window.

 Insertion Sort
An insertion sort is similar to a bubble sort but it is a more efficient sort. We should think 

about using the insertion sort when we have a large number of elements to sort since 

larger data sets will take more time.

If we were to see an academic or technical interview question based on an insertion 

sort, it might be in the form of a scenario like this:

Starting with an array of n integers, use an insertion sort to 

arrange the array values in ascending order.

The algorithm to solve this problem using an insertion sort is as follows:

 1. Pick the second value in the array.

 2. Compare this current value with the value to the left.

 3. If the value to the left is greater than the current value, swap the 

two values, repeating this comparison to the value on the left 

until we meet a value less than it; otherwise, leave the values as 

they are.

 4. Move to the next number, from the original position, in the array.

Chapter 24  Common routines



915

 5. Repeat steps 2–4 until we reach the last value in the array.

Let’s code some C# and build our programming muscle.

 1. Right-click the Chapter24 project.

 2. Choose Add.

 3. Choose Class.

 4. Name the class InsertionSort.cs.

 5. Click the Add button.

The InsertionSort class code will appear in the editor window and will be similar to 

Listing 24-26.

Listing 24-26. Namespace with InsertionSort class

namespace Chapter24

{

  internal class InsertionSort

  {

  } // End of Insertion class

} // End of Chapter24 namespace

 6. Create a Main() method within the class, as in Listing 24-27, since 

this was not produced automatically, and delete the unwanted 

imports.

Listing 24-27. InsertionSort class with Main() method

namespace Chapter24

{

  internal class InsertionSort

  {

    static void Main(string[] args)

    {

    } // End of Main() method

Chapter 24  Common routines



916

  } // End of Insertion class

} // End of Chapter24 namespace

 7. Amend the code, as in Listing 24-28, to add a comment block, 

create an array, and initialize the values.

Listing 24-28. Create the array and add a comment block

namespace Chapter24

{

  /*

  An Insertion Sort is similar to a Bubble sort, however, it is

  a more efficient sort. We should think about using the

  Insertion sort when we have a large number of elements to sort.

  Larger data sets will take more time.

  */

  internal class InsertionSort

  {

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

       int[] claimValues = {6000, 9000, 3000, 4000, 8000, 1000, 2000, 

5000, 7000 };

    } // End of Main() method

  } // End of Insertion class

} // End of Chapter24 namespace

We will now call the method that will perform an insertion sort of the array, and in 

calling the method, the array will be passed.

 8. Amend the code, as in Listing 24-29.

Listing 24-29. Call the InsertionSort method, passing it the array

    static void Main(string[] args)

    {

      // Declare and create the array of claim values

Chapter 24  Common routines



917

      int[] claimValues =

        {6000, 9000, 3000, 4000, 8000, 1000, 2000, 5000, 7000 };

      /*

      Pass the array of claim values to the

      method InsertionSortTheArray()

      */

      InsertionSortOfTheArray(claimValues);

    } // End of Main() method

  } // End of Insertion class

We will now call the method that will display the array elements, and in calling the 

method, the array will be passed.

 9. Amend the code, as in Listing 24-30.

Listing 24-30. Call the method that displays the array items

      /*

      Pass the array of claim values to the

      method insertionSortTheArray()

      */

      InsertionSortOfTheArray(claimValues);

      Console.WriteLine("The sorted array is");

      // Pass the array to the method DisplayArrayElements()

      DisplayArrayElements(claimValues);

    } // End of Main() method

  } // End of Insertion class

We will now create the method that will perform the insertion sort of the array. The 

method will be created outside the Main() method.

 10. Amend the code as in Listing 24-31.

Chapter 24  Common routines



918

Listing 24-31. Create the method to perform the insertion sort

} // End of Main() method

 /* Method to sort array using an insertion sort*/

 static void InsertionSortOfTheArray(int[] claimValuesPassedIn)

 {

   for (int counter = 1; counter < claimValuesPassedIn.Length; ++counter)

 {

   int currentKeyValue = claimValuesPassedIn[counter];

   int previousValue = counter - 1;

/* Move elements that are greater than the currentArrayValue

   to one position in front of their current position */

  while (previousValue >= 0 && claimValuesPassedIn[previousValue] > 

currentKeyValue)

  {

     Console.WriteLine($"Comparing { claimValuesPassedIn[previousValue]} and 

{ currentKeyValue}");

claimValuesPassedIn[previousValue + 1] = claimValuesPassedIn[previ

ousValue];

previousValue = previousValue - 1;

 }

 claimValuesPassedIn[previousValue + 1] = currentKeyValue;

      } // End of Iteration of the array

    } // End of InsertionSortOfTheArray

  } // End of Insertion class

} // End of Chapter24 namespace

Great, that will have one of the red underlined messages in the Main() method 

removed, because the method being called now exists. So we will now create the second 

method that will display the array values, and this will clear the red underlined message 

we still have. The method will be created outside the Main() method.

 11. Amend the code, as in Listing 24-32.

Chapter 24  Common routines



919

Listing 24-32. Create the method to display the array elements

    } // End of insertionSortOfTheArray

    /* Prints the array */

    static void DisplayArrayElements(int[] claimValuesPassedIn)

    {

     for (int counter = 0; counter < claimValuesPassedIn.Length; ++counter)

      {

        Console.WriteLine($"{claimValuesPassedIn[counter]}");

      }

    } // End of DisplayArrayElements() method

  } // End of Insertion class

} // End of Chapter24 namespace

Now that we have all the code we require, we can run the application to ensure it 

works as expected.

 12. Right-click the Chapter24 project in the Solution Explorer panel.

 13. Choose Properties from the pop-up menu.

 14. Choose the InsertionSort class in the Startup object drop-

down list.

 15. Close the Properties window.

 16. Click the File menu.

 17. Choose Save All.

 18. Click the Debug menu.

 19. Choose Start Without Debugging.

Figure 24-4 shows the last part of the console window, with the final version of the 

sorted array displayed.

Chapter 24  Common routines



920

Figure 24-4. Array elements sorted using an insertion sort

 20. Press the Enter key to close the console window.

The original array is shown in Table 24-1, and Table 24-2 shows what comparisons 

are made during each iteration. We will see that at the start, the following happens:

• 6000 and 9000 are compared, and as they are in the correct order, 

they are ignored and stay in the same positions.

• Now we swap 9000 and 3000 because 3000 is less than 9000.

• Now we check 3000 with 6000, and as 3000 is less than 6000, we swap 

them and so on.

Table 24-1. Original values

6000 9000 3000 4000 8000 1000 2000 5000 7000

Chapter 24  Common routines



921

Table 24-2. Resulting iterations and the values being compared

6000 9000 3000 4000 8000 1000 2000 5000 7000

6000 9000 3000 4000 8000 1000 2000 5000 7000

6000 3000 9000 4000 8000 1000 2000 5000 7000

3000 6000 9000 4000 8000 1000 2000 5000 7000

3000 6000 4000 9000 8000 1000 2000 5000 7000

3000 4000 6000 9000 8000 1000 2000 5000 7000

3000 4000 6000 8000 9000 1000 2000 5000 7000

3000 4000 6000 8000 1000 9000 2000 5000 7000

3000 4000 6000 1000 8000 9000 2000 5000 7000

3000 4000 1000 6000 8000 9000 2000 5000 7000

3000 1000 4000 6000 8000 9000 2000 5000 7000

1000 3000 4000 6000 8000 9000 2000 5000 7000

1000 3000 4000 6000 8000 2000 9000 5000 7000

1000 3000 4000 6000 2000 8000 9000 5000 7000

1000 3000 4000 2000 6000 8000 9000 5000 7000

1000 3000 2000 4000 6000 8000 9000 5000 7000

1000 2000 3000 4000 6000 8000 9000 5000 7000

1000 2000 3000 4000 6000 8000 5000 9000 7000

1000 2000 3000 4000 6000 5000 8000 9000 7000

1000 2000 3000 4000 5000 6000 8000 9000 7000

1000 2000 3000 4000 5000 6000 8000 7000 9000

1000 2000 3000 4000 5000 6000 7000 8000 9000

From Table 24-2 we can see what our code has produced for each iteration, and the 

highlighted values are the values being compared during each iteration.

Chapter 24  Common routines



922

 Chapter Summary
In this chapter we have looked at some common search and sort algorithms in the C# 

programming language. The linear search, binary search, bubble sort, and insertion sort 

algorithms are language independent and can be used in any programming language. 

We simply use the same business logic, but the code will be programming language 

specific, for example, C#, Java, Python, JavaScript, or COBOL.

Another great achievement! This is really good. We are seeing the application of our 

coding skills to routines regularly used in coding. We should be immensely proud of the 

learning to date. In finishing this chapter, we have increased our knowledge further. We 

are getting very close to our target. The end is in sight.

 

Chapter 24  Common routines



923

CHAPTER 25

Programming Labs

 C# Practice Exercises
The lab exercises that follow will give us an opportunity to practice what we have 

learned. We should complete the labs by referring to the book chapters when we are 

unsure about how to do something, but more importantly we should look at the previous 

code we have written. The code we have written should be an invaluable source of 

working code, and it is important not to “reinvent the wheel.” Use the code - copy, 

paste, and amend it if required. Reuse the code – that is what the professional developer 

would do and is expected to do. Professional software developers are expected to 

create applications as fast and accurately as possible, and reusing existing code is one 

technique they apply, so why should we be any different?

If we really get stuck, there are sample solutions following the labs and we can refer 

to these, but it is important we understand any code that we copy and paste. It is also 

important we enjoy the challenge of developing solutions for each lab. We will apply the 

learning from the chapters, but more importantly we will develop our own techniques 

and style for coding, debugging, and problem solving.

Think about the saying

Life begins at the edge of our comfort zone.

We will inevitably feel at the edge of our programming ability, but every new thing we 

learn in completing each lab should make us feel better and encourage us to learn more. 

While we may be “frightened” and “uncomfortable” completing the coding labs, the 

process will lead us to grow and develop our coding skills and build our programming 

muscle. We might find it “painful” at times but that is the reality of programming. We will 

find it exciting and challenging as we are stretched and brought to a place we have not 

been to before.

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_25

https://doi.org/10.1007/978-1-4842-8619-7_25#DOI


924

 Chapter 4 Labs: WriteLine( )
 Lab 1

Write a C# console application, using the WriteLine() command, that will display 

the letter E using *’s to form the shape, for example, one line could be Console.

WriteLine(“*******”);.

 Lab 2

Write a C# console application, using the WriteLine() command, that will display the 

letter A using *’s to form the shape, for example, one line could be Console.WriteLine 

(“ *”);.

 Lab 3

Write a C# console application that will display your name and address in a format that 

might look like a label for an envelope – name on the first line, address line 1 on the 

second line, etc.

 Lab 4

Using the same code that you developed for Lab 3, the name and address label, add a 

statement between each of the name and address lines that will require the user to press 

Enter on the keyboard before the display moves to the next line.

 Lab 1: Possible Solution with output shown in Figure 25-1

namespace Labs.Chapter04

{

  internal class Lab1

  {

    static void Main(string[] args)

    {

      Console.WriteLine("*******");

      Console.WriteLine("*");

      Console.WriteLine("*");

      Console.WriteLine("*******");

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_4


925

      Console.WriteLine("*");

      Console.WriteLine("*");

      Console.WriteLine("*******");

    } // End of Main() method

  } // End of Lab1 class

} //End of Labs.Chapter04 namespace

 Lab 2: Possible Solution with output shown in Figure 25-2

namespace Labs.Chapter04

{

  internal class Lab2

  {

    static void Main(string[] args)

    {

      Console.WriteLine("      *");

      Console.WriteLine("     * *");

      Console.WriteLine("    *   *");

      Console.WriteLine("   *******");

      Console.WriteLine("  *       *");

      Console.WriteLine(" *         *");

      Console.WriteLine("*           *");

    } // End of Main() method

  } // End of Lab2 class

} //End of Labs.Chapter04 namespace

Figure 25-1. Lab 1 output

Chapter 25  programming Labs



926

Figure 25-2. Lab 2 output

Figure 25-3. Lab 3 output

 Lab 3: Possible Solution with output shown in Figure 25-3

namespace Labs.Chapter04

{

  internal class Lab3

  {

    static void Main(string[] args)

    {

      Console.WriteLine("Mer Gerard Byrne");

      Console.WriteLine("1 Any Street");

      Console.WriteLine("Any Road");

      Console.WriteLine("Belfast");

      Console.WriteLine("BT1 1AN");

    } // End of Main() method

  } // End of Lab3 class

} //End of Labs.Chapter04 namespace

Chapter 25  programming Labs



927

 Lab 4: Possible Solution with output shown in Figure 25-4

namespace Labs.Chapter04

{

  internal class Lab4

  {

    static void Main(string[] args)

    {

      Console.WriteLine("Mr Gerard Byrne");

      Console.WriteLine("Press the enter key to continue");

      Console.ReadLine();

      Console.WriteLine("1 Any Street");

      Console.WriteLine("Press the enter key to continue");

      Console.ReadLine();

      Console.WriteLine("Any Road");

      Console.WriteLine("Press the enter key to continue");

      Console.ReadLine();

      Console.WriteLine("Belfast");

      Console.WriteLine("Press the enter key to continue");

      Console.ReadLine();

      Console.WriteLine("BT1 1AN");

    } // End of Main() method

  } // End of Lab4 class

} //End of Labs.Chapter04 namespace

Figure 25-4. Lab 4 output

Chapter 25  programming Labs



928

 Chapter 6 Labs: Data Types
 Lab 1

Write a C# console application that will calculate and display the area of a rectangle 

using a length of 20 and a breadth of 10, which should be hard-coded in the code. The 

formula for the area of a rectangle is length multiplied by breadth.

 Lab 2

Write a C# console application that will calculate and display the area of a rectangle 

using the length and breadth that are input at the console by the user. The formula for 

the area of a rectangle is length multiplied by breadth.

 Lab 3

Using the code from Lab 2, write a C# console application that will calculate and display 

the volume of a cuboid using the length, breadth, and height that are input at the console 

by the user. The formula for the volume of a cuboid is length multiplied by breadth 

multiplied by height.

 Lab 4

Write a C# console application that will accept user input regarding the credit card 

details required for making an online purchase. The details required are

• Credit card number – Contains 16 digits and hyphens between each 

4 digits

• Card expiry month – A number from 1 to 12 (Jan to Dec)

• Card expiry year – A two-digit number for the year, for example, 23

• Card issue number – A single-digit number

• Three-digit security code – A three-digit number

• Card holder name on card – A string

Display to the console the details read from the user.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_6


929

 Lab 1: Possible Solution with output shown in Figure 25-5

namespace Labs.Chapter06

{

  internal class Lab1

  {

    static void Main(string[] args)

    {

      int length;

      int breadth;

      int area;

      length = 20;

      breadth = 10;

      area = length * breadth;

      Console.WriteLine();

      Console.WriteLine($"The area of the rectangle is {area}

      square centimetres");

      Console.WriteLine();

    } // End of Main() method

  } // End of Lab1 class

} //End of Labs.Chapter06 namespace

 Lab 2: Possible Solution with output shown in Figure 25-6

namespace Labs.Chapter06

{

  internal class Lab2

  {

Figure 25-5. Lab 1 output

Chapter 25  programming Labs



930

    static void Main(string[] args)

    {

      int length;

      int breadth;

      int area;

      Console.WriteLine("What is the length of the rectangle in

      centimetres");

      length = Convert.ToInt32(Console.ReadLine());

      Console.WriteLine("What is the breadth of the rectangle in

      centimetres");

      breadth = Convert.ToInt32(Console.ReadLine());

      area = length * breadth;

      Console.WriteLine();

      Console.WriteLine($"The area of the rectangle is {area }

      square centimetres");

      Console.WriteLine();

    } // End of Main() method

  } // End of Lab2 class

} //End of Labs.Chapter06 namespace

 Lab 3: Possible Solution with output shown in Figure 25-7

namespace Labs.Chapter06

{

  internal class Lab3

  {

Figure 25-6. Lab 2 output

Chapter 25  programming Labs



931

    static void Main(string[] args)

    {

      int length;

      int breadth;

      int height;

      int volume;

      Console.WriteLine("What is the length of the rectangle in

      centimetres");

      length = Convert.ToInt32(Console.ReadLine());

      Console.WriteLine("What is the breadth of the rectangle in

      centimetres");

      breadth = Convert.ToInt32(Console.ReadLine());

      Console.WriteLine("What is the height of the cuboid in

      centimetres");

      height = Convert.ToInt32(Console.ReadLine());

      volume = length * breadth * height;

      Console.WriteLine();

      Console.WriteLine($"The volume of the cuboid is {volume}

      cubic centimetres");

      Console.WriteLine();

    } // End of Main() method

  } // End of Lab3 class

} //End of Labs.Chapter06 namespace

Figure 25-7. Lab 3 output

Chapter 25  programming Labs



932

 Lab 4: Possible Solution with output shown in Figure 25-8

namespace Labs.Chapter06

{

  /*

  The class holds members (fields) and methods.

  In this example there will only be a main method.

  This is where the application will start running.

  */

  internal class Lab4

  {

    /*

    The Main method is where we will add all our variables and

    write our code. This is only suitable as we are learning to

    program but as we develop our skills we will modularise our

    code i.e. we will break the code up into small methods each

    having only one role. We might not want to declare all our

    variables in the Main method, we may want them to be

    declared inside the smaller methods (chapters). This is where

    we will begin to understand about the scope of variables.

    */

    static void Main(string[] args)

    {

    /*

    A credit card will have a 16-digit number on the front. We

    may wish to include hyphens or spaces between each set of 4

    digits. For this reason, we are making the data type string.

    */

      string creditCardNumber;

    /*

    The month in which the credit card will expire will be

    entered as a number which will be from 0 -12 based on the

    calendar months. This means we can use a byte or sbyte data

    type as it is a small value. The sbyte data type has a

    minimum value of -128 and a maximum value of 127. The byte

Chapter 25  programming Labs



933

    type has a minimum value of 0 and a maximum value of 255.

    A month cannot be a negative, so we use a byte data type.

    */

      byte expiryMonth;

    /*

    The year of expiry only requires the last two digits of the

    year, it will not require the two digits of the century.

    We should use a byte data type as 0 – 255 will be an

    acceptable range for the year.

    */

      byte expiryYear;

    /*

    The card issue number is a one or two digit number on the

    front of the card. Some credit cards will not have an issue

    number. For this example we should expect the user to enter

    a 0 if there is no issue number.

    */

      byte issueNumber;

    /*

    A card verification code (CVC) is also known as the card

    verification value (CVV) and is a security feature used when

    the user is not present to make the payment and present the

    card. It is aimed at reducing fraud.

    */

      int threeDigitCode;

    /*

    A credit card will have a name imprinted on it. This must be

    the exact name used when making a transaction. The name will

    be treated as a string input.

    */

      string nameOnCard;

    //Enter the card holder name as it appears on the card

      Console.WriteLine("Enter your name as it appears " +

Chapter 25  programming Labs



934

        "on your Credit Card");

      nameOnCard = Console.ReadLine();

    /*

    Ask the user to enter the 16-digit credit card number as it

    appears on the credit card and insert hyphens (-) between

    each set of 4 digits. Then use the ReadLine() method to read

    the data input at the console. The input data will be a

    string, so no conversion is necessary as we are assigning

    the value to a variable we declared as data type string.

    */

      Console.WriteLine("Enter the 16 digit credit card number");

      Console.WriteLine("Use hyphens as shown in this " +

        "example to separate each ");

      Console.WriteLine("set of 4 digits  1234-5678-1234-7890");

      creditCardNumber = Console.ReadLine();

    /*

    Ask the user to enter the value of the expiry month. Then use

    the ReadLine() method to read the data input at the console.

    The input data will be a string, so a conversion is necessary

    as we are assigning the value to a variable declared as data

    type byte. We therefore have to use the Convert class and the

    ToByte() method to convert the data read from the console.

    */

      Console.WriteLine("Enter the expiry month number");

      expiryMonth = Convert.ToByte(Console.ReadLine());

    /*

    Ask the user to enter the value of the expiry year. Then use

    the ReadLine() method to read the data input at the console.

    */

      Console.WriteLine("Enter the expiry year number");

      expiryYear = Convert.ToByte(Console.ReadLine());

    /*

    Ask the user to enter the value for the issue number.

Chapter 25  programming Labs



935

    Then use the ReadLine() method to read the data input at the

    console. The input data will be a string so a conversion is

    necessary as we are assigning the value to a variable we

    declared as data type byte. We therefore have to use the

    Convert class and the ToByte() method to convert the data

    read from the console.

    */

      Console.WriteLine("Enter the value for the issue number " +

        "\n(enter 0 if there is no issue number on our card)");

      issueNumber = Convert.ToByte(Console.ReadLine());

    /*

    Ask the user to enter the value of the 3-digit security code

    that appears on the back of the card. Then use the ReadLine()

    method to read the data input at the console. The input data

    will be a string so a conversion is necessary to assign the

    value to a variable we declared as data type int. We

    therefore have to use the Convert class and the ToInt32()

    method to convert the data read from the console.

    */

     Console.WriteLine("Enter the 3 digit security number " +

      "from the back of the card");

    threeDigitCode = Convert.ToInt32(Console.ReadLine());

    /*

    Now we will display the data we have accepted from the user.

    We use the WriteLine() method from the Console class to

    display the data. The information we have between the

    brackets () of the WriteLine() is a concatenation of a string

    of text between the double quotes "" and a variable. We

    have also used the escape sequence \n (new line) and the

    \t (tab) in an attempt to format the display.

    */

    Console.WriteLine("We have entered the following details\n");

    Console.WriteLine("*************************************\n");

    Console.WriteLine($"Cardholder name:\t {nameOnCard}");

Chapter 25  programming Labs



936

    Console.WriteLine($"Card number:\t\t {creditCardNumber}");

    Console.WriteLine($"Card expiry month:\t {expiryMonth}");

    Console.WriteLine($"Card expiry year:\t {expiryYear}");

    Console.WriteLine($"Card issue number:\t {issueNumber}");

    Console.WriteLine($"Card security code:\t {threeDigitCode}");

    Console.WriteLine("*************************************\n");

    } // End of Main() method

  } // End of Lab4 class

} //End of Labs.Chapter06 namespace

 Chapter 7 Labs: Data Conversion and Arithmetic
 Lab 1

Write a C# console application that will calculate the number of points accumulated by 

a sports team during their season. The program should ask the user to input the number 

of games won, the number of games drawn, and the number of games lost. The program 

should total the number of games played and calculate the number of points won based 

on the facts that 3 points are given for a win, 1 point is given for a draw, and 0 points are 

given for a lost game. Display the number of games played and the number of points 

accumulated.

Figure 25-8. Lab 4 output

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_7


937

 Lab 2

Write a C# console application that will calculate and display

• The total score for two examinations that a student undertakes

• The average of the two scores

The two scores will be input by the user at the console and will be accepted as string 

values by the program code, so conversion will be needed.

 Lab 1: Possible Solution with output shown in Figure 25-9

namespace Labs.Chapter07

{

  internal class Lab1

  {

   static void Main(string[] args)

   {

    // Declare the variables

    int numberOfGamesWon, numberOfGamesDrawn, numberOfGamesLost;

    int numberOfGamesPlayed, numberOfPointsAccumulated;

    // Input - accept user input

    Console.WriteLine("How many games were won this season?");

    numberOfGamesWon = Convert.ToInt32(Console.ReadLine());

    Console.WriteLine("How many games were drawn this season?");

    numberOfGamesDrawn = Convert.ToInt32(Console.ReadLine());

    Console.WriteLine("How many games were lost this season?");

    numberOfGamesLost = Convert.ToInt32(Console.ReadLine());

    // Process - total the number of games played

    numberOfGamesPlayed = numberOfGamesWon +

        numberOfGamesDrawn + numberOfGamesLost;

   /*

    Calculate the number of points based on 3 points for a win

   1 point for a draw and 0 points for a lost game

   */

Chapter 25  programming Labs



938

   numberOfPointsAccumulated = (3 * numberOfGamesWon)

        + numberOfGamesDrawn;

   // Output the details

   Console.WriteLine();

    Console.WriteLine($"The number of games this season was 

{numberOfGamesPlayed}\n");

    Console.WriteLine($"The number of points achieved was 

{numberOfPointsAccumulated}");

   } // End of Main() method

  } // End of Lab1 class

} //End of Labs.Chapter07 namespace

 Lab 2: Possible Solution with output shown in Figure 25-10

namespace Labs.Chapter07

{

  internal class Lab2

  {

    static void Main(string[] args)

    {

      int scoreInTestOne, scoreInTestTwo, totalScoreForTwoTests;

      double averageOfTheTwoScores;

Figure 25-9. Lab 1 output

Chapter 25  programming Labs



939

      // Input - accept user input for test score one

      Console.WriteLine("What was the score for test one?");

      scoreInTestOne = Convert.ToInt32(Console.ReadLine());

      Console.WriteLine("What was the score for test two?");

      scoreInTestTwo = Convert.ToInt32(Console.ReadLine());

      // Process - calculate the total the number of games played

      totalScoreForTwoTests = scoreInTestOne + scoreInTestTwo;

      // Process - calculate the average the two scores

      averageOfTheTwoScores = totalScoreForTwoTests / 2.0;

      // Output the details

      Console.WriteLine("");

       Console.WriteLine($"\nThe total of the two scores is 

{totalScoreForTwoTests}");

      Console.WriteLine("\n\n");

       Console.WriteLine($"\nThe average mark for the two tests is { 

averageOfTheTwoScores}");

    } // End of Main() method

  } // End of Lab2 class

} //End of Labs.Chapter07 namespace

Figure 25-10. Lab 2 output

Chapter 25  programming Labs



940

 Chapter 8 Labs: Arithmetic
 Lab 1

Write a C# console application that will simulate a simple payroll program. The 

program should

• Allow a user to input the number of hours worked by an employee.

• Allow a user to input the rate per hour, which the employee is paid.

• Calculate the gross wage, which is the hours worked multiplied by the 

rate per hour.

• Calculate the amount of national insurance to be deducted, where 

the rate of national insurance is 5% of the gross wage.

• Calculate the amount of income tax to be deducted, where the 

formula to be used is 20% of the gross wage after the national 

insurance has been deducted from the gross wage.

• Display a simplified wage slip showing, for example, the gross wage, 

the deductions, and the net pay.

Sample Output Using Test Data

• How many hours were worked? 40

• What was the rate per hour? £10.00

• Payslip

• Hours – 40

• Rate – £10.00

• Gross – £400.00

• National insurance deductions – £20.00

• Tax deductions – £76.00

• Net pay – £304.00

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_8


941

 Lab 1: Possible Solution with output shown in Figure 25-11

namespace Labs.Chapter08

{

  internal class Lab1

  {

    static void Main(string[] args)

    {

     // Declare variables required

     int hoursWorked;

     double hourlyRate, nettPay, grossPay;

     double nationalInsuranceDeductions, incomeTaxDeductions;

     double nationalInsuranceRate = 0.05, incomeTaxRate = 0.2;

     // Input Hours Worked

     Console.WriteLine("Enter the number of hours worked: ");

     hoursWorked = Convert.ToInt32(Console.ReadLine());

     // Input Hourly Rate

     Console.WriteLine("Enter Hourly Rate: ");

     hourlyRate = Convert.ToDouble(Console.ReadLine());

     // Process - calculate the net pay

     grossPay = hoursWorked * hourlyRate;

     nationalInsuranceDeductions =

           grossPay * nationalInsuranceRate;

     incomeTaxDeductions =

       (grossPay - nationalInsuranceDeductions) * incomeTaxRate;

  nettPay = grossPay – nationalInsuranceDeductions

        - incomeTaxDeductions;

  // Output simple payslip

  Console.WriteLine($"{"PAYSLIP",22}");

  Console.WriteLine($"===============================");

  Console.WriteLine($"{"Hours Worked",-20} {hoursWorked,10}");

  Console.WriteLine($"{"Hourly Rate",-20} {hourlyRate,10:0.00}");

Chapter 25  programming Labs



942

  Console.WriteLine($"{"Gross Pay",-20} {grossPay,10:0.00}");

   Console.WriteLine($"{"National 

Insurance",-20}  {nationalInsuranceDeductions,10:0.00}");

  Console.WriteLine($"{"Income Tax",-20}

      {incomeTaxDeductions,10:0.00}");

  Console.WriteLine($"{"=======",31} \n");

  Console.WriteLine($"{"Nett Pay",-20} {nettPay,10:0.00}");

  Console.WriteLine($"{"=======",31} \n");

    } // End of Main() method

  } // End of Lab1 class

} //End of Labs.Chapter08 namespace

 Chapter 9 Labs: Selection
 Lab 1

Write a C# console application that will ask the user to input a numeric value 

representing the month of the year, 12, and the number of days in that month will be 

displayed. Use a switch construct.

Figure 25-11. Lab 1 output

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_9


943

 Lab 2

Write a C# console application that will ask the user to input the mark achieved by a 

student in an examination, the maximum mark being 100, and the grade achieved will 

be displayed. The grade will be determined using the following business logic:

• Marks greater than or equal to 90 receive Distinction.

• Marks greater than or equal to 75 receive Pass.

• Marks lesser less than 75 receive Unsuccessful.

Use an if-else construct.

 Lab 3

Write a C# console application that will ask the user to input the name of one of the 

programming languages – C#, Python, or Java – and a short description of the language 

will be displayed.

Use an if-else construct and be careful when comparing the String values.

 Lab 1: Possible Solution with output shown in Figure 25-12

namespace Labs.Chapter09{

  internal class Lab1{

    static void Main(string[] args){

      int month, daysInMonth = 0;

      Console.WriteLine("Enter the numeric number of the month");

      month = Convert.ToInt32(Console.ReadLine());

      switch (month)

      {

        case 1:

        case 3:

        case 5:

        case 7:

        case 8:

        case 10:

        case 12:

          daysInMonth = 31;

Chapter 25  programming Labs



944

          break;

        case 4:

        case 6:

        case 9:

        case 11:

          daysInMonth = 30;

          break;

        case 2:

          daysInMonth = 28;

          break;

        default:

          Console.WriteLine("Invalid month!");

          break;

      }

      Console.WriteLine($"Month {month} has {daysInMonth} days");

    } // End of Main() method

  } // End of Lab1 class

} //End of Labs.Chapter09 namespace

 Lab 2: Possible Solution with output shown in Figure 25-13

namespace Labs.Chapter09

{

  internal class Lab2

  {

    static void Main(string[] args)

    {

      String grade = null;

      Console.WriteLine("Enter the examination mark: ");

      int mark = Convert.ToInt32(Console.ReadLine());

Figure 25-12. Lab 1 output

Chapter 25  programming Labs



945

      if (mark > 0 && mark <= 100)

      {

        if (mark >= 90)

        {

          grade = "Distinction";

        }

        else if (mark >= 75)

        {

          grade = "Pass";

        }

        else

        {

          grade = "Unsuccessful";

        }

        Console.WriteLine($"{mark} marks is a {grade} grade ");

      }

      else

      {

        Console.WriteLine("Mark must be between 1 and 100");

      }

    } // End of Main() method

  } // End of Lab2 class

} //End of Labs.Chapter09 namespace

 Lab 3: Possible Solution with output shown in Figure 25-14

namespace Labs.Chapter09

{

  internal class Lab3

  {

Figure 25-13. Lab 2 output

Chapter 25  programming Labs



946

    static void Main(string[] args)

    {

      String userInputLanguage = null;

      Console.WriteLine("Enter the programming language: ");

      userInputLanguage = Console.ReadLine();

      if (userInputLanguage.Equals("C#"))

      {

        Console.WriteLine("C# is a modern, object-oriented, and"

        + "\n" + "type-safe programming language. C# enables "

        + "\n" + "developers to build many types of application"

        + "\n" + "that run in the .NET ecosystem.");

      }

      else if (userInputLanguage.Equals("Java"))

      {

        Console.WriteLine("Java is a programming language"

                + "\n" + "released by Sun Microsystems in 1995."

                + "\n" + "There are lots of applications and "

                + "\n" + "websites that will not work unless"

                + "\n" + "Java is installed");

      }

      else if (userInputLanguage.Equals("Python"))

      {

        Console.WriteLine("Python is an interpreted and "

                + "\n" + "object-oriented programming language");

      }

      else

      {

    Console.WriteLine("Sorry, this is not one of our languages");

      }

      } // End of Main() method

    } // End of Lab3 class

} //End of Labs.Chapter09 namespace

Chapter 25  programming Labs



947

Figure 25-14. Lab 3 output

 Chapter 10 Labs: Iteration
 Lab 1

Write a C# console application that will display a table showing a column with pound 

sterling values (£) and a second column showing the equivalent amount in US dollars 

($). The pound amounts should be from £1 to £10, and the exchange rate to be used is 

$1.25 for each £1.00.

Sample Output

Pound Sterling United States Dollars

1                1.25

2                2.50

3                3.75

4                5.00

 Lab 2

Write a C# console application that will display a table showing a column with pound 

sterling values (£) and a second column showing the equivalent amount in US dollars 

($). Remember, reuse code. Lab 1 code might be a great starting point.

The application will ask the user to enter the number of pounds they wish to start 

their conversion table at and then ask them to enter the number of pounds they wish to 

stop their conversion table at. The application will display a table showing a column with 

pound values (£), starting at the user’s start value and ending at the user’s end value, and 

a second column showing the equivalent amount in US dollars ($). The exchange rate to 

be used is $1.25 for each £1.00.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_10


948

Sample Output

Pound Sterling United States Dollars

5                6.25

6                7.50

7                8.75

8                10.00

 Lab 3

Write a C# console application that will continually ask the user to input the name of 

a programming language, and the message “There are many programming languages 

including (the language input by the user)” will be displayed. The question will stop 

being asked when the user inputs X as the language. The message should not be 

displayed when X has been entered. The program will just exit.

Example Output
There are many programming languages including C#.

There are many programming languages including JavaScript.

 Lab 4

Write a C# console application that will ask the user to input how many new vehicle 

registration numbers they wish to input. The application will continually ask the user to 

input a vehicle registration number until the required number of registrations have been 

entered. When the vehicle registration number has been entered, a message will display 

the number of entries that have been made.

 Lab 1: Possible Solution with output shown in Figure 25-15

namespace Labs.Chapter10

{

  internal class Lab1

  {

    static void Main(string[] args)

    {

      // Create a variable to hold the dollar amount

      double dollarAmount;

Chapter 25  programming Labs



949

      // Create a constant to hold the exchange rate

      const double dollarsPerPoundRate = 1.25;

      // Display a heading for the columns

       Console.WriteLine($"{"Pounds Sterling",-20} {"United States 

Dollar",-10}");

      // Iterate 10 times to convert the pounds to dollars

      for (int poundAmount = 1; poundAmount < 11; poundAmount++)

      {

        // Convert pounds to dollars at the rate assigned

        dollarAmount = poundAmount * dollarsPerPoundRate;

        Console.WriteLine($"{poundAmount,-20} {dollarAmount,-10:0.00}");

      }

    } // End of Main() method

  } // End of Lab1 class

} //End of Labs.Chapter10 namespace

 Lab 2: Possible Solution with output shown in Figure 25-16

namespace Labs.Chapter10

{

  internal class Lab2

  {

Figure 25-15. Lab 1 output

Chapter 25  programming Labs



950

    static void Main(string[] args)

    {

      // Create a variable to hold the dollar amount

      double dollarAmount;

      // Create variables for the start and end values

      int startValue, endValue;

      // Create a constant to hold the exchange rate

      const double dollarsPerPoundRate = 1.25;

      // Ask the user to input the start value

      Console.WriteLine("What value do you wish to start at?");

      startValue = Convert.ToInt32(Console.ReadLine());

      // Ask the user to input the end value

      Console.WriteLine("What value do you wish to end at?");

      endValue = Convert.ToInt32(Console.ReadLine());

      // Display a heading for the columns

       Console.WriteLine($"{"Pound Sterling",-20} {"United States 

Dollar",-10}");

      /*

      Iterate starting at the users start value and

      stopping at the users end value

      */

       for (int poundAmount = startValue; poundAmount <= endValue; 

poundAmount++)

      {

        // Convert pounds to dollars at the rate assigned

        dollarAmount = poundAmount * dollarsPerPoundRate;

        Console.WriteLine($"{poundAmount,-20} {dollarAmount,-10:0.00}");

      } // End of for block

    } // End of Main() method

  } // End of Lab2 class

} //End of Labs.Chapter10 namespace

Chapter 25  programming Labs



951

Figure 25-16. Lab 2 output

 Lab 3: Possible Solution with output shown in Figure 25-17

using System;

namespace Labs.Chapter10{

  internal class Lab3{

    static void Main(string[] args){

      // Create a variable to hold the user input

      String programmingLanguageInput = null;

      do{

        // Ask the user to input the programming language

        Console.WriteLine("What is the programming language?");

        programmingLanguageInput = Console.ReadLine().ToUpper();

        if (programmingLanguageInput.Equals("X"))

        {

          // Display an end message

          Console.WriteLine("Goodbye");

        }

        else

        {

          // Display a heading for the columns

          Console.WriteLine($"There are many programming " +

            $"languages including {programmingLanguageInput}\n");

        }

Chapter 25  programming Labs



952

      } while (!"X".Equals(programmingLanguageInput));

    } // End of Main() method

  } // End of Lab3 class

} //End of Labs.Chapter10 namespace

 Lab 4: Possible Solution with output shown in Figure 25-18

namespace Labs.Chapter10

{

  internal class Lab4

  {

    static void Main(string[] args)

    {

      // Create a variable to hold the number of entries

      int numberOfEntriesBeingMade, numberOfEntriesCompleted = 0;

      // Ask the user to input the number of entries being made

       Console.WriteLine("How many new vehicle registrations are you 

entering?");

       numberOfEntriesBeingMade = Convert.ToInt32(Convert.ToInt32(Console.

ReadLine()));

      while (numberOfEntriesBeingMade > numberOfEntriesCompleted)

      {

Figure 25-17. Lab 3 output

Chapter 25  programming Labs



953

       // Ask the user to input the vehicle registration number

       Console.WriteLine("What is the vehicle registration number?");

       String vehicleRegistrationNumber = Console.ReadLine();

       // Display a message

        Console.WriteLine($"You have entered {numberOfEntriesCompleted + 1}  

vehicle registration number which was {vehicleRegistrationNumber}\n");

      numberOfEntriesCompleted++;

      }

      Console.WriteLine("Goodbye");

    } // End of Main() method

  } // End of Lab4 class

} //End of Labs.Chapter10 namespace

 Chapter 11 Labs: Arrays
 Lab 1

Write a C# console application that will use an array with the claim values: 1000.00, 

4000.00, 3000.00, 2000.00. The application should calculate and display the total, 

average, minimum, and maximum value of the claims.

 Lab 2

Write a C# console application that will ask the user to enter four employee names, store 

them in an array, and then iterate the array to display the names.

Figure 25-18. Lab 4 output

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_11


954

 Lab 3

Write a C# console application that will read an array that contains a list of staff names 

alongside their salary and then increase the salary by 10% (1.10), and write the new 

details to a new array. The application should then iterate the new array and display the 

employee’s name in column 1 and their new salary in column 1.

The original array should be

{"Gerry Byrne", "20000.00", "Peter Johnston", "30000.00", "Ryan Jones", 

"50000.00"}

The new array will be

{"Gerry Byrne", "22000.00", "Peter Johnston", "33000.00", "Ryan Jones", 

"55000.00"}

 Lab 1: Possible Solution with output shown in Figure 25-19

using System;

namespace Labs.Chapter11

{

 internal class Lab1

 {

  static void Main(string[] args)

  {

   // Declare the variables to be used

   double maximumValueOfClaims, minimumValueOfClaims;

   double totalValueOfClaims, averageValueOfClaims;

   // Declare and initialise the array of claim values

   double[] claimValues = {1000.00, 4000.00, 3000.00, 2000.00};

   /* Set up a variable for the total of the claim values

      and initialise its value to 0; */

    totalValueOfClaims = 0;

   // Iterate the array and accumulate the claim values

   for (int counter = 0; counter < claimValues.Length; counter++)

   {

Chapter 25  programming Labs



955

  totalValueOfClaims = totalValueOfClaims + claimValues[counter];

   } // End of for block

  // Calculate the average using real arithmetic

  averageValueOfClaims = totalValueOfClaims / claimValues.Length;

  // Display the total and average

  Console.WriteLine($"The total of the claims is " +

    $"£{totalValueOfClaims:0.00}\n");

  Console.WriteLine($"The average claim value is" +

    $" £{averageValueOfClaims:0.00}\n");

  // Find the maximum value - we assume first value

  // is the maximum value

  maximumValueOfClaims = claimValues[0];

  // Compare all the other numbers to the maximum

  for (int counter = 1; counter < claimValues.Length; counter++)

  {

    // If the next number is greater than the maximum,

    // update the maximum

    if (claimValues[counter] > maximumValueOfClaims)

    {

      maximumValueOfClaims = claimValues[counter];

    }

  } // End of for block

  // Display the maximum claim value

  Console.WriteLine($"The maximum claim value is " +

    $"£{maximumValueOfClaims: 0.00}\n");

  // Find the minimum value- we assume the first number

  // is the minimum value

   minimumValueOfClaims = claimValues[0];

  // Compare all the other numbers to the minimum

  for (int counter = 1; counter < claimValues.Length; counter++)

  {

Chapter 25  programming Labs



956

    // If the next number is smaller than the minimum,

    // update the minimum

    if (claimValues[counter] < minimumValueOfClaims)

    {

      minimumValueOfClaims = claimValues[counter];

    }

  } // End of for block

  // Display the minimum claim value

  Console.WriteLine($"The minimum claim value is " +

    $"£{minimumValueOfClaims: 0.00}\n");

    } // End of Main() method

  } // End of Lab1 class

} //End of Labs.Chapter11 namespace

 Lab 2: Possible Solution with output shown in Figure 25-20

using System;

namespace Labs.Chapter11{

  internal class Lab2{

    static void Main(string[] args){

      String[] EmployeeNames = new string[4];

      for (int employeenumber = 0; employeenumber < 4; employeenumber++)

      {

Figure 25-19. Lab 1 output

Chapter 25  programming Labs



957

        // Ask the user to input the employee name

        Console.WriteLine($"What is the name of employee" +

          $" {employeenumber + 1}? ");

        EmployeeNames[employeenumber] = Console.ReadLine();

      }

      foreach (String name in EmployeeNames)

      {

        Console.WriteLine(name);

      }

    } // End of Main() method

  } // End of Lab2 class

} //End of Labs.Chapter11 namespace

 Lab 3: Possible Solution with output shown in Figure 25-21

namespace Labs.Chapter11

{

  internal class Lab3

  {

    static void Main(string[] args)

    {

Figure 25-20. Lab 2 output

Chapter 25  programming Labs



958

      // Declare and initialise the array of employees and salary

      String[] employeeAndSalary = { "Gerry Byrne", "20000.00",

        "Peter Johnston", "30000.00", "Ryan Jones", "50000.00" };

      // Declare an array of employees and their new salary

       String[] employeeAndSalaryWithIncrease = new 

String[employeeAndSalary.Length];

      // Iterate the array and find every 2nd value, the salary

       for (int counter = 0; counter < employeeAndSalary.Length; 

counter += 2)

      {

        employeeAndSalaryWithIncrease[counter] =  employeeAndSalary[counter];

        // Create a variable of type Double (wrapper class)

         Double newSalary = Convert.ToDouble(employeeAndSalary[counter + 

1]) * 1.10;

        // Write the employee name to the new array

         employeeAndSalaryWithIncrease[counter] = 

employeeAndSalary[counter];

        // Write the Double to the array converting it to String

         employeeAndSalaryWithIncrease[counter + 1] = newSalary.

ToString("#.00");

      } // End of for block

      Console.WriteLine($"{"Employee name",-20} " +

        $"{"New Salary",-15}\n");

      // Compare all the other numbers to the maximum

       for (int counter = 0; counter < employeeAndSalaryWithIncrease.Length; 

counter += 2)

      {

        // Display the Employee name and their new salary

         Console.WriteLine($"{employeeAndSalaryWithIncrease[counter],-15} 

{employeeAndSalaryWithIncrease[counter + 1],15}");

      } // End of for block

Chapter 25  programming Labs



959

    } // End of Main() method

  } // End of Lab3 class

} //End of Labs.Chapter11 namespace

 Chapter 12 Labs: Methods
 Lab 1

Write a C# console application that will use an array with the claim values: 1000.00, 

4000.00, 3000.00, 2000.00. The application should use separate VOID methods to

• Calculate the total of the claim values (void method).

• Calculate the average of the claim values (void method).

• Calculate the minimum of the claim values (void method).

• Calculate the maximum of the claim values (void method).

• Display a message that states each of the calculated values (void 

method).

(Refer to Chapter 11 Lab 1 as the code is the same, but it is sequential.)

 Lab 2

Use the code from Lab 1 to write a C# console application that will use an array with the 

claim values: 1000.00, 4000.00, 3000.00, 2000.00. The application should use separate 

VALUE methods to calculate the

• Total of the claim values (value method, returns a double)

• Average of the claim values (value method, returns a double)

Figure 25-21. Lab 3 output

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_12
https://doi.org/10.1007/978-1-4842-8619-7_11


960

• Minimum of the claim values (value method, returns a double)

• Maximum of the claim values (value method, returns a double)

and a PARAMETER method that accepts the four calculated values to display a 

message that states each of the calculated values. This parameter method will not return 

a value; it is also a void method.

The application should only use variables that are local to the methods we use. The 

declaration of the array can be at the class level.

 Lab 1: Possible Solution with output shown in Figure 25-22

namespace Labs.Chapter12

{

  internal class Lab1

  {

    // Declare and initialise the array of claim

    // values at the class level

    static double[] claimValues = {1000.00,4000.00,3000.00,2000.00};

    /*

     Set up the variables at the class level.

    */

    static double maximumValueOfClaims, minimumValueOfClaims;

    static double totalValueOfClaims, averageValueOfClaims;

    static void Main(string[] args)

    {

      TotalOfClaimValues();

      AverageOfClaimValues();

      MaximumClaimValue();

      MinimumClaimValue();

      DisplayTheCalculatedValues();

    } // End of Main() method

    /*****************************************************

    CREATE THE METHODS OUTSIDE THE MAIN METHOD

    BUT INSIDE THE CLASS

    *****************************************************/

Chapter 25  programming Labs



961

    public static void TotalOfClaimValues()

    {

    // Iterate the array and accumulate the claim values

    for (int counter = 0; counter < claimValues.Length; counter++)

    {

     totalValueOfClaims = totalValueOfClaims + claimValues[counter];

    }

    } // End of TotalOfClaimValues() method

    public static void AverageOfClaimValues()

    {

    // Calculate the average using real arithmetic

    averageValueOfClaims = totalValueOfClaims / claimValues.Length;

    }

    public static void MaximumClaimValue()

    {

      // Find the maximum value - we assume first

      // value is the maximum value

      maximumValueOfClaims = claimValues[0];

      // Compare all the other numbers to the maximum

      for (int counter = 1; counter < claimValues.Length; counter++)

      {

        // If the next number is greater than the

        // maximum, update the maximum

        if (claimValues[counter] > maximumValueOfClaims)

        {

          maximumValueOfClaims = claimValues[counter];

        }

      }

    } // End of MaximumClaimValue() method

    public static void MinimumClaimValue()

    {

      // Find the minimum value- we assume the

      // first number is the minimum value

Chapter 25  programming Labs



962

      minimumValueOfClaims = claimValues[0];

      // Compare all the other numbers to the minimum

      for (int counter = 1; counter < claimValues.Length; counter++)

      {

        // If the next number is smaller than the minimum,

        // update the minimum

        if (claimValues[counter] < minimumValueOfClaims)

        {

          minimumValueOfClaims = claimValues[counter];

        }

      }

    } // End of MinimumClaimValue() method

    public static void DisplayTheCalculatedValues()

    {

      // Display the total of the claim values

      Console.WriteLine($"The total of the claims " +

        $"is £{totalValueOfClaims:0.00}\n");

      // Display the average of the claim values

      Console.WriteLine($"The average claim value" +

        $" is £{averageValueOfClaims:0.00}\n");

      // Display the maximum claim value

      Console.WriteLine($"The maximum claim value is " +

        $"£{ maximumValueOfClaims:0.00}\n");

            // Display the minimum claim value

            Console.WriteLine($"The minimum claim value is " +

              $"£{ minimumValueOfClaims:0.00}\n");

        }  // End of DisplayTheCalculatedValues() method

  } // End of Lab1 class

} //End of Labs.Chapter12 namespace

Chapter 25  programming Labs



963

Figure 25-22. Lab 1 output

 Lab 2: Possible Solution with output shown in Figure 25-23

namespace Labs.Chapter12

{

  internal class Lab2

  {

    // Declare and initialise the array of claim

    // values at the class level

    static double[] claimValues = {1000.00,4000.00,3000.00,2000.00};

    /*

     Set up the variables at the class level.

    */

    static double maximumValueOfClaims, minimumValueOfClaims;

    static double totalValueOfClaims, averageValueOfClaims;

    static void Main(string[] args)

    {

      totalValueOfClaims = TotalOfClaimValues();

      averageValueOfClaims = AverageOfClaimValues();

      maximumValueOfClaims = MaximumClaimValue();

      minimumValueOfClaims = MinimumClaimValue();

      DisplayTheCalculatedValues(totalValueOfClaims,

      averageValueOfClaims,maximumValueOfClaims,

      minimumValueOfClaims);

    } // End of Main() method

Chapter 25  programming Labs



964

/*****************************************************

CREATE THE METHODS OUTSIDE THE MAIN METHOD

BUT INSIDE THE CLASS

*****************************************************/

    public static double TotalOfClaimValues()

    {

      double totalOfClaims = 0.00;

      // Iterate the array and accumulate the claim values

      for (int counter = 0; counter < claimValues.Length; counter++)

      {

        totalOfClaims = totalOfClaims + claimValues[counter];

      }

      return totalOfClaims;

    } // End of TotalOfClaimValues() method

    public static double AverageOfClaimValues()

    {

      double averageOfClaims = 0.00;

      // Calculate the average using real arithmetic

      averageOfClaims = TotalOfClaimValues() / claimValues.Length;

      return averageOfClaims;

    }

    public static double MaximumClaimValue()

    {

      // Find the maximum value - we assume first

      // value is the maximum value

      double maximumOfClaims = claimValues[0];

      // Compare all the other numbers to the maximum

      for (int counter = 1; counter < claimValues.Length; counter++)

      {

        // If the next number is greater than the maximum,

        // update the maximum

        if (claimValues[counter] > maximumOfClaims)

        {

          maximumOfClaims = claimValues[counter];

Chapter 25  programming Labs



965

        }

      }

      return maximumOfClaims;

    } // End of MaximumClaimValue() method

    public static double MinimumClaimValue()

    {

      // Find the minimum value- we assume the first

      // number is the minimum value

      double minimumOfClaims = claimValues[0];

      // Compare all the other numbers to the minimum

      for (int counter = 1; counter < claimValues.Length; counter++)

      {

        // If the next number is smaller than the minimum,

        // update the minimum

        if (claimValues[counter] < minimumOfClaims)

        {

          minimumOfClaims = claimValues[counter];

        }

      }

      return minimumOfClaims;

    } // End of MinimumClaimValue() method

    public static void DisplayTheCalculatedValues(

      double totalValueOfClaimsPassedIn,

      double averageValueOfClaimsPassedIn,

      double maximumValueOfClaimsPassedIn,

      double minimumValueOfClaimsPassedIn)

    {

      // Display the total of the claim values

       Console.WriteLine($"The total of the claims is £{totalValueOfClaimsPa

ssedIn:0.00}\n");

      // Display the average of the claim values

       Console.WriteLine($"The average claim value is £{ averageValueOfClaim

sPassedIn:0.00}\n");

Chapter 25  programming Labs



966

      // Display the maximum claim value

       Console.WriteLine($"The maximum claim value is £{ maximumValueOfClaims 

PassedIn:0.00}\n");

      // Display the minimum claim value

       Console.WriteLine($"The minimum claim value is £{ minimumValueOfClaims 

PassedIn:0.00}\n");

     }  // End of DisplayTheCalculatedValues() method

  } // End of Lab2 class

} //End of Labs.Chapter12 namespace

 Chapter 13 Labs: Classes
 Lab 1

Using the code from Chapter 12 Lab 2, write a C# console application that will have

• A class called CalculatedValues, with no Main() method, and inside it

• Declare an array with the claim values: 1000.00, 4000.00, 3000.00, 

2000.00.

• Use separate VALUE methods to calculate the

• Total of the claim values (value method, returns a double)

• Average of the claim values (value method, returns a double)

• Minimum of the claim values (value method, returns a double)

• Maximum of the claim values (value method, returns a double)

Figure 25-23. Lab 2 output

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_13
https://doi.org/10.1007/978-1-4842-8619-7_12


967

• Declare a PARAMETER method that accepts the four calculated 

values to display a message that states each of the calculated 

values. This parameter method will not return a value; it is also a 

void method.

• A class called ClaimCalculator, with the Main() method, and inside it

• Instantiate the CalculatedValues class.

• Call each of the four value methods and assign the returned 

values to variables.

• Pass the four variables to the parameter method, which will 

display the values.

The application should only use variables that are local to the methods we use. The 

declaration of the array can be at the class level.

 Lab 2

Write a C# console application for an insurance quote that will have

• A class called QuoteMethodsClass and inside it

• Create separate methods to ask the user to input

• Their name

• The age of their vehicle

• The engine capacity of their vehicle

Calculate the quote value based on the following formula:

100 * (engine capacity/1000) * (10/age of vehicle)

• Create a method to display the quote amount.

Example Test 1

Engine cc 1600

Age of vehicle 2

Quote value = 100 * (1600/1000) * (10/2) = 100 * 1.6 * 5 = 800

Example Test 2

Chapter 25  programming Labs



968

Engine cc 3000

Age of vehicle 10

Quote value = 100 * (3000/1000) * (10/10) = 100 * 3 * 1 = 300

• A class called QuoteCalculatorClass and inside it

• Instantiate the QuoteMethodsDetails class.

• Call each of the five methods.

The display should show the quote amount and the details that were input.

 Lab 1: Possible Solution with output shown in Figure 25-24

ClaimCalculator

namespace Labs.Chapter13

{

  internal class ClaimCalculator

  {

    static void Main(string[] args)

    {

    /*

    Set up the variables at the class level.

    */

      double maximumValueOfClaims, minimumValueOfClaims;

      double totalValueOfClaims, averageValueOfClaims;

      // Instantiate the CalculatedValues class

      CalculatedValues myCalculatedValues = new CalculatedValues();

      // Call each method and assign each to a value

      totalValueOfClaims = myCalculatedValues.TotalOfClaimValues();

      averageValueOfClaims = myCalculatedValues.AverageOfClaimValues();

      maximumValueOfClaims = myCalculatedValues.MaximumClaimValue();

      minimumValueOfClaims = myCalculatedValues.MinimumClaimValue();

      // Pass each value to the display method

      myCalculatedValues.DisplayTheCalculatedValues(

      totalValueOfClaims, averageValueOfClaims,

Chapter 25  programming Labs



969

      maximumValueOfClaims, minimumValueOfClaims);

    } // End of Main() method

  } // End of ClaimCalculator class

} //End of Labs.Chapter13 namespace

CalculatedValues

namespace Labs.Chapter13

{

  internal class CalculatedValues

  {

    // Declare and initialise the array of claim

    // values at the class level

    static double[] claimValues = {1000.00,4000.00,3000.00,2000.00};

    /*****************************************************

     CREATE THE METHODS OUTSIDE THE MAIN METHOD

     BUT INSIDE THE CLASS

     *****************************************************/

    public double TotalOfClaimValues()

    {

      double totalOfClaims = 0.00;

      // Iterate the array and accumulate the claim values

      for (int counter = 0; counter < claimValues.Length; counter++)

      {

        totalOfClaims = totalOfClaims + claimValues[counter];

      }

      return totalOfClaims;

    } // End of TotalOfClaimValues() method

    public double AverageOfClaimValues()

    {

      double averageOfClaims = 0.00;

      // Calculate the average using real arithmetic

      averageOfClaims = TotalOfClaimValues() / claimValues.Length;

      return averageOfClaims;

    }

Chapter 25  programming Labs



970

    public double MaximumClaimValue()

    {

      // Find the maximum value - we assume first

      // value is the maximum value

      double maximumOfClaims = claimValues[0];

      // Compare all the other numbers to the maximum

      for (int counter = 1; counter < claimValues.Length; counter++)

      {

        // If the next number is greater than the maximum,

        // update the maximum

        if (claimValues[counter] > maximumOfClaims)

        {

          maximumOfClaims = claimValues[counter];

        }

      }

      return maximumOfClaims;

    } // End of MaximumClaimValue() method

    public double MinimumClaimValue()

    {

      // Find the minimum value- we assume the first number

      // is the minimum value

      double minimumOfClaims = claimValues[0];

      // Compare all the other numbers to the minimum

      for (int counter = 1; counter < claimValues.Length; counter++)

      {

        // If the next number is smaller than the minimum,

        // update the minimum

        if (claimValues[counter] < minimumOfClaims)

        {

          minimumOfClaims = claimValues[counter];

        }

      }

      return minimumOfClaims;

    } // End of MinimumClaimValue() method

Chapter 25  programming Labs



971

    public void DisplayTheCalculatedValues(

      double totalValueOfClaimsPassedIn,

      double averageValueOfClaimsPassedIn,

      double maximumValueOfClaimsPassedIn,

      double minimumValueOfClaimsPassedIn)

    {

      // Display the total of the claim values

       Console.WriteLine($"The total of the claims is £{totalValueOfClaimsPa

ssedIn:0.00}\n");

      // Display the average of the claim values

       Console.WriteLine($"The average claim value is £{averageValueOfClaims

PassedIn:0.00}\n");

      // Display the maximum claim value

       Console.WriteLine($"The maximum claim value is £{maximumValueOfClaims

PassedIn:0.00}\n");

      // Display the minimum claim value

       Console.WriteLine($"The minimum claim value is £{minimumValueOfClaims

PassedIn:0.00}\n");

     }  // End of DisplayTheCalculatedValues() method

  } // End of CalculatedValues class

} //End of Labs.Chapter13 namespace

Figure 25-24. Lab 1 output

Chapter 25  programming Labs



972

 Lab 2: Possible Solution with output shown in Figure 25-25

QuoteMethodsClass

namespace Labs.Chapter13

{

  internal class QuoteMethodsClass

  {

    string customerName;

    int ageOfVehicle;

    double engineCapacity,quoteAmount;

    public void AcceptUserName()

    {

      Console.WriteLine("What is the name of the customer?");

      customerName = Console.ReadLine();

    } // End of AcceptUserName() method

    public void AcceptAgeOfVehicle()

    {

      Console.WriteLine("What is the age of the vehicle?");

      ageOfVehicle = Convert.ToInt32(Console.ReadLine());

    } // End of AcceptAgeOfVehicle() method

    public void AcceptEngineCapacityOfVehicle()

    {

      Console.WriteLine("What is the engine capacity?");

      engineCapacity = Convert.ToInt32(Console.ReadLine());

    } // End of AcceptEngineCapacityOfVehicle() method

    public void CalculateQuoteAmount()

    {

     quoteAmount = 100 * (engineCapacity/1000) * (10/ageOfVehicle);

    } // End of CalculateQuoteAmount() method

    public void DisplayQuote()

    {

Chapter 25  programming Labs



973

       Console.WriteLine($"The vehicle to be insured for customer 

{customerName:0.00} is {ageOfVehicle} years old and has an engine 

capacity of {engineCapacity}");

      Console.WriteLine($"The quote estimate is £{quoteAmount:0.00}");

    } // End of DisplayQuote() method

  } //End of class QuoteMethodsClass

} // End of namespace Labs.Chapter13

QuoteCalculatorClass

namespace Labs.Chapter13

{

  internal class QuoteCalculatorClass

  {

    static void Main(string[] args)

    {

      QuoteMethodsClass myQuote = new QuoteMethodsClass();

      myQuote.AcceptUserName();

      myQuote.AcceptAgeOfVehicle();

      myQuote.AcceptEngineCapacityOfVehicle();

      myQuote.CalculateQuoteAmount();

      myQuote.DisplayQuote();

    } // End of Main() method

  } //End of class QuoteCalculatorClass

} // End of namespace Labs.Chapter13

Figure 25-25. Lab 2 output

Chapter 25  programming Labs



974

 Chapter 14 Labs: Interfaces
 Lab 1

Write a C# console application for an insurance quote that will have

• An interface called IVehicleInsuranceQuote and inside it there will be

• An interface method that returns no value, has no parameters, 

and is called AskForDriverAge

• An interface method that returns no value, has a parameter of 

type int to hold the age, and is called AskForVehicleValue

• An interface method called CalculateQuote that returns no value 

and has two parameters, one of type int to hold the driver age and 

the other of type double to hold the vehicle value

• A class called VehicleInsuranceQuote that implements the 

IVehicleInsuranceQuote interface and the methods will

• Ask the user to input their age at their last birthday.

• Ask the user to input the value of the vehicle being insured.

• Calculate the monthly premium based on the following formula:

(60/age of driver) * (vehicle value/5000) * 10

Example: 20-year-old driver with a car of value 50000

Monthly premium is (60/20) * (50000/5000) * 10, which is (3) * (10) * 10, which is 300.

Have an additional method to display the quote details – driver 

age, vehicle value, and quote amount.

• A class called QuoteCalculator with a Main() method that calls 

the AskForDriverAge() method. The AskForDriverAge() method 

should call the AskForVehicleValue() method, passing it the age. 

The AskForVehicleValue() method should call the CalculateQuote() 

method, passing it the age and value. And the CalculateQuote() 

method should call the DisplayQuote() method, passing it the age, 

value, and quote amount.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_14


975

 Lab 1: Possible Solution with output shown in Figure 25-26

Interface - IVehicleInsuranceQuote

namespace Labs.Chapter14

{

  internal interface IVehicleInsuranceQuote

  {

    void AskForDriverAge();

    void AskForVehicleValue(int age);

    void CalculateQuote(int age, double value);

  } // End of interface IVehicleInsuranceQuote

} // End of namespace Labs.Chapter14

VehicleInsuranceQuote Class

namespace Labs.Chapter14

{

  internal class VehicleInsuranceQuote : IVehicleInsuranceQuote

  {

    public void AskForDriverAge()

    {

      Console.WriteLine("What is the age of the driver?");

      int ageOfDriver = Convert.ToInt32(Console.ReadLine());

      AskForVehicleValue(ageOfDriver);

    } // End of AskForDriverAge() method

    public void AskForVehicleValue(int ageOfDriver)

    {

      Console.WriteLine("What is the value of the vehicle?");

      double vehicleValue =  Convert.ToDouble(Console.ReadLine());

      CalculateQuote(ageOfDriver, vehicleValue);

    } // End of AskForVehicleValue() method

    public void CalculateQuote(int ageOfDriver, double vehicleValue)

    {

       double monthlyPremium = (60 / ageOfDriver) * (vehicleValue / 

5000) * 10;

Chapter 25  programming Labs



976

      DisplayQuote(ageOfDriver, vehicleValue, monthlyPremium);

    } // End of CalculateQuote() method

     public static void DisplayQuote(int ageOfDriver, double vehicleValue, 

double monthlyPremium)

    {

      Console.WriteLine($"{"Driver age is:",-20} {ageOfDriver, -20}");

      Console.WriteLine($"{"Vehicle value is:",-20} {vehicleValue,-20}");

       Console.WriteLine($"{"Monthly premium is:",-20} 

{monthlyPremium,-20}");

    }

  } // End of class VehicleInsuranceQuote

} // End of namespace Labs.Chapter14

QuoteCalculator Class

namespace Labs.Chapter14

{

  internal class QuoteCalculator

  {

    public static void Main(string[] args)

    {

       IVehicleInsuranceQuote VehicleInsuranceQuote = new 

VehicleInsuranceQuote();

      VehicleInsuranceQuote.AskForDriverAge();

    }// End of Main() method

  } // End of class QuoteCalculator

} // End of namespace Labs.Chapter14

Chapter 25  programming Labs



977

Figure 25-26. Lab 1 output

 Chapter 15 Labs: String Handling
 Lab 1

Write a C# console application that will

• Have a class called Registrations and inside it

• Declare an array of strings with the following vehicle 

registrations: ABC 1000, FEA 2222, QWA 4444, FAC 9098, 

FEA 3344.

• Have a method to

• Find all vehicle registrations beginning with an F and display 

them in the console window.

 Lab 2

Write a C# console application that will

• Have a class called ClaimsPerState and inside it

• Declare an array of strings with the following claim details: 

1000IL, 2000FL, 1500TX, 1200CA, 2000NC, 3000FL.

• Have separate methods to

• Display the full array of claim details in alphabetical order.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_15


978

• Check whether a given string ends with the contents of another 

string and, if it does, write it to the console. In this example we 

will look for the string FL.

• Read the claim values and find the total of all the claim values given 

that the claim values are the first four numbers in the claim string.

 Lab 1: Possible Solution with output shown in Figure 25-27

namespace Labs.Chapter15

{

  internal class Registrations

  {

    static void Main(string[] args)

    {

      string[] vehicleRegistrations = {"ABC 1000", "FEA 2222", "QWA 

4444","FAC 9098", "FEA 3344"};

   // Call the method that will find the registration

       AllRegistrationsBeginningWithSpecifiedLetter(vehicleRegistrations,'F');

    } // End of Main() method

     public static void AllRegistrationsBeginningWithSpecifiedLetter 

(string[] vehicleRegistrations, char letterInRegistration)

  {

  Console.WriteLine("Registrations beginning with character F");

  // Iterate the array

 for (int counter = 0; counter < vehicleRegistrations.Length; counter++)

    {

      // Check if the current element starts with the letter

      if (vehicleRegistrations[counter].StartsWith(letterInRegistration))

      {

        Console.WriteLine(vehicleRegistrations[counter]);

      }

    }

  }//End of allRegistrationsBeginningWithSpecifiedLetter() method

  } // End of Registrations class

} //End of Labs.Chapter15 namespace

Chapter 25  programming Labs



979

Figure 25-27. Lab 1 output

 Lab 2: Possible Solution with output shown in Figure 25-28

Claims Per State

namespace Labs.Chapter15

{

  internal class ClaimsPerState

  {

    static void Main(string[] args)

    {

       string[] claimsWithStateAbbreviation = {"1000IL", "2000FL", 

"1500TX","1200CA", "2000NC", "0300FL"};

      // Call the DisplayTheSortedClaims() method

      Console.WriteLine("The sorted array elements are");

      DisplayTheSortedClaims(claimsWithStateAbbreviation);

      // Declare the state to be found

      string stateAbbreviationToFind = "FL";

      // Call the AllClaimsInASpecificState() method

      // passing it the string to be found

       Console.WriteLine($"The claims for the state of 

{stateAbbreviationToFind} are \n");

       AllClaimsInASpecificState(stateAbbreviationToFind, 

claimsWithStateAbbreviation);

      // Call the FindTheTotalOfAllClaimValues() method

       double totalOfAllClaims = FindTheTotalOfAllClaimValues 

(claimsWithStateAbbreviation);

Chapter 25  programming Labs



980

       Console.WriteLine($"The total of the claim values is 

{totalOfAllClaims:0.00}");

    } // End of Main() method

     public static void AllClaimsInASpecificState(string 

stateAbbreviationToFind, string[] claimsWithStateAbbreviation)

    {

      // Iterate the array

       for (int counter = 0; counter < claimsWithStateAbbreviation.Length; 

counter++)

      {

        // Check if the current element of the array ends with

        // the letter passed to the method

         if (claimsWithStateAbbreviation[counter].EndsWith(stateAbbreviati

onToFind))

        {

          Console.WriteLine(claimsWithStateAbbreviation[counter]);

        }

      }

    } // End of AllClaimsInASpecificState() method

     public static void DisplayTheSortedClaims(string[] 

claimsWithStateAbbreviation)

    {

      // Sort the claimsWithStateAbbreviation array

      Array.Sort(claimsWithStateAbbreviation);

      // Iterate the sorted array using the foreach construct

      foreach (string claim in claimsWithStateAbbreviation)

      {

        Console.WriteLine(claim);

      }

    } // End of DisplayTheSortedClaims() method

     public static double FindTheTotalOfAllClaimValues(string[] 

claimsWithStateAbbreviation)

    {

      double currentTotalValue = 0.00;

Chapter 25  programming Labs



981

      double claimValue = 0.00;

      String firstFourCharacters;

      // Iterate the array

       for (int counter = 0; counter < claimsWithStateAbbreviation.Length; 

counter++)

      {

      /*

      Read the first four characters of the array element, parse

      (convert) it to a double and add it to the current total

      */

         firstFourCharacters = claimsWithStateAbbreviation[counter].

Substring(0, 4);

        claimValue = Double.Parse(firstFourCharacters);

        currentTotalValue += claimValue;

      }

      return currentTotalValue;

    } // End of FindTheTotalOfAllClaimValues() method

  } // End of ClaimsPerState class

} //End of Labs.Chapter15 namespace

Figure 25-28. Lab 2 output

Chapter 25  programming Labs



982

 Chapter 16 Labs: File Handling
 Lab 1

Write a C# console application that will

• Have a class called WriteRegistrationsToFile.

• Ask a user to input five vehicle registrations with the following 

format: three letters followed by a space followed by four numbers, 

for example, ABC 1234.

• Write each of the five vehicle registrations to a new line in a text file 

called vehicleregistrations.txt.

 Lab 2

Write a C# console application that will

• Have a class called ReadRegistrationsFromFile.

• Declare an array of strings called vehicleRegistrations.

• Read the five lines from the vehicleregistrations.txt file created in Lab 

1 and add them to the array.

• Iterate the array and display each vehicle registration.

 Lab 1: Possible Solution with output shown in Figure 25-29

WriteRegistrationsToFile

namespace Labs.Chapter16

{

  internal class WriteRegistrationsToFile

  {

    static void Main(string[] args)

    {

      string vehicleRegistration;

      // Assign the name of the file to be used to a variable.

      string filePath = "vehicleregistrations.txt";

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_16


983

      /*

      Create a loop to iterate 5 times asking the user

      to input a vehicle registration each time.

      */

      for (int counter = 1; counter < 6; counter++)

      {

       Console.WriteLine($"Enter registration number {counter}");

       vehicleRegistration = Console.ReadLine();

       WriteRegistrationToTextFile(vehicleRegistration, filePath);

      } // Enter of iteration

    }  // End of Main() method

     public static void WriteRegistrationToTextFile(String 

vehicleRegistration, string filePath)

    {

      // Enclose the code in a try catch to handle errors

      try

      {

        // Create a FileStream with mode CreateNew

        FileStream stream = new FileStream(filePath, FileMode.Create);

        // Create a StreamWriter from FileStream

        using (StreamWriter writer = new StreamWriter(stream))

        {

          writer.WriteLine(vehicleRegistration);

        }

      } // End of try block

      catch (Exception ex)

      {

        Console.WriteLine($"Error writing file {filePath} error was {ex}");

      } // End of the catch section of the error handling

    } // End of the writeRegistrationToTextFile() method

  } // End of WriteRegistrationsToFile class

} //End of Labs.Chapter16 namespace

Chapter 25  programming Labs



984

Figure 25-29. Lab 1 output

 Lab 2: Possible Solution with output shown in Figure 25-30

ReadRegistrationsFromFile

namespace Labs.Chapter16

{

  internal class ReadRegistrationsFromFile

  {

    static void Main(string[] args)

    {

      // Assign the name of the file to be used to a variable.

      string filePath = "vehicleregistrations.txt";

      // Declare and create an array to hold the 5 registrations

      string[] vehicleRegistrations = new string[5];

      ReadRegistrationFromTextFile(vehicleRegistrations, filePath);

      DisplayArrayItems(vehicleRegistrations);

    }// End of Main() method

     public static void ReadRegistrationFromTextFile(string[] 

vehicleRegistrations, string filePath)

    {

      // Set up a string variable to hold the lines read

      string line = null;

      int lineCountValue = 0;

Chapter 25  programming Labs



985

      // Create a StreamReader from a FileStream

      using (StreamReader reader =

        new StreamReader(new FileStream(filePath,FileMode.Open)))

      {

        // Read line by line

        while ((line = reader.ReadLine()) != null)

        {

          vehicleRegistrations[lineCountValue] = line;

          lineCountValue++;

        }

      } // End of using block

    } // End of the ReadRegistrationFromTextFile() method

    public static void DisplayArrayItems(string[] vehicleRegistrations)

    {

      // Iterate the sorted array using the foreach construct

      foreach (string vehicleRegistration in vehicleRegistrations)

      {

        Console.WriteLine(vehicleRegistration);

      }

    } // End of DisplayArrayItems() method

  } // End of ReadRegistrationsFromFile class

} //End of Labs.Chapter16 namespace

Figure 25-30. Lab 2 output

Chapter 25  programming Labs



986

 Chapter 17 Labs: Exceptions
 Lab 1

Write a C# console application that will

• Have a class called OutOfBoundsException, which will contain a 

Main() method that will have code to

• Declare an array of integers called claimValues containing the 

following claim values: 1000, 9000, 0, 4000, 5000.

• Iterate the array of values and display each value to the console.

• Have a try block that contains the code to display the sixth 

array item.

• Have a catch block that will catch an IndexOutOfRangeException 

and display the exception message.

 Lab 2

Write a C# console application that extends the code from Lab 1. The application will

• Have a class called MultipleTryCatch, which will contain a Main() 

method that will have code to

• Declare an array of integers called claimValues containing the 

following claim values: 1000, 9000, 0, 4000, 5000.

• Have a try block that contains the code to iterate the array of 

values and divide each value into 10000 displaying the answer in 

the console.

• Have a catch block that will catch an IndexOutOfRangeException 

and display the exception message.

• Have a catch block that will catch a DivideByZeroException and 

display the exception message.

• Have a finally block that will display a message to say “In finally 

block tidying up”.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_17


987

 Lab 1: Possible Solution with output shown in Figure 25-31

namespace Labs.Chapter17

{

 internal class OutOfBoundsException

 {

 public static void Main(string[] args)

 {

 int[] claimValues = { 1000, 9000, 0, 4000, 5000 };

 for (int i = 0; i < claimValues.Length; i++)

 {

   Console.WriteLine(claimValues[i]);

 }

 try

 {

   // Write a value which is outside the array upper limit

   Console.WriteLine(claimValues[5]);

 }

 catch (IndexOutOfRangeException ex)

 {

  // Display the exception message received

    Console.WriteLine($"Exception is - {ex.Message}");

  }

 }// End of Main() method

} // End of OutOfBoundsException class

} //End of Labs.Chapter17 namespace

Figure 25-31. Lab 1 output

Chapter 25  programming Labs



988

 Lab 2: Possible Solution with output shown in Figure 25-32

namespace Labs.Chapter17{

  internal class MultipleTryCatch{

    public static void Main(string[] args){

      int[] claimValues = { 1000, 9000, 0, 4000, 5000 };

      try

      {

        // Divide each array vale into 10000

        for (int i = 0; i < claimValues.Length; i++)

        {

     Console.Write($"Dividing 10000 by {claimValues[i]} gives ");

          Console.WriteLine($"{10000 / claimValues[i]}");

        }

       // Write a value which is outside the array upper limit

       Console.WriteLine(claimValues[5]);

      }

      catch (IndexOutOfRangeException ex)

      {

       // Display the exception message received

       Console.WriteLine($"Exception is {ex.Message}");

      }

      // Catch block to catch the divide by zero exception

      catch (DivideByZeroException ex)

      {

     Console.WriteLine($"an exception - {ex.Message}");

      }

      // Finally block to tidy up etc, this block always runs

      finally

      {

          Console.WriteLine("\nIn finally block tidying up");

      }

    }// End of Main() method

  } // End of OutOfBoundsException class

} //End of Labs.Chapter17 namespace

Chapter 25  programming Labs



989

Figure 25-32. Lab 2 output

 Chapter 18 Labs: Serialization of a Class
 Lab 1

Write a C# console application that will

• Have a class called Vehicle, which implements Serializable.

• The Vehicle class will have

• Two private string properties called vehicleManufacturer and 

vehicleType

• One private nonserialized property called vehicleChassisNumber

• A constructor using all three properties

• Getters and setters for the properties

• Have a class called VehicleJson, which will

• Instantiate the Vehicle class and pass details of a vehicle to the 

constructor, for example:

Vehicle myVehicle = new Vehicle("Ford", "Mondeo", "VIN 

1234567890");

• Write the serialized data to a file called vehicleserialized.ser.

• Read the serialized data file and display the vehicle details.

 Lab 2

Write a C# console application that will

• Have a class called AgentEntity, which implements Serializable

• The AgentEntity class will have

• The following private properties:

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_18


990

• agentNumber, which is of data type int

• agentYearsOfService, which is of data type int

• agentFullName, which is of data type string

• The following private nonserialized properties:

• agentDOB, which is of data type string

• agentCapitalInvestment, which is of data type double

• A constructor using all the properties

• Getters and setters for all the properties

• Have a class called AgentJson, which will

• Instantiate the AgentEntity class and pass details of an agent to 

the constructor, for example:

AgentEntity myAgentEntity = new AgentEntity(190091, 25,  

"Gerry Byrne", "01/01/1970", 50000.00);

• Write the serialized data to a file called agentserialized.ser.

• Read the serialized data file and display the agent details.

 Lab 1: Possible Solution with output shown in Figure 25-33

Vehicle Class (Entity)

using System.Text.Json.Serialization;

namespace Labs.Chapter18

{

  [Serializable]

  internal class Vehicle

  {

    // Members of the class.

    // [JsonIgnore] members are not serialised

    private string vehicleManufacturer;

    private string vehicleType;

    // Example for [NonSerialized]

Chapter 25  programming Labs



991

    [JsonIgnore] private String vehicleChassisNumber;

    public string VehicleManufacturer

    {

      get => vehicleManufacturer; set => vehicleManufacturer = value;

    }

    public string VehicleType

    {

      get => vehicleType; set => vehicleType = value;

    }

    public string VehicleChassisNumber

    {

      get => vehicleChassisNumber; set => vehicleChassisNumber = value;

    }

     public Vehicle(string vehicleManufacturer, string vehicleType, string 

vehicleChassisNumber)

    {

      this.VehicleManufacturer = vehicleManufacturer;

      this.VehicleType = vehicleType;

      this.VehicleChassisNumber = vehicleChassisNumber;

    } // End of constructor

  } // End of Vehicle class

} // End of namespace Labs.Chapter18

VehicleJson Serialization and Read Class

using System.Text.Json;

namespace Labs.Chapter18

{

  internal class VehicleJson

  {

    public static async Task Main()

    {

      string filePath = "vehicleserialized.ser";

      Vehicle myVehicle = new Vehicle("Ford", "Mondeo", "VIN 1234567890");

Chapter 25  programming Labs



992

      //Serialize

      string jsonString = JsonSerializer.Serialize<Vehicle>(myVehicle);

      Console.WriteLine(jsonString);

      await CreateJSON(myVehicle, filePath);

      ReadJSON(filePath);

    } // End of Main() method

    public static async Task CreateJSON(Vehicle myVehicle, string filePath)

    {

      using FileStream createStream = File.Create(filePath);

      await JsonSerializer.SerializeAsync(createStream, myVehicle);

      createStream.Close();

      await createStream.DisposeAsync();

      Console.WriteLine(File.ReadAllText(filePath));

    } // End of CreateJSON() method

    public static void ReadJSON(string filePath)

      using FileStream myStream = File.OpenRead(fileName);

      Vehicle myVehicle = JsonSerializer.Deserialize<Vehicle>(myStream);

      Console.WriteLine("Vehicle Details");

      Console.WriteLine("Vehicle Name: " + myVehicle.VehicleManufacturer);

      Console.WriteLine("VehicleVehicle Age: " + myVehicle.VehicleType);

       Console.WriteLine("Customer Account No: " + myVehicle.

VehicleChassisNumber);

    } // End of ReadJSON() method

  } // End of class VehicleJson

} // End of namespace

Figure 25-33. Lab 1 output

Chapter 25  programming Labs



993

 Lab 2: Possible Solution with output shown in Figure 25-34

AgentEntity Class

using System.Text.Json.Serialization;

namespace Labs.Chapter18

{

  [Serializable]

  internal class AgentEntity

  {

  /*

  Members of the class are private as we have getters and

  setters and we have two [NonSerialized] members as we do

  not want them to be serialised

  */

    private int agentNumber;

    private int agentYearsOfService;

    private string agentFullName;

    [JsonIgnore] private String agentDOB;

    [JsonIgnore] private double agentCapitalInvestment;

    public AgentEntity(int agentNumber, int agentYearsOfService,

      string agentFullName, string agentDOB,

      double agentCapitalInvestment)

    {

      this.agentNumber = agentNumber;

      this.agentYearsOfService = agentYearsOfService;

      this.agentFullName = agentFullName;

      this.agentDOB = agentDOB;

      this.agentCapitalInvestment = agentCapitalInvestment;

    } // End of AgentEntity constructor

    public int AgentNumber

    {

      get => agentNumber;

      set => agentNumber = value;

    }

Chapter 25  programming Labs



994

    public int AgentYearsOfService

    {

      get => agentYearsOfService;

      set => agentYearsOfService = value;

    } // End of AgentYearsOfService property

    public string AgentFullName

    {

      get => agentFullName;

      set => agentFullName = value;

    } // End of AgentFullName property

    public string AgentDOB

    {

      get => agentDOB;

      set => agentDOB = value;

    } // End of AgentDOB property

    public double AgentCapitalInvestment

    {

      get => agentCapitalInvestment;

      set => agentCapitalInvestment = value;

    } // End of AgentCapitalInvestment property

  }// End of class AgentEntity

} // End of namespace Labs.Chapter18

AgentJson Serialization and Read Class

using System.Text.Json;

namespace Labs.Chapter18

{

  internal class AgentJson

  {

    public static async Task Main()

    {

      string filePath = "agentserialized.ser";

       AgentEntity myAgent = new AgentEntity(190091, 25, "Gerry Byrne", 

"01/01/1970", 50000.00);

Chapter 25  programming Labs



995

      //Serialize

      string jsonString = JsonSerializer.Serialize<AgentEntity>(myAgent);

      Console.WriteLine(jsonString);

      await CreateJSON(myAgent, filePath);

      ReadJSON(filePath);

    } // End of Main() method

     public static async Task CreateJSON(AgentEntity myAgent, string 

filePath)

    {

      using FileStream createStream = File.Create(filePath);

      await JsonSerializer.SerializeAsync(createStream, myAgent);

      createStream.Close();

      await createStream.DisposeAsync();

      Console.WriteLine(File.ReadAllText(filePath));

    } // End of CreateJSON() method

    public static void ReadJSON(string filePath)

    {

      using FileStream myStream = File.OpenRead(filePath);

      AgentEntity myAgent = JsonSerializer.Deserialize<AgentEntity>(myStream);

      Console.WriteLine("Agent Details");

      Console.WriteLine("Agent Number: " + myAgent.AgentNumber);

       Console.WriteLine("Years of service: " + myAgent.

AgentYearsOfService);

      Console.WriteLine("Full Name: " + myAgent.AgentFullName);

      Console.WriteLine("Date of birth: " + myAgent.AgentDOB);

      Console.WriteLine("Investment: " + myAgent.AgentCapitalInvestment);

    } // End of ReadJSON() method

  } // End of class VehicleJson

} // End of namespace

Chapter 25  programming Labs



996

Figure 25-34. Lab 2 output

 Chapter 19 Labs: Structs
 Lab 1

Write a C# console application that will

• Have a class called AutoInsurance, which will have

• A struct called Vehicle, which will have

• Variables to hold the vehicle manufacturer, chassis number, 

color, and engine capacity

• A constructor that accepts values for all four variables

• Getters and setters for the variables

• A method to display the manufacturer name

• A method to display the engine capacity

• Have a Main() method that will have code to

• Instantiate the Vehicle struct and pass details of a vehicle to the 

constructor, for example:

Vehicle myVehicle = new Vehicle("Ford", "VIN 1234567890", 

"Blue",1600);

• Call the method that displays the manufacturer name.

• Call the method that displays the engine capacity.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_19


997

 Lab 2

Write a C# console application that will

• Have a class called PropertyInsurance, which will have

• A struct called Apartment, which will have

• Variables to hold the number of rooms, area of the floor, and 

the estimated value

• A constructor that accepts values for all three variables

• A constructor that accepts values for the number of rooms 

variable and the area of the floor variable and sets the 

estimated value to be 1000000

• A method to display a message stating the values of the three 

struct members

• Have a Main() method that will have code to

• Instantiate an Apartment struct and pass details of an apartment 

with all three values to the constructor, for example:

Apartment studioOne= new Apartment(2, 50, 120000);

• Instantiate an Apartment struct and pass details of an apartment 

with only two values to the constructor, for example:

Apartment studioTwo= new Apartment(3, 60);

• Call the method that displays the apartment details for 

studioOne.

• Call the method that displays the apartment details for 

studioTwo.

 Lab 1: Possible Solution with output shown in Figure 25-35

namespace Labs.Chapter19

{

  internal class AutoInsurance

  {

Chapter 25  programming Labs



998

    struct Vehicle

    {

      //Variables

      string vehicleManufacturer;

      string vehicleChassisNumber;

      string vehicleColor;

      int vehicleEngineCapacity;

      // Custom constructor

      public Vehicle(string vehicleManufacturer,

        string vehicleChassisNumber, string vehicleColor,

        int vehicleEngineCapacity)

      {

        this.vehicleManufacturer = vehicleManufacturer;

        this.vehicleChassisNumber = vehicleChassisNumber;

        this.vehicleColor = vehicleColor;

        this.vehicleEngineCapacity = vehicleEngineCapacity;

      }

      //Properties for the struct variable - getters and setters

      public string VehicleManufacturer

      {

        get => vehicleManufacturer;

        set => vehicleManufacturer = value;

      }

      public string VehicleChasisNumber

      {

        get => vehicleChassisNumber;

        set => vehicleChassisNumber = value;

      }

      public string VehicleColor

      {

        get => vehicleColor;

        set => vehicleColor = value;

      }

      public int VehicleEngineCapacity

Chapter 25  programming Labs



999

      {

        get => vehicleEngineCapacity;

        set => vehicleEngineCapacity = value;

      }

      // Methods of the struct

      public void DisplayManufacturerName()

      {

         Console.WriteLine($"The vehicle manufacturer is 

{vehicleManufacturer}");

      } // End of DisplayManufacturerName() method

      public void DisplayEngineCapacity()

      {

         Console.WriteLine($"The engine capacity is 

{vehicleEngineCapacity}");

      } // End of DisplayEngineCapacity() method

    } // End of the Vehicle struct

    // Main method code for the AutoInsurance class

    static void Main(string[] args)

    {

       Vehicle myVehicle = new Vehicle("Ford", "VIN 1234567890", 

"Blue", 1600);

      myVehicle.DisplayManufacturerName();

      myVehicle.DisplayEngineCapacity();

    } // End of Main() method

  } // End of class AutoInsurance

} // End of namespace Labs.Chapter19

Figure 25-35. Lab 1 output

Chapter 25  programming Labs



1000

 Lab 2: Possible Solution with output shown in Figure 25-36

namespace Labs.Chapter19

{

  internal class PropertyInsurance

  {

    public struct Apartment

    {

      int numberOfRooms;

      int floorArea;

      double estimatedValue;

      // Members are initialized using the constructor

      public Apartment(int numberOfRooms, int floorArea,

        double estimatedValue)

      {

        this.numberOfRooms = numberOfRooms;

        this.floorArea = floorArea;

        this.estimatedValue = estimatedValue;

      } // End of the first constructor

      // A second constructor to initialize 1 member that has not

      // been given a value in this form of the constructor

      public Apartment(int numberOfRooms, int floorArea)

      {

        this.numberOfRooms = numberOfRooms;

        this.floorArea = floorArea;

        this.estimatedValue = 1000000.00;

      } // End of the second constructor

      public void DisplayValues()

      {

         Console.WriteLine($"The apartment has {this.numberOfRooms.

ToString()} rooms");

         Console.WriteLine($"The floor area of the apartment is {this.

floorArea.ToString()} square metres");

Chapter 25  programming Labs



1001

         Console.WriteLine($"The estimated value of the apartment is {this.

estimatedValue.ToString()}");

        Console.WriteLine();

      } // End of the DisplayValues() method

    } // End of the struct Apartment

    static void Main(string[] args)

    {

      Apartment studioOne = new Apartment(2, 50, 120000.00);

      Apartment studioTwo = new Apartment(3, 60 );

      studioOne.DisplayValues();

      Console.WriteLine();

       Console.WriteLine("This apartment was not been given an estimated 

value\nso the constructor that has been used has set the value as 

1000000");

      Console.WriteLine();

      studioTwo.DisplayValues();

    }  // End of the Main() method

  } // End of the class PropertyInsurance

} // End of the namespace Labs.Chapter19

Figure 25-36. Lab 2 output

Chapter 25  programming Labs



1002

 Chapter 20 Labs: Enumerations
 Lab 1

Write a C# console application that will

• Have a class called AutoInsurance, which will have

• An enumeration called Manufacturer, which will have the values 

Ford, Chevrolet, Jeep, and Honda

• An enumeration called Color, which will have the values Red, 

Blue, and Green

• A struct called Vehicle, which will have

• Variables to hold the vehicle manufacturer of enum type 

Manufacturer and the vehicle color of enum type Color

• A constructor that accepts values for the two variables of 

enum type Manufacturer and enum type Color

• A method to display the manufacturer name and the 

vehicle color

• Have a Main() method that will have code to

• Instantiate a Vehicle struct and pass details of a vehicle to the 

constructor, for example:

Vehicle myVehicleOne = new Vehicle(Manufacture.Ford, 

Color.Blue);

• Call the method that displays the vehicle details.

• Instantiate a Vehicle struct and pass details of a vehicle to the 

constructor, for example:

Vehicle myVehicleTwo = new Vehicle(Manufacture.Jeep, 

Color.Green);

• Call the method that displays the vehicle details.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_20


1003

 Lab 2

Write a C# console application that will

• Have a class called PropertyInsurance, which will have

• An enumeration called InsuranceRiskEnum, which will have the 

values Low = 1, Medium = 10, and High = 20

• An enumeration called LocationFactorEnum, which will have 

the values NotNearRiver, NearRiver

• An enumeration called PropertyTypeEnum, which will have the 

values Bungalow, House, and Apartment

• Have a Main() method that will have code to

• Call an AskForPropertyType() method that returns an int and 

assign it to a variable of type int called propertyType.

The method will display a menu and return the integer value 

entered:

Console.WriteLine("What is the property type, 1 2 or 3?");

Console.WriteLine("1. Bungalow ");

Console.WriteLine("2. House");

Console.WriteLine("3. Apartment");

int  propertyType = Convert.ToInt32(Console.ReadLine());

return propertyType;

• Call an AskForPropertyLocation() method that returns a string 

and assign it to a variable of type string called isNearARiver.

The method will ask if the property is within 50 meters of a 

river and returns the value entered, either Y or N:

Console.WriteLine("Is the property within 50 metres " +

"of a river?");

string nearARiver = Console.ReadLine();

return nearARiver;

Chapter 25  programming Labs



1004

• Call an AskForPropertyValue() method that returns a double and 

assign it to a variable of type double called estimatedValue.

The method will ask for the property value and return the 

estimated value:

Console.WriteLine("What is the estimated value of " +

"the property?");

double estimatedValue = Convert.ToDouble(Console.ReadLine());

return estimatedValue;

• Call the method QuoteAmount(), passing it the values for the 

propertyType, isNearARiver, and estimatedValue.

Calculate the quote amount based on the following formula:

double quoteAmount = (propertyTypeRiskFactor *

(propertyValue / 10000) * locationFactor

The propertyTypeRiskFactor is based on the property type in 

the enum InsuranceRiskEnum – Bungalow is High, House is 

Medium, and Apartment is Low.

The locationFactor is whether the property is located near a 

river and uses the enum LocationFactorEnum – Y (Yes) is 10, 

N (No) is 1.

• Call the method that displays the quote details.

 Lab 1: Possible Solution with output shown in Figure 25-37

using System;

namespace Labs.Chapter20

{

  internal class AutoInsurance

  {

    public enum Manufacturer

    {

      Ford,

      Chevrolet,

Chapter 25  programming Labs



1005

      Jeep,

      Honda

    }

    public enum Color

    {

      Red,

      Blue,

      Green

    }

    struct Vehicle

    {

      //Variables

      Manufacturer vehicleManufacturer;

      Color vehicleColor;

      // Custom constructor

      public Vehicle(Manufacturer vehicleManufacturer, Color vehicleColor)

      {

        this.vehicleManufacturer = vehicleManufacturer;

        this.vehicleColor = vehicleColor;

      }

      // Methods of the struct

      public void DisplayVehiclerDetails()

      {

         Console.WriteLine($"The vehicle manufacturer is 

{vehicleManufacturer}");

        Console.WriteLine($"The vehicle color is {vehicleColor}");

      } // End of DisplayVehiclerDetails() method

    } // End of the Vehicle struct

    // Main method code for the AutoInsurance class

    static void Main(string[] args)

    {

Chapter 25  programming Labs



1006

      Vehicle myVehicleOne =

        new Vehicle(Manufacturer.Ford,Color.Blue);

      myVehicleOne.DisplayVehiclerDetails();

      Console.WriteLine();

      Vehicle myVehicleTwo =

        new Vehicle(Manufacturer.Jeep, Color.Green);

      myVehicleTwo.DisplayVehiclerDetails();

    } // End of Main() method

  } // End of class AutoInsurance

} // End of namespace Labs.Chapter20

 Lab 2: Possible Solution with output shown in Figure 25-38

using System;

namespace Labs.Chapter20

{

  internal class PropertyInsurance

  {

    public enum InsuranceRiskEnum

    {

      Low = 1,

      Medium = 10,

      High = 20,

    }

Figure 25-37. Lab 1 output

Chapter 25  programming Labs



1007

    public enum LocationFactorEnum

    {

      NotNearRiver = 1,

      NearRiver = 10,

    }

    public enum PropertyTypeEnum

    {

      Bungalow,

      House,

      Apartment

    }

    static void Main(string[] args)

    {

      int propertyType = AskForPropertyType();

      string isNearARiver = AskForPropertyLocation();

      double estimatedValue = AskForPropertyValue();

      QuoteAmount(propertyType, isNearARiver, estimatedValue);

    } // End of Main() method

    public static int AskForPropertyType()

    {

      Console.WriteLine("What is the property type, 1 2 or 3?");

      Console.WriteLine("1. Bungalow ");

      Console.WriteLine("2. House");

      Console.WriteLine("3. Apartment");

      int  propertyType = Convert.ToInt32(Console.ReadLine());

      return propertyType;

    } // End of PropertyType() method

    public static string AskForPropertyLocation()

    {

      Console.WriteLine("Is the property within 50 metres " +

        "of a river?");

Chapter 25  programming Labs



1008

      string nearARiver = Console.ReadLine();

      return nearARiver;

    } // End of PropertyLocation() method

    public static double AskForPropertyValue()

    {

      Console.WriteLine("What is the estimated value of " +

        "the property?");

   double estimatedValue = Convert.ToDouble(Console.ReadLine());

      return estimatedValue;

    } // End of PropertyValue() method

 public static int PropertyLocationRiskFactor(string nearRiver)

    {

      int locationFactor;

      if (nearRiver.Equals("Y"))

      {

       locationFactor = (int)LocationFactorEnum.NearRiver;

      }

      else

      {

        locationFactor = (int)LocationFactorEnum.NotNearRiver;

      }

      return locationFactor;

    } // End of PropertyRiskFactor() method

    public static void QuoteAmount(int propertyType,

      string isPropertyNearARiver, double propertyValue)

    {

      int propertyTypeRiskFactor;

      switch (propertyType)

      {

        case 1:

          propertyTypeRiskFactor = (int)InsuranceRiskEnum.High;

          break;

Chapter 25  programming Labs



1009

        case 2:

          propertyTypeRiskFactor = (int)InsuranceRiskEnum.Medium;

          break;

        case 3:

          propertyTypeRiskFactor = (int)InsuranceRiskEnum.Low;

          break;

        default:

          propertyTypeRiskFactor = 9999;

          break;

      }

      double quoteAmount = (propertyTypeRiskFactor

           * (propertyValue / 10000)

           * PropertyLocationRiskFactor(isPropertyNearARiver));

      DisplayQuote(propertyType, isPropertyNearARiver,

        propertyValue, quoteAmount);

    } // End of QuoteAmount() method

    public static void DisplayQuote(int propertyType,

      string isPropertyNearARiver, double propertyValue,

      double quoteAmount)

    {

      if (isPropertyNearARiver.Equals("Y"))

      {

        isPropertyNearARiver = "Yes";

      }

      else

      {

        isPropertyNearARiver = "No";

      }

      Console.WriteLine("Quote Details");

      Console.WriteLine($"{"Property Type is:", -30} " +

        $"{Enum.GetName(typeof(PropertyTypeEnum),

        propertyType-1), -20}");

Chapter 25  programming Labs



1010

      Console.WriteLine($"{"Property Near River:",-30} " +

        $"{isPropertyNearARiver,-20}");

      Console.WriteLine($"{"Property Value is:",-30} " +

        $"{propertyValue,-20}");

      Console.WriteLine();

      Console.WriteLine($"{"Quote amount is:",-30} " +

        $"{quoteAmount,-20}");

    } // End of DisplayQuote() method

  } // End of class PropertyInsurance

} // End of namespace Labs.Chapter20

Figure 25-38. Lab 2 output

Chapter 25  programming Labs



1011

 Chapter 21 Labs: Delegates
 Lab 1

Write a C# console application that will allow for funds to be added to or withdrawn from 

a bank account. The application will

• Have a class called CustomerAccount and inside it

• Declare a static variable double currentBalance.

• Declare a method called AddFunds. The method is a value 

method that returns a value of type double, accepts a value of 

type double, adds the value passed in to the current balance, 

and returns the new balance.

• Define the delegate at the namespace level (this is step 1 of 3):

public delegate double AmendFundsDelegate(double amount);

• Have a Main() method that will

• Instantiate the CustomerAccount class as

CustomerAccount myCustomer = new CustomerAccount();

• Instantiate the delegate AmendFundsDelegate amendBalance; 

and then create the new object, passing it the AddFunds method 

(this is step 2 of 3):

amendBalance = new AmendFundsDelegate(myCustomer.AddFunds);

• Have a variable of type double called transactionAmount, 

assigning it a value of 100.00.

• Invoke the delegate, passing it the transactionAmount (this is 
step 3 of 3).

• Display the new account balance.

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_21


1012

 Lab 2

Write a C# console application that will act as a simple calculator to add numbers. The 

application will

• Define the delegate at the namespace level (this is step 1 of 3):

public delegate void CalculatorDelegate(int firstNumber, int 

secondNumber);

• Have a class called Calculator and inside it

• Declare a method called Add. The method is a void method 

that accepts two values of type int and displays the sum of the 

two values.

• Declare a method called Subtract. The method is a void method 

that accepts two values of type int and displays the difference 

between the two values.

• Have a class called CalculatorApplication and inside it

• Have a Main() method that will

• Instantiate the Calculator class as

Calculator my Calculator = new Calculator();

• Instantiate the delegate (this is step 2 of 3):

CalculatorDelegate myDelegate1 = new CalculatorDelegate 

(myCalculator.Add);

• Invoke the delegate, passing it the two required values 8 and 2 

(this is step 3 of 3):

myDelegate1.Invoke(8, 2);

Repeat steps 2 and 3 for the Subtract method, passing in 8 and 2.

Chapter 25  programming Labs



1013

 Lab 1: Possible Solution with output shown in Figure 25-39

namespace Labs.Chapter21

{

  internal class CustomerAccount

  {

    static double currentBalance;

    /*

    Define the methods we will use. Here we will use one

    non static methods

    */

    public double AddFunds(double amountIn)

    {

      return currentBalance += amountIn;

    } // End of AddFunds() method

    public double WithdrawFunds(double amountOut )

    {

      return currentBalance -= amountOut;

    } // End of WithdrawFunds() method

    /*

    Define the delegates

    We have an access modifier, a return type and the

    parameters of the delegate. This essentially defines the

    methods that can be associated with the delegate, the methods

    must have the same attributes

    A delegate can be declared in the class and therefore

    it is available only to that class's members

    It can be declared in the namespace and therefore it is

    available to all namespace classes and outside the namespace

    */

    /*

    This is step 1. define the delegate, of 3 steps

    */

    public delegate double AmendFundsDelegate(double amount);

Chapter 25  programming Labs



1014

    static void Main(string[] args)

    {

      /*

      The steps to use when dealing with delegates are

      1. define the delegate

      2. instantiate the delegate

      3. invoke the delegate

      */

      // Instantiate the CustomerAccount class

      CustomerAccount myCustomer = new CustomerAccount();

      /*

      Instantiate delegate by passing the name of the

      target function as its argument. In this case we will use

      the non static methods so we use the instance name

      This is step 2. instantiate the delegate, of 3 steps

      */

      AmendFundsDelegate amendBalance;

      amendBalance = new AmendFundsDelegate(myCustomer.AddFunds);

      double transactionAmount = 100.00;

      /*

      Now we Invoking The Delegates

      This is step 3. invoke the delegate, of 3 steps

      we could also just use amendBalance(100);

      */

      amendBalance.Invoke(transactionAmount);

      Console.WriteLine($"The new balance is : {currentBalance}");

     // Console.WriteLine(amendBalance.Invoke(transactionAmount + 1000));

    } // End of Main() method

  } // End of class CustomerAccount

} // End of namespace Labs.Chapter21

Chapter 25  programming Labs



1015

Figure 25-39. Lab 1 output

 Lab 2: Possible Solution with output shown in Figure 25-40

namespace Labs.Chapter21

{

  /*

  Define the delegates

  We have an access modifier, a return type and the

  parameters of the delegate. This essentially defines the

  methods that can be associated with the delegate, the methods

  must have the same attributes

  This is step 1. define the delegate, of 3 steps

  A delegate can be declared in the class and therefore

  it is available only to that class's members

  It can be declared in the namespace and therefore it is

  available to all namespace classes and outside the namespace

  */

   public delegate void CalculatorDelegate(int firstNumber, int secondNumber);

  internal class Calculator

  {

    /*

    Define the methods we will use. Here we will use one

    non static and one static method

    */

    public void Add(int numberOne, int numberTwo)

    {

       Console.WriteLine($"The total of {numberOne} and {numberTwo}, is 

{numberOne + numberTwo}");

    }

Chapter 25  programming Labs



1016

     public void Subtract(int numberOne, int numberTwo)

    {

       Console.WriteLine($"The difference between {numberOne} and 

{numberTwo}, is {numberOne - numberTwo}");

    }

  } // End of the class Calculator

  internal class CalculatorApplication

  {

    static void Main(string[] args)

    {

      // Instantiate the Calculator class

      /*

       The steps to use when dealing with delegates are

        1. define the delegate

        2. instantiate the delegate

        3. invoke the delegate

      */

      Calculator myCalculator = new Calculator();

      /*

      Instantiate delegate by passing the name of the

      target function as its argument. In this case we will use

      the non static method so we use the instance name

      This is step 2. instantiate the delegate, of 3 steps

      */

       CalculatorDelegate myDelegate1 = new 

CalculatorDelegate(myCalculator.Add);

      /*

      Now we Invoking The Delegates

      This is step 3. invoke the delegate, of 3 steps

      we could also just use myAddDelegate(8, 2);

      */

      myDelegate1.Invoke(8, 2);

Chapter 25  programming Labs



1017

      /*

      Instantiate delegate by passing the name of the

      target function as its argument. In this case we will use

      the static method so we use the class name not the instance

      This is step 2. instantiate the delegate, of 3 steps

      */

       CalculatorDelegate myDelegate2 = new CalculatorDelegate(myCalculator.

Subtract);

      /*

      Now we Invoking The Delegates

      This is step 3. invoke the delegate, of 3 steps

      we could also just use myAddDelegate(8, 2);

      */

      myDelegate2.Invoke(8, 2);

    }

  } // End of the class CalculatorApplication

} // End of namespace Labs.Chapter21

 Chapter 22 Labs: Events
 Lab 1

Write a C# console application that will allow numbers to be added together, and when 

the total is greater than a specific value, an event is fired. The application will

• Have a class called Calculator and inside it

• Define the delegate:

public delegate void CalculatorDelegate();

• Define the event that links to the delegate:

public event CalculatorDelegate NumberGreaterThanNine;

Figure 25-40. Lab 2 output

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_22


1018

• Have an Add() method that

• Accepts two integers as its parameters.

• Adds the two numbers and assigns the answer to a variable 

called answer.

• Will have a selection construct to check if the answer is 

greater than 9. If it is, the event NumberGreaterThanNine() is 

called; otherwise, no action is needed.

• Display the two numbers and the answer in the console.

• Have another class called CalculatorApplication, in the same 

namespace, and inside it

• Have a Main() method that will

• Instantiate the Calculator class as

Calculator myCalculator = new Calculator();

• Bind the event with the delegate and point to the 

EventMessage() method:

myCalculator.numberGreaterThanNine +=

new Calculator.CalculatorDelegate(EventMessage);

• Call the Add() method from the Calculator class, passing it the 

values 8 and 2:

myCalculator.Add(8,2);

Outside the Main() method but inside the CalculatorApplication class

• Create the EventMessage() method so that it outputs a 

message:

static void EventMessage()

{

Console.WriteLine("*Number greater than 9  detected*");

}

Chapter 25  programming Labs



1019

 Lab 2

Write a C# console application that will check if any repair claim amounts are greater 

than a value of 5000, displaying a message if they are. The application will

• Have a class called RepairClaimCheckerLogic and inside it

• Define the delegate:

public delegate void RepairClaimCheckerDelegate(int 

claimNumber, double claimValue);

• Define the event that links to the delegate:

public event RepairClaimCheckerDelegate OverLimit;

• Declare and create an array to hold three values of data 

type double:

double[] repairClaimsAmounts = new double[3];

• Have a GetRepairClaimData() method that

• Accepts no parameters

• Will have an iteration construct to iterate three times and ask 

the user to input the repair claim amount, storing each input 

value in the array of doubles

• Have a ReadAndCheckRepairClaims() method that

• Accepts no parameters

• Will have an iteration construct to iterate three times and 

read the repair claim amount from the array of doubles and 

check if the value is greater than 5000. If the value is greater 

than 5000, then the overLimit event is called, passing it 

the position of the value in the array and the value that is 

exceeding the 5000 limit.

• Have another class called RepairClaimChecker, in the same 

namespace, and inside it

• Have a Main() method that will

• Instantiate the RepairClaimCheckerLogic class as

Chapter 25  programming Labs



1020

RepairClaimCheckerLogic myRepairClaimCheckerLogic 

= new RepairClaimCheckerLogic();

• Call the GetRepairClaimData() method from the 

RepairClaimCheckerLogic class:

myRepairClaimCheckerLogic.GetRepairClaimData();

• Bind the event with the delegate and point to the 

OverLimitMessage() method:

myRepairClaimCheckerLogic.overLimit

+= new RepairClaimCheckerLogic.RepairClaimChecker

Delegate(OverLimitMessage);

Outside the Main() method but inside the 

RepairClaimChecker class, create the OverLimitMessage() 

method so that it outputs a message:

static void OverLimitMessage(int claimNumber, 

double value)

{

Console.WriteLine($"*** Claim {claimNumber} for 

{value} needs to be verified***");

}

• Call the ReadAndCheckRepairClaims () method from the 

RepairClaimCheckerLogic class:

myRepairClaimCheckerLogic.ReadAndCheckRepairClaims();

 Lab 1: Possible Solution with output shown in Figure 25-41

namespace Labs.Chapter22

{

  // Subscriber class

  public class CalculatorApplication

  {

    static void Main(string[] args)

    {

      Calculator myCalculator = new Calculator();

Chapter 25  programming Labs



1021

      /*

      Event is bound with the delegate

      Here we are creating a delegate, a pointer, to the method

      called EventMessage and adding it to the list of

      Event Handlers

      */

      myCalculator.NumberGreaterThanNine +=

        new Calculator.CalculatorDelegate(EventMessage);

      // Call the Add method in the Calculator class

      myCalculator.Add(8,2);

    }

    /*

    Delegates call this method when the event is raised.

    This is the code that executes when NumberGreaterThanNine

    is fired

    */

    static void EventMessage()

    {

      Console.WriteLine("* Number greater than 9 detected *");

    }

  } // End of the class CalculatorApplication

  // Publisher class

  public class Calculator

  {

    /*

    Declare the delegate. This delegate can be used to point to

    any method which is a void method and accepts no parameters

    */

    public delegate void CalculatorDelegate();

    /*

    Declare the event. This event can cause any method that

    matches the CalculatorDelegate to be called

    */

    public event CalculatorDelegate NumberGreaterThanNine;

Chapter 25  programming Labs



1022

    public void Add(int numberOne, int numberTwo)

    {

      int answer = numberOne + numberTwo;

      if(answer > 9)

      {

        /*

        Here we are raising the event and this event is linked

        to the method called EventMessage() which accepts

        no values and displays a message

        */

        NumberGreaterThanNine(); // Raised event

      }

       Console.WriteLine($"The total of {numberOne} and {numberTwo}, is 

{numberOne + numberTwo} ");

    }

  } // End of the class Calculator

} // End of namespace Labs.Chapter22

 Lab 2: Possible Solution with output shown in Figure 25-42

namespace Labs.Chapter22

{

  /*

  A DELEGATE is a type which defines a method signature and

  holds a reference for a method whose signature will match the

  delegate. Therefore delegates are used to reference a method.

  An EVENT is a 'notification' which is raised by an object

  to signify the occurrence of some action. Our delegate is then

  associated with the event and holds a reference to a

  method which will be called when the event is raised.

Figure 25-41. Lab 1 output

Chapter 25  programming Labs



1023

  An event is associated with an Event Handler using a Delegate.

  When the Event is raised it sends a signal to delegates

  and the delegate executes the correct matching function.

  The steps to use events are:

  1: Define the Delegate

  2: Define the Event with same the same name as the Delegate.

  3: Define the Event Handler that responds when event is raised.

  */

  // Subscriber class

  public class RepairClaimChecker

  {

    static void Main(string[] args)

    {

      RepairClaimCheckerLogic myRepairClaimCheckerLogic =

        new RepairClaimCheckerLogic();

      myRepairClaimCheckerLogic.GetRepairClaimData();

      /*

      Event is bound with the delegate

      Here we are creating a delegate, a pointer, to the method

      called OverLimitMessage and adding it to the list of

      Event Handlers

      */

      myRepairClaimCheckerLogic.OverLimit

         += new RepairClaimCheckerLogic.RepairClaimCheckerDelegate 

(OverLimitMessage);

      myRepairClaimCheckerLogic.ReadAndCheckRepairClaims();

    }

    /*

    Delegates call this method when the event is raised.

    This is the code that executes when OverLimit is fired

    */

Chapter 25  programming Labs



1024

    static void OverLimitMessage(int claimNumber, double value)

    {

       Console.WriteLine($"*** Claim {claimNumber} for {value} needs to be 

verified***");

    }

  } // End of the class RepairClaimChecker

  // Publisher class

  public class RepairClaimCheckerLogic

  {

    /*

    Declare the delegate. This delegate can be used to point

    to any method which is a void method and accepts an int

    followed by a double as its parameters

    */

     public delegate void RepairClaimCheckerDelegate(int claimNumber, double 

claimValue);

    /*

    Declare the event. This event can cause any method that

    matches the RepairClaimCheckerDelegate to be called

    */

    public event RepairClaimCheckerDelegate OverLimit;

    double[] repairClaimsAmounts = new double[3];

    public void GetRepairClaimData()

    {

      for (int i = 0; i < 3; i++)

      {

        Console.WriteLine("What is the repair claim amount?");

        double claimAmount = Convert.ToDouble(Console.ReadLine());

        repairClaimsAmounts[i] = claimAmount;

      } // End of the for iteration construct

Chapter 25  programming Labs



1025

    } // End of GetRepairClaimData() method

    public void ReadAndCheckRepairClaims()

    {

      for (int i = 0; i < 3; i++)

      {

        if (repairClaimsAmounts[i] > 5000)

        {

          /*

          Here we are raising the event and this event is linked

          to the method called  OverLimitMessage() which accepts

          the two values and displays a message

          */

          OverLimit(i, repairClaimsAmounts[i]); // Raised event

        } // End of the if selection construct

      } // End of the for iteration construct

    } // End of the ReadAndCheckRepairClaims() method

  } // End of the class RepairClaimCheckerLogic

} // End of namespace Labs.Chapter22

Figure 25-42. Lab 2 output

Chapter 25  programming Labs



1026

 Chapter 23 Labs: Generics
 Lab 1

Write a C# console application that will use a generic class and method, allowing any 

two value types to be passed to the method, which will add the two values and return the 

answer. The values can therefore be int, float, double, string, etc. The application will

• Have a class called Calculator, which accepts any type. It is generic 

<T> and this class will

• Have a method called AddTwoValues(), which has two 

parameters. The first parameter is called valueOne of type T and 

the second parameter is called valueTwo of type T, and inside 

the method

• There is a variable called firstValue, which is of data type 

dynamic, and it is assigned to valueOne.

• There is a variable called secondValue, which is of data type 

dynamic, and it is assigned to valueTwo.

• The answer variable is assigned the “sum” of firstValue and 

secondValue (firstValue + secondValue).

The method is a value method and it returns the 

variable answer.

• Have a class called CalculatorApplicaton and inside it

• A Main() method that

• Instantiates the Calculator class with type <int>, naming the 

instantiation intCalculator

• Then calls the AddTwoValues() method, passing it the values 

80 and 20, and writes the returned value to the console

• Instantiates the Calculator class with type <string>, naming 

the instantiation stringCalculator

Chapter 25  programming Labs

https://doi.org/10.1007/978-1-4842-8619-7_23


1027

• Then calls the AddTwoValues() method, passing it the 

values “Gerry” and “Byrne”, and writes the returned value to 

the console

Repeat the instantiation and method call for float and 

double data types.

 Lab 2

Write a C# console application that will use a generic method, allowing any value type to 

be passed to it, and on identification of the type, a Boolean true or false will be returned. 

The application will use claim values and policy ids, which will be passed to the method 

where the total of the claims will be calculated. The application will

• Have a class called ClaimLogic and inside it

• There will be a method to create an ArrayList with the 

following values:

"POL1234", 2000.99, "POL1235", 3000.01, "POL1236", 

599.99, "POL1237", 399.01, "POL1238", 9000, "POL1239"

Then this ArrayList is passed to the next method.

• A method is created that accepts the ArrayList and iterates the 

values, and for each value it passes the value to another method 

that is generic and accepts any value type. The generic method 

then returns true if the value passed to it is an int or a double and 

false if it is any other type.

• When the value returned to the iteration is Boolean true, add 

the value to an accumulated total of the claims, and increment a 

number of valid claims variable by 1.

• When the value returned to the iteration is Boolean false, 

increment a number of policy ids variable by 1.

• Finally, display the total of the claims, the number of claims, and 

the number of policy ids.

• Have a class called CompareClaims and inside it

Chapter 25  programming Labs



1028

• Have a Main() method that calls the method that creates the 

ArrayList.

 Lab 1: Possible Solution with output shown in Figure 25-43

using System;

namespace Labs.Chapter23

{

  internal class CalculatorApplication

  {

    static void Main(string[] args)

    {

      Calculator<int> intCalculator = new Calculator<int>();

       Console.WriteLine($"Using integers: {intCalculator.

AddTwoValues(80, 20)}");

      Calculator<string> stringCalculator = new Calculator<string>();

       Console.WriteLine($"Using strings: {stringCalculator.

AddTwoValues("Gerry", "Byrne")}");

      Calculator<float> floatCalculator = new Calculator<float>();

       Console.WriteLine($"Using floats: {floatCalculator.AddTwoValues(3.5F, 

100.0F)}");

      Calculator<double> doubleCalculator = new Calculator<double>();

       Console.WriteLine($"Using doubles: {doubleCalculator.

AddTwoValues(8.99, 1.02)}");

    } // End of Main() method

  } // End of CalculatorApplication class

  // Create a generic class

  public class Calculator<T>

  {

    public T AddTwoValues(T valueOne, T valueTwo)

    {

      /*

      In C# we have a dynamic type which is used avoid

Chapter 25  programming Labs



1029

      compile-time type checking of the variable.

      Instead the compiler gets the type at the run time and

      this suits this example well as we are using generic types.

      */

      dynamic firstValue = valueOne;

      dynamic secondValue = valueTwo;

      return firstValue + secondValue;

    } //End of AddTwoValues() method

  } // End of Calculator class

} // End of namespace Labs.Chapter23

 Lab 2: Possible Solution with output shown in Figure 25-44

using System.Collections;

namespace Labs.Chapter23

{

  internal class CompareClaims

  {

    static void Main(string[] args)

    {

      ClaimLogic myCalculatorLogic = new ClaimLogic();

      myCalculatorLogic.CreateArrayListOfValues();

    } // End of Main() method

  } // End of Calculator class

Figure 25-43. Lab 1 output

Chapter 25  programming Labs



1030

  public class ClaimLogic

  {

    public void CreateArrayListOfValues()

    {

      ArrayList repairClaimsAmounts = new ArrayList();

      repairClaimsAmounts.Add("POL1234");

      repairClaimsAmounts.Add(2000.99);

      repairClaimsAmounts.Add("POL1235");

      repairClaimsAmounts.Add(3000.01);

      repairClaimsAmounts.Add("POL1236");

      repairClaimsAmounts.Add(599.99);

      repairClaimsAmounts.Add("POL1237");

      repairClaimsAmounts.Add(399.01);

      repairClaimsAmounts.Add("POL1238");

      repairClaimsAmounts.Add(9000);

      repairClaimsAmounts.Add("POL1239");

      ValidateAndTotal(repairClaimsAmounts);

    }

    private void ValidateAndTotal(ArrayList repairClaimsAmounts)

    {

      double totalOfClaims = 0.00;

      int validClaims = 0, policyIds =0;

      for (int i = 0; i < repairClaimsAmounts.Count; i++)

      {

        if (Calculate(repairClaimsAmounts[i]))

        {

          totalOfClaims += Convert.ToDouble(repairClaimsAmounts[i]);

          validClaims++;

        } // End of the if selection construct

        else

        {

          policyIds++;

        }

      } // End of the for iteration construct

Chapter 25  programming Labs



1031

      Console.WriteLine($"There were {validClaims} claims");

      Console.WriteLine($"Claims total is {totalOfClaims}");

      Console.WriteLine($"There were {policyIds} policies");

    } // End of ValidateAndTotal() method

    //Now this method can accept any data type

    public static bool Calculate<T>(T value)

    {

      switch (value)

      {

        case int i:

          return true;

        case double d:

          return true;

        default:

          return false;

      }

    } // End of Calculate() method

  } // End of CalculatorLogic class

} // End of namespace Labs.Chapter23

 Chapter Summary
Well, that was a lot of coding, and hopefully we tried to use our own learnings and code 

style rather than just looking at the basic solutions given for the labs.

Figure 25-44. Lab 2 output

Chapter 25  programming Labs



1032

As we finish this penultimate chapter, we can say we have achieved so much. We 

should be immensely proud of the learning to date. We are getting so close to our target 

we can almost touch it, but we have just one more small step to take.

 

Chapter 25  programming Labs



1033

CHAPTER 26

C# 11

 C# New Features
With the latest C# release, C# 11, expected in November 2022, we will be treated to some 

new features to help us develop code.

We can use the features of C# 11 in their current form, prior to official release, by 

amending the project file, .csproj, to inform it that we wish to use the preview feature of 

the language. The .csproj file defines the project content, platform requirements, and, 

importantly for us, the language versioning information. It may also contain information 

about servers such as a database or web server.

To amend the .csproj file for the specific project we are working on and allow us to 

use the preview features, the process is as follows:

• In the Solution Explorer panel, double-click the project name.

• Amend the XML to add <LangVersion>preview</LangVersion> to 

the code:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <OutputType>Exe</OutputType>

    <TargetFramework>net6.0</TargetFramework>

    <LangVersion>preview</LangVersion>

    <ImplicitUsings>enable</ImplicitUsings>

    <Nullable>enable</Nullable>

  </PropertyGroup>

</Project>

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7_26

https://doi.org/10.1007/978-1-4842-8619-7_26#DOI


1034

 Raw String Literals
When we have looked at the use of strings particularly in Chapter 15 on string handling, 

we have seen different modifiers used with the strings. We used the verbatim, @, and 

the template literal, $, and we also read that we still need to escape things like double 

quotes. We will code an application to apply raw string materials.

 1. Right-click the solution CoreCSharp.

 2. Choose Add.

 3. Choose New Project.

 4. Choose Console App from the listed templates that appear.

 5. Click the Next button.

 6. Name the project Chapter26 and leave it in the same location.

 7. Click the Next button.

 8. Choose the framework to be used, which in our projects will be 

.NET 6.0 or higher.

 9. Click the Create button.

Now we should see the Chapter26 project within the solution called CoreCSharp.

 10. Right-click the Chapter26 project in the Solution Explorer panel.

 11. Click the Set as Startup Project option.

 12. Right-click the Program.cs file in the Solution Explorer window.

 13. Choose Rename.

 14. Change the name to RawStringLiterals.cs.

 15. Press the Enter key.

 16. Double-click the RawStringLiterals.cs file to open it in the 

editor window.

We will start by creating a string that uses the verbatim identifier, the @ special 

character. When we use the @, the string literal will be interpreted verbatim, precisely  

as it appears. Any escape sequences such as the backslash \ will be interpreted literally. 

Chapter 26  C# 11

https://doi.org/10.1007/978-1-4842-8619-7_15


1035

On the other hand, the double quote escape sequence, “”, is not interpreted literally and 

it will produce one double quotation mark.

Listing 26-1 shows an example of escaping, where we want to actually display a word 

or phrase with double quotes around it and we have to use “” at the start of the quoted 

word or phrase and at the end of the quoted word or phrase. We will add the Main() 

method, and inside it we will create a string literal that includes the double quotes “” at 

the start and end of a number of words. We will then write the string to the console.

 17. Amend the code as shown in Listing 26-1.

Listing 26-1. Escaped double quotes around a phrase using verbatim @

namespace Chapter26

{

  internal class RawStringLiterals

  {

    static void Main(string[] args)

    {

      string rawStringLiterals =

        @"Kathleen Dollard Principal Program Manager, .NET

at Microsoft is quoted as saying about raw string literals

""If you work with strings literal that contain quotes or

embedded language strings like JSON, XML, HTML, SQL, Regex

and others, raw literal strings may be your favorite feature

of C# 11.""

and I think we may agree that this is a cool feature of C# 11.

https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/";

      Console.WriteLine(rawStringLiterals);

    } // End of Main() method

  } // End of class RawStringLiterals

} // End of namespace Chapter26

 18. Click the File menu.

 19. Choose Save All.

 20. Click the Debug menu.

 21. Choose Start Without Debugging.

Chapter 26  C# 11



1036

Figure 26-1 shows the console window and we can see that the double quote escape 

sequence produces a single quote.

Figure 26-1. Double quote escape sequence produces a single quote

 22. Press the Enter key to close the console window.

C# 11 introduces us to raw string literals as a new format for string literals. This new 

feature means string literals can now contain arbitrary text, which means we can now 

include embedded quotes or new lines or whitespace and other special characters, all 

without having to use escape sequences. The new raw string literal is depicted by starting 

with at least three double quote """ characters, and it must end with the same number of 

double quote characters.

We will now add a new raw string literal starting with three double quotes and 

ending with the same three double quotes and assign it to a new variable.

 23. Amend the code as in Listing 26-2, to use the new raw string 

literal, starting with three double quotes and ending with the 

same three double quotes.

Listing 26-2. New raw string literal starting and ending with three double quotes

and I think we may agree that this is a cool feature of C# 11.

https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/";

      Console.WriteLine(rawStringLiterals);

      Console.WriteLine($"\n*** C# 11 Raw String Literal ***");

      string rawStringLiterals11 = """

Kathleen Dollard Principal Program Manager, .NET at

Microsoft is quoted as saying about raw string literals

"If you work with strings literal that contain quotes or

embedded language strings like JSON, XML, HTML, SQL, Regex

Chapter 26  C# 11



1037

and others, raw literal strings may be your favorite feature

of C# 11."

and I think we may agree that this is a cool feature of C# 11.

https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/"

""";

      Console.WriteLine(rawStringLiterals11);

    } // End of Main() method

  } // End of class RawStringLiterals

} // End of namespace Chapter26

 24. Click the File menu.

 25. Choose Save All.

 26. Click the Debug menu.

 27. Choose Start Without Debugging.

Figure 26-2 shows the console window and we can see that the double quotes have 

appeared around the words of the quote even though they were only single double 

quotes. The use of the new raw string literal starting with the three double quotes """ and 

ending with the same three double quote """ characters has worked as expected.

Figure 26-2. Raw string literal using three double quotes """

 28. Press the Enter key to close the console window.

Chapter 26  C# 11



1038

We will now amend the raw string literal so that the last three double quote """ 

characters is indented. When a raw string literal is displayed, the position of the last 

three double quotes """ is crucial, since the first of the double quotes indicates the 

starting point for the text, the left margin if we wish to think of it like that. The text we 

have then gets displayed from this left position, and therefore none of the text can be 

positioned to the left of this position.

 29. Amend the code as in Listing 26-3, to indent the end three double 

quotes by one space.

Listing 26-3. Text cannot be left of the first of the last three double quotes

and I think we may agree that this is a cool feature of C# 11.

https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/";

      Console.WriteLine(rawStringLiterals);

      Console.WriteLine($"\n*** C# 11 Raw String Literal ***");

      string rawStringLiterals11 = """

Kathleen Dollard Principal Program Manager, .NET at

Microsoft is quoted as saying about raw string literals

“If you work with strings literal that contain quotes or

embedded language strings like JSON, XML, HTML, SQL, Regex

and others, raw literal strings may be your favorite feature

of C# 11."

And I think we may agree that this is a cool feature of C# 11.

https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/

 """;

      Console.WriteLine(rawStringLiterals11);

    } // End of Main() method

  } // End of class RawStringLiterals

} // End of namespace Chapter26

 30. Hovering over the red underline in the spaces before the word 

Kathleen will display an error message that informs us about 

spacing, as shown in Figure 26-3.

Chapter 26  C# 11



1039

Figure 26-3. Text is left of three double quotes """

 31. Amend the code as in Listing 26-4, to move all the text so that it is 

one space past the end three double quotes and ensure that the 

red underline disappears.

Listing 26-4. Text must be one space past the last three double quotes

      Console.WriteLine($"\n*** C# 11 Raw String Literal ***");

      string rawStringLiterals11 = """

  Kathleen Dollard Principal Program Manager, .NET at

  Microsoft is quoted as saying about raw string literals

  "If you work with strings literal that contain quotes or

  embedded language strings like JSON, XML, HTML, SQL, Regex

  and others, raw literal strings may be your favorite feature

  of C# 11."

  and I think we may agree that this is a cool feature of C# 11.

  https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/

  """;

      Console.WriteLine(rawStringLiterals11);

    } // End of Main() method

  } // End of class RawStringLiterals

} // End of namespace Chapter26

 32. Click the File menu.

 33. Choose Save All.

 34. Click the Debug menu.

 35. Choose Start Without Debugging.

Chapter 26  C# 11



1040

Figure 26-4 shows the console window and we can see that the double quotes have 

marked the start of the text on the left-hand side and our text was positioned one space 

in from the double quotes.

Figure 26-4. One space indented from """

 36. Press the Enter key to close the console window.

We can see that raw string literals are a nice feature, but we can go further, because 

raw string literals can be interpolated by preceding them with a $.

 37. Amend the code as in Listing 26-5, to declare and initialize three 

variables, two of data type string and the other of data type int.

Listing 26-5. New WriteLine() statement and three variables declared

  and I think we may agree that this is a cool feature of C# 11.

  https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/

  """;

      Console.WriteLine(rawStringLiterals11);

      Console.WriteLine($"\n*** C# 11 Interpolated Raw String Literal ***");

      string companyName = "Microsoft";

      string languageName = "C# 11";

      int version = 11;

    } // End of Main() method

  } // End of class RawStringLiterals

} // End of namespace Chapter26

Chapter 26  C# 11



1041

We will now add a new interpolated raw string literal, which means we use 

the dollar sign, $, before the three double quotes. This new string will be called 

rawStringLiterals11V2. The text that we assign to it will be the same text as we have in the 

string variable rawStringLiterals11.

Once we paste the text, we will replace the

• Word Microsoft with the variable companyName enclosed in open 

and close curly braces, that is, {companyName}

• First C #11 phrase with the variable languageName enclosed in open 

and close curly braces, that is, {languageName}

• 11 in the second C #11 phrase with the variable version enclosed in 

open and close curly braces, that is, {version}

This means we have used interpolation within the raw string literal.

 38. Amend the code as in Listing 26-6.

Listing 26-6. Interpolated raw string literal 

      string companyName = "Microsoft";

      string languageName = "C# 11";

      int version = 11;

      string rawStringLiterals11V2 = $"""

  Kathleen Dollard Principal Program Manager, .NET at

  {companyName} is quoted as saying about raw string literals

  "If you work with strings literal that contain quotes or

  embedded language strings like JSON, XML, HTML, SQL, Regex

  and others, raw literal strings may be your favorite feature

  of {languageName}."

  and I think we may agree that this is a cool feature of C# {version}.

  https://devblogs.microsoft.com/dotnet/csharp-126-preview-updates/

  """;

      Console.WriteLine(rawStringLiterals11V2);

    } // End of Main() method

  } // End of class RawStringLiterals

} // End of namespace Chapter26

Chapter 26  C# 11



1042

 39. Click the File menu.

 40. Choose Save All.

 41. Click the Debug menu.

 42. Choose Start Without Debugging.

The console window will show the final display of text, which is identical to the text 

shown in Figure 26-4, but this code has used interpolated values.

Nice feature. Thank you, C# 11.

 New Lines in String Interpolations
Interpolation can be defined as the insertion of something of a different nature into 

something else. When we have looked at the use of strings, we have seen how to use 

string interpolation with the special character, $, which identifies the string literal 

as an interpolated string. An interpolated string is a string literal that might contain 

interpolation expressions. Essentially, it is a fancy word for joining our strings with other 

non-string variables or values, and to build a string interpolation, we will make use of the 

curly braces {}.

C# 11 introduces a new feature to these string interpolations, where we can now span 

multiple lines. The text we have between the curly braces is parsed, and we can therefore 

include any legal C# code including new lines. In terms of producing readable code, this 

feature certainly helps.

 1. Right-click the Chapter26 project in the Solution Explorer panel.

 2. Choose Add.

 3. Choose Class

 4. Change the name to NewLinesInterpolation.cs.

 5. Click the Add button.

 6. Amend the code to add a Main() method using the svm shortcut.

We will now create two string variables and then create an interpolated string, 

which uses these variables and which includes new lines in the formation of the 

interpolated string.

Chapter 26  C# 11



1043

 7. Amend the code as in Listing 26-7.

Listing 26-7. New line in interpolated string

namespace Chapter26

{

  internal class NewLinesInterpolation

  {

    static void Main(string[] args)

    {

     string policyId = "AUT000001";

     string policyCoverage = "within the country of the policy.";

     string policyMessage = $"The policy {

        policyId

        } is limited to driving {

       policyCoverage

       }";

     Console.WriteLine(policyMessage);

    } // End of Main()

  } // End of NewLinesInterpolation class

} // End of Chapter26 namespace

 8. Click the File menu.

 9. Choose Save All.

 10. Right-click the Chapter26 project in the Solution Explorer panel.

 11. Choose Properties.

 12. Set the Startup object to be the NewLinesInterpolation.cs in the 

drop-down list.

 13. Close the Properties window.

 14. Click the Debug menu.

 15. Choose Start Without Debugging.

Chapter 26  C# 11



1044

Figure 26-5 shows the console window and we can see that the interpolated string 

has executed as expected.

Figure 26-5. New lines in interpolated string

 16. Press the Enter key to close the console window.

 List Patterns
C# 11 introduces a new feature called the list pattern, which allows for matching against 

lists and arrays. When we use the list pattern, we can use the slice pattern, .., allowing us 

to match zero or more elements. The syntax used in a list pattern is values surrounded by 

square brackets.

When we slice an array, we are getting a range of elements from within the array. 

If we had an array with the elements 1,2,3,4,5,6 and we were to slice the array from 

index 2 to index 5 using the command slice(2,5), we would get the values 3,4,5. The 

command slice(2,5) means start at index 2 and stop at index 5, which is exclusive, and 

therefore the element at 5 is not included.

Index       0 1 2 3 4 5 6

Array       1 2 3 4 5 6

Sliced elements         ↑  ↑ ↑
We will now code an application where we will match the letters of a policy type 

against a series of patterns. We will iterate an array of policy types converting each policy 

type string to a character array and then pass the array to a method that will perform 

the matching. When a match is found, a string will be returned and is displayed to the 

console.

 1. Right-click the Chapter26 project in the Solution Explorer window.

 2. Choose Add.

Chapter 26  C# 11



1045

 3. Choose Class.

 4. Name the class ListPatterns.cs.

 5. Double-click the ListPatterns.cs file to open it in the 

editor window.

 6. Amend the code as in Listing 26-8, to create the Main() method.

Listing 26-8. Namespace with class and Main() method

namespace Chapter26

{

  internal class ListPatterns

  {

    static void Main(string[] args)

    {

    } // End of Main() method

  } // End of class ListPatterns

} // End of namespace Chapter26

 7. Amend the code as in Listing 26-9, to create the array of 

policy types.

Listing 26-9. Array of policy types added

namespace Chapter26

{

  internal class ListPatterns

  {

    static void Main(string[] args)

    {

      // Declare and create an array of strings

      string[] policyType = { "CONDO", "LIFE", "AUTO", "RING", "ZUNKNOWNZ" };

    } // End of Main() method

  } // End of class ListPatterns

} // End of namespace Chapter26

Chapter 26  C# 11



1046

Now we will iterate the array, and in each iteration we will take the array string item, 

convert it to a char array, and pass it to the method we will create next. We will then write 

the returned value to the console.

 8. Amend the code as in Listing 26-10.

Listing 26-10. Iterate the array

    static void Main(string[] args)

    {

      // Declare and create a array of strings

      string[] policyType = { "CONDO", "LIFE", "AUTO", "RING", "ZUNKNOWNZ" };

      /*

      Iterate the policyType array and convert the current

      item to a char array. Then pass the char array to the

      method which will check each letter against a pattern

      held in an array

      */

      foreach (string policy in policyType)

      {

        char[] charArr = policy.ToCharArray();

        Console.WriteLine(CheckPolicyType(charArr));

      } // End of foreach iteration

    } // End of Main() method

  } // End of class ListPatterns

} // End of namespace Chapter26

Now we will create the method that accepts the char array, which holds the letters 

of the policy type. The method will use a switch construct to pattern match the list of 

characters, and when the appropriate pattern is found, the matching string is returned 

to the calling statement. In the pattern we will be using the slice pattern, which is two 

dots, .. and means zero or more characters. The pattern we will use to match our list is Z 

.. Z, which means starts with Z, then has zero or more characters, and then ends with the 

character Z. In the switch construct, we are also using a slice pattern in the default.

 9. Amend the code as in Listing 26-11.

Chapter 26  C# 11



1047

Listing 26-11. Method to match the list of policy type letters and return a string

    } // End of Main() method

    /*

     Create a method that accepts a char array and then checks

     each letter of the char array against a pattern

     held in an array

     */

    public static string CheckPolicyType(char[] values)

    => values switch

    {

      ['A', 'U', 'T', 'O'] => $"Auto has a factor of 1",

      ['H', 'O', 'M', 'E'] => $"Home has a factor of 2",

      ['C', 'O', 'N', 'D', 'O'] => $"Condo has a factor of 3",

      ['B', 'O', 'A', 'T'] => $"Boat has a factor of 4",

      ['L', 'I', 'F', 'E'] => $"Life has a factor of 5",

      ['Z', .. ,'Z'] => $"Specialist policy has a factor of 5",

      [..] => $"Unknown policy type has a factor of 100"

    };

  } // End of class ListPatterns

} // End of namespace Chapter26

 10. Click the File menu.

 11. Choose Save All.

 12. Right-click the Chapter26 project in the Solution Explorer panel.

 13. Choose Properties.

 14. Set the Startup object to be the ListPatterns.cs in the drop-

down list.

 15. Close the Properties window.

 16. Click the Debug menu.

 17. Choose Start Without Debugging.

Chapter 26  C# 11



1048

Figure 26-6 shows the console window and we can see that each of the policy type 

strings has been matched to one of the patterns.

Figure 26-6. List pattern Z..Z matches the policy ZUNKNOWNZ

 18. Press the Enter key to close the console window.

We will now add a new element, HARDWARE, to the array that does not fit the list 

pattern, and when we run the application, we will be given the “default” message.

 19. Amend the code as in Listing 26-12, to add the additional element.

Listing 26-12. Add a new element to the array

    static void Main(string[] args)

    {

      // Declare and create an array of strings

       string[] policyType = { "CONDO", "LIFE", "AUTO", "RING", "ZUNKNOWNZ", 

"HARDWARE" };

 20. Click the File menu.

 21. Choose Save All.

 22. Click the Debug menu.

 23. Choose Start Without Debugging.

Figure 26-7 shows the console window and we can see that the HARDWARE policy 

type has been matched to the seventh pattern, [..].

Chapter 26  C# 11



1049

Figure 26-7. [..] has matched the policy type HARDWARE

We could also have used a discard instead of the slice pattern in the switch construct. 

Discards, _, can be used where any value is accepted at that position. The discard pattern 

can be used in pattern matching with the switch expression, and every expression, 

including null, always matches the discard pattern.

By using the discard pattern, in the last line of the CheckPolicyType() method, our 

code could be as Listing 26-13, and this would mean that every other pattern not found 

in the first six cases would fall under this “default” case.

 24. Click the File menu.

 25. Choose Save All.

 26. Click the Debug menu.

 27. Choose Start Without Debugging.

Listing 26-13. Using the discard, _, rather than the slice pattern [..]

    public static string CheckPolicyType(char[] values)

    => values switch

    {

      ['A', 'U', 'T', 'O'] => $"Auto has a factor of 1",

      ['H', 'O', 'M', 'E'] => $"Home has a factor of 2",

      ['C', 'O', 'N', 'D', 'O'] => $"Condo has a factor of 3",

      ['B', 'O', 'A', 'T'] => $"Boat has a factor of 4",

      ['L', 'I', 'F', 'E'] => $"Life has a factor of 5",

      ['Z', .., 'Z'] => $"Specialist policy has a factor of 5",

      _ => $"Unknown policy type has a factor of 100"

    };

Chapter 26  C# 11

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/switch-expression


1050

Figure 26-8 shows the console window and we can see that the HARDWARE policy 

type has been matched to the discard pattern, _.

Figure 26-8. Discard pattern _ has matched the policy type HARDWARE

 Auto Default Struct
Prior to C# 11 all fields of a struct needed to be initialized in the constructor. We saw in 

Chapter 19 on structs an example of a Policy struct with four fields, and the constructor 

was used to initialize the field values. Listing 26-14 shows code that is similar to the 

Chapter 19 PolicyExample.cs class, but the initialization of the monthlyPremium field 

does not exist in the constructor. This causes a compile error in C# 10, as we will see 

when we code the example. We will code this example in the Chapter19 project.

 1. Right-click the Chapter19 project, not the current Chapter26 

project, in the Solution Explorer window.

 2. Choose Add.

 3. Choose Class.

 4. Name the class StructsExample.cs.

 5. Double-click the StructsExample.cs file to open it in the 

editor window.

We will add the code to create a struct calling it Policy10, which has two fields 

and a constructor for the Policy10 struct where we do not initialize the field called 

monthlyPremium.

Chapter 26  C# 11

https://doi.org/10.1007/978-1-4842-8619-7_19
https://doi.org/10.1007/978-1-4842-8619-7_19


1051

 6. Amend the code as in Listing 26-14.

Listing 26-14. Policy10 struct where constructor does not initialize all fields

namespace Chapter19

{

    public struct Policy10

    {

      public int policy_number;

      public double monthlyPremium;

      public Policy10()

      {

        policy_number = 123456;

      } // End of user constructor

    }// End of Policy10 struct

  internal class StructsExample

  {

    static void Main(string[] args)

    {

      var myPolicy = new Policy10();

      Console.WriteLine(myPolicy.monthlyPremium);

    } // End of Main() method

  } // End of class StructsExample

} // End of namespace Chapter19

 7. Hover over the Policy10 word in the constructor.

Figure 26-9 shows the pop-up window that will be displayed with an error message 

telling us that all fields must be assigned a value. In other words, the default value of the 

field is not activated. We might think annoying, but alas C# 11 can help us.

Chapter 26  C# 11



1052

Figure 26-9. Struct field must be initialized

 8. Add the code to initialize the monthlyPremium field as in Listing 26-15.

Listing 26-15. Policy10 struct where constructor has initialized all fields

    public struct Policy10

    {

      public int policy_number;

      public double monthlyPremium;

      public Policy10()

      {

        policy_number = 123456;

        monthlyPremium = 99.00;

      } // End of user constructor

    }// End of Policy10 struct

 9. Click the File menu.

 10. Choose Save All.

 11. Right-click the Chapter19 project in the Solution Explorer panel.

 12. Choose Set as Startup Project.

 13. Right-click the Chapter19 project in the Solution Explorer panel.

 14. Choose Properties.

 15. Set the Startup object to be the StructsExample.cs in the drop-down list.

 16. Close the Properties window.

Chapter 26  C# 11



1053

 17. Click the Debug menu.

 18. Choose Start Without Debugging.

Figure 26-10 shows console output with the value from the one field we have chosen 

to display.

Figure 26-10. The field value set by the constructor call

 19. Press the Enter key to close the console window.

Now in C# 11, this annoying feature of initialization has been changed, and the 

compiler ensures that all fields of a struct type are initialized to their default value as 

part of executing a constructor. This can be a great feature for us because any field not 

initialized by a constructor will automatically be initialized by the compiler. Even with 

the uninitialized fields, the application code will compile since those fields not explicitly 

initialized will be allocated the default value their type.

We will now code this example in the Chapter26 project. The code will be the same 

as in Listing 26-14, with the initialization of the monthlyPremium field not being coded, 

and we will change the struct name to be Policy11 (C# 11).

 20. Right-click the Chapter26 project in the Solution Explorer panel.

 21. Choose Set as Startup Project.

 22. Right-click the Chapter26 project in the Solution 

Explorer window.

 23. Choose Add.

 24. Choose Class.

 25. Name the class StructsExample.cs.

 26. Double-click the StructsExample.cs file to open it in the 

editor window.

 27. Amend the code as in Listing 26-16.

Chapter 26  C# 11



1054

Listing 26-16. Policy11 struct where constructor has not initialized all fields

namespace Chapter26

{

  public struct Policy11

  {

    public int policy_number;

    public double monthlyPremium;

    public Policy11()

    {

      policy_number = 123456;

    } // End of user constructor

  }// End of Policy11 struct

  internal class StructsExample

  {

    static void Main(string[] args)

    {

      var myPolicy = new Policy11();

      Console.WriteLine(myPolicy.monthlyPremium);

    } // End of Main() method

  } // End of class StructsExample

} // End of namespace Chapter26

 28. Click the File menu.

 29. Choose Save All.

 30. Right-click the Chapter26 project in the Solution Explorer panel.

 31. Choose Properties.

 32. Set the Startup object to be the StructsExample.cs in the drop-

down list.

 33. Close the Properties window.

 34. Click the Debug menu.

 35. Choose Start Without Debugging.

Chapter 26  C# 11



1055

Figure 26-11 shows console output with the default value from the one field we have 

chosen to display. This example clearly shows that the new auto default struct does 

indeed use the default value of a struct field if it is not initialized within the constructor.

Figure 26-11. The field default value is used in C# 11.

 36. Press the Enter key to close the console window.

 Warning Wave 7
The Microsoft site https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/compiler-messages/warning-waves tells us the following:

New warnings and errors may be introduced in each release of the C# com-
piler. When new warnings could be reported on existing code, those warn-
ings are introduced under an opt-in system referred to as a warning wave. 
The opt-in system means that you shouldn't see new warnings on existing 
code without taking action to enable them. Warning waves are enabled 
using the AnalysisLevel element in your project file.

When <TreatWarningsAsErrors>true</TreatWarningsAsErrors> is speci-
fied, enabled warning wave warnings generate errors. Warning wave 5 
diagnostics were added in C# 9. Warning wave 6 diagnostics were added in 
C# 10. Warning wave 7 diagnostics were added in C# 11.

So, if we opt in, we will see errors in our code that we may not have seen prior to 

opting in. C# 11 introduces a new warning wave that can produce a warning when a 

type is declared with all lowercase letters. According to the Microsoft documentation, 

any new keywords in C# will all be lowercase ASCII characters. This means that when 

we create our own types, for example, a class or struct, we need to be cognizant that our 

name may conflict with a keyword, if we use all lowercase. We can avoid this situation by

Chapter 26  C# 11

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/warning-waves
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/warning-waves


1056

• Using at least one uppercase character or an underscore or even 

a digit.

• Enabling the warning waves for the project. This is an opt-in and can 

be enabled by double-clicking the project name and adding one line 

of code to the XML properties as shown:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <OutputType>Exe</OutputType>

    <TargetFramework>net7.0</TargetFramework>

                   <LangVersion>preview</LangVersion>

    <ImplicitUsings>enable</ImplicitUsings>

    <Nullable>enable</Nullable>

                 <TreatWarningsAsErrors>true</

TreatWarningsAsErrors>

    <StartupObject>Chapter26.StructsExample</StartupObject>

  </PropertyGroup>

</Project>

 1. Right-click the Chapter26 project in the Solution Explorer window.

 2. Choose Add.

 3. Choose Class.

 4. Name the class warningwave.cs – yes, small letters.

 5. Double-click the warningwave.cs file to open it in the 

editor window.

 6. Make sure the code looks like that shown in Listing 26-17, with the 

class name being small letters.

Listing 26-17. Namespace with class

namespace Chapter26

{

  internal class warningwave

Chapter 26  C# 11



1057

  {

  } // End of class warningwave

} // End of namespace Chapter26

 7. Hover over the word warningwave, the class name/

Figure 26-12 shows the pop-up window that will be displayed with a warning 

message.

Figure 26-12. Wave warning for class name with lowercase starting letter

 Chapter Summary
This chapter has shown us that .NET and C# are continually evolving, and as developers 

we need to be aware of new features, so we can make informed choices when we code 

our application. Not every new version will offer us features that we will want to apply 

in our code, but learning is a lifelong process and we need to keep track of language 

changes.

Having completed our final chapter, we know that we have achieved so much and 

have reached the target we set ourselves from the outset. We should be immensely proud 

of what we have achieved. We are now in a great position to look back at the applications 

we coded and think to ourselves, Maybe I could have coded the examples in a different 

way, in a better way. Yes, the examples in the book have helped us Target C# and learn 

the language, but we must use our knowledge to program our applications the way we 

feel comfortable, but within the confines of existing coding standards.

Chapter 26  C# 11



1058

We have made the journey to Target C#. We should celebrate and then think about 

our next target, Target ?.

 

Chapter 26  C# 11



1059

Index

A
Abstract class, see Interfaces/

abstract classes
Access Modifier, 72, 74, 377–379, 383, 398, 

409, 749–750, 785
Accessors, 485, 493, 733, 737, 752, 

784–788, 792
AccountStatusToggled, 858, 862, 866
ActivatePolicyEventHandler, 857, 862
AddFunds, 1011
AddTwoValues(), 1026, 1027
AgentEntity, 989, 990, 993–994
Annotations, 800
Append versions, 664
Arguments, 407–409, 832, 857
Arithmetic operations

AND operator
FALSE AND TRUE testing, 253
false section, 254
if-else statement, 251–253
int user input, 251
Main() method, 250
TRUE AND FALSE testing, 254
TRUE AND TRUE testing, 252
variables, 250

BODMAS, 159
business logic/code, 159
clean code, 161
comparison (see Comparison 

operators)
condition, 264–273
integer division

CoreCSharp, 165
division and modulus, 162

framework, 165
modulus operator (%), 162
naming operation, 164
project creation, 163
remainder, 162
selection, 164
solution explorer, 165
startup project, 166
WriteLine() method, 163

logical (see Logical operators)
mathematics, 159, 160
NOT ( ! ) operator, 260–264
OR operator

&&/||, 255
FALSE OR FALSE testing, 259, 260
FALSE OR TRUE testing, 257, 258
Main() method, 255
source code, 256, 257
startup class, 255
TRUE OR FALSE testing, 258, 259
true section, 257

PEMDAS, 160
precedence/priority, 159
programming labs, 940–942
programs, 161
selection, 195, 196
solution explorer/project analysis

add/subtract, 184
code analysis, 169
code calculation, 176
code structure, 170
compound assignment, 186
CoreCSharp solution, 166
decimal places/currency, 184

© Gerard Byrne 2022 
G. Byrne, Target C#, https://doi.org/10.1007/978-1-4842-8619-7

https://doi.org/10.1007/978-1-4842-8619-7#DOI


1060

discount formula, 177
divide (/=), 189
file explorer/finder, 166, 167
formatting output, 181
holding project information, 168
increment operators, 185
Main() method, 170, 171, 173
mathematical calculations, 181
message displays, 173
minus equals (-=), 188
multiply equals(*=), 188
output information, 178, 179
placeholders, 182
plus equals (+=), 187
Program.cs file, 168, 170
project file, 168
quotation output, 180
QuoteArithmetic.cs  

structure, 170
solution file, 167
square root, 191–193
toolbar, 166
user input, 174–176
WriteLine() method, 181

string
case construct, 231
case statements, 233–236
class code, 232
coding technique, 239
concatenation, 243
console window, 236–239, 243–245
conversion, 233
reinforce selection, 239
startup class, 236
Switch.cs program, 231
ToUpper() method, 246
types, 245
variable type, 233
WriteLine() method, 240–242

switch construct
class template, 218
case construct code, 225
console window, 222–224
general format, 217
Main() method, 218
source code, 220, 221
stratup class, 219
string, 219, 231–239
when, 225–231

when clause
case block, 227, 228
case code, 230, 231
code completion, 229, 230
Main() method, 226
startup class, 225, 226

Arrays, 614, 647, 895, 896, 1046, 1048
data structure

collection, 329
declaration, 330
definition, 330
homogenous, 331
insurance/household  

products, 329
programming concept, 329
single-dimensional arrays, 331
subscript/index, 331
types, 331

foreach loop
array items, 352
console window, 350–352, 359
declaration, 355
depiction, 360
do while loop, 357
error messages, 353, 354
foreach iteration, 358, 359
formatting method, 348
generic code, 348
IndexOutOfBounds 

exception, 360–362

Arithmetic operations (cont.)

Index



1061

iterations, 348, 349, 359
Main() method, 353
variables, 353, 354, 356

labs, 953, 954, 956–961
ranges/indices

classes, 362
declaration/creation, 363
hat operator, 364, 365
index expression, 362
index from end, 365
length and index from  

end, 367, 368
LINQ library, 363
Main() method, 362
output process, 364
programming statement, 363
range operator, 371, 372
Skip() and Take() methods, 370, 371
ToList()/GetRange() methods, 

368, 369
traditional index/hat  

operator, 367
single-/one-dimensional array

accountNumber, 333
creation, 335
data types, 332
declaration, 333
default values, 336, 337
do-while loop, 343
insurancePremiums, 334
insuranceTypes, 332
one stage, 335–338
references, 338
two stages, 334, 335
variables, 342

zero-based referencing
account number, 338
arrayPositionCounter, 344–346
claimAmount, 345
class template, 340

CoreCSharp, 339
declaration/creation, 341
details, 340
do while iteration, 348
do-while loop, 343
elements, 338
insurance type, 338, 339
integer code, 342
numberOfClaimsEntered 

counter, 347
permanent, 341
project creation, 339
source code, 343, 347
startup project, 339
store declaration, 341
user input code, 346
variables, 342
vehiclePolicyNumber, 344

Array.Sort(), 908
Array values, 358, 898–900, 907, 908, 

914, 918
ASCII byte values, 663
AskForVehicleValue, 974
ASP.NET web application, 40, 51
Assignment warning, 799, 800
Asynchronous processes, 678
async method, 685, 766
Attribute, 728–738
Auto default struct, 1050–1055
Auto-implemented  

properties, 735, 763
AutoInsurance, 996, 1002

B
BinaryFormatter, 729, 730, 740, 745, 750
Binary search, 893, 900–908
Brute-force, 893
Bubble sort, 908–914
Byte array, 661–663, 671, 688

Index



1062

C
C# 8

individual fields, 803
nullable reference types, 

126–140, 797–801
readonly members, 793–797

C# 11
auto default struct, 1050–1055
list patterns, 1044–1050
new lines, string interpolations, 

1042–1044
official release, 1033
raw string literals, 1034–1042
warning wave 7, 1055–1057

CalculatedValues, 966, 967
CalculateTax() method, 524, 831, 832
CalculateVATAmount(), 431, 432
Calculator class, 1012, 1017, 1018, 1026
Callback, 678
Call stack, 717
Casting/parsing

boolean type, 157
bool/string types, 153, 155
compile error, 153
conversion issue, 156
CoreCSharp solution, 144
data types, 143
definition, 143
error message, 150
framework, 146
help message, 150, 155
initial values, 148
integral types, 144
int/short type, 150–152
message displays, 149
namespace renaming option, 148
naming process, 145
Parse() method, 155
Program.cs file, 147
project creation, 144

quick actions/refactorings, 147
range type, 152
selection, 145
solution explorer, 146
startup project, 147
string input and assign, 154
ToBoolean() method, 157
user input, 154
variable value, 149

Catch block message, 748, 749
Chaining, delegates, 841
ChangeAccountStatus, 858, 864
CheckIfQuoteCanBeMade() method, 717
checkIfTheSame() method, 873, 874, 876, 

879, 880, 883, 884
CheckPolicyType() method, 1049
ClaimCalculator, 967–969
ClaimsPerState, 977
ClaimValues, 986
Classes, 774–776

constructor (see Constructor)
data structure

constants, 450, 451
data/function members, 448
encapsulation, 448
fields, 449, 450
getter method, 453
legacy languages/programs, 448
methods, 451, 452
properties, 453, 454
sequential programming, 448
setter method, 454

labs, 966–968, 971–975
method types, 447
objects

AreaOfCircle() method, 508
AreaOfRectangle() method, 515, 517
CircleFormulae class, 504–512
CircumferenceOfCircle() method, 

511, 512

Index



1063

Main() method, 503
PerimeterOfRectangle() method, 

517, 519, 520
RectangleFormulae class, 512–520

Class template, 218, 279, 300, 340, 430, 
545, 653

Clean code, 63, 161, 429, 704, 819
Cleaner code, 289, 290, 811, 812
Close() method, 649, 711–713
Code commenting

multiple-line comments, 89–91
.NET 6 templates

Goodbye message, 88
keyboard input, 88
namespace, 86
Program.cs file, 86
single-line comments, 87
top-level statements, 85
traditional code, 84

self-documenting code, 77
single-line (see Single-line comments)
Visual Studio

code coloring, 78
comments, 79
notes, 78

Code sequences, 634
Coding skills, 922, 923
Comment block, 89, 902, 903, 910, 916
Common Intermediate Language 

(CIL), 5, 6
Common Language Runtime (CLR), 

2, 5, 377
Common routines

binary search, 900–908
bubble sort, 908–914
insertion sort, 914–921
linear search, 893–900
programming routines, 893

Common Type System (CTS), 33–36, 94, 141
CompareTo(), 611–614

Comparison operators
Boolean true section, 203
else if, 216
else if statement, 210
if block execution, 208
if construct, 203–208
if-else construct, 208–210
if-else if construct, 210–217
if-else Statement, 198–200
if statement, 197
operators, 196, 197
primary selection, 197
switch statement, 201, 202

Compiled code, 657, 658
Compile error, 153, 587, 637, 638, 1050
Compiler, 29, 122, 356, 383, 552, 792
Composite formatting, 630
ComputerInsurance class, 819, 820
Computer program

C# program code, 31
ingredients/instruction, 31
operations, 37
overview, 27
programming language, 27–29
Python program code, 32
recipe information, 29, 30
type (see C# programming language)

Concat() method, 616–617
Concatenating strings, 617, 640–642
Concatenation, 113, 114, 117, 616
Conditional/ternary operator

code analysis, 267
error message, 268
expression, 264
FALSE block, 267
if-else construct, 264
Main() method, 265
nested conditional operator

console window, 270–273
execution, 270

Index



1064

syntax, 268
ternary operator, 269, 270

programming muscle, 265
ternary operator, 266
true section, 267

Console window, 610, 613, 616, 703, 
709, 1040

Console.WriteLine(), 58, 66, 133, 163, 627
Constants, 450–451, 463, 464, 803
Constructor, 732–734, 779, 843–845, 

1050, 1053
DateTime parameter, 491
default constructor, 455
error message, 492, 498
instantiation, 457
overloading

agent class, 461
amount methods, 482
arrays class, 462
ClaimDetails class, 481
class-level variable, 468
customer class, 462
date methods, 483
do while construct, 480
encapsulate field, 485
error message, 484
increment method, 484
Main() method, 467
math class, 464
method-level variable, 483
NumberOfClaimsEntered  

property, 485, 486
parse method, 463
policy number methods, 482
quick actions/refactorings, 484
ReadTheRepairShopId() 

method, 480
Sqrt() method, 464
static fields and methods, 471

WriteRepairShopIdToTheArray() 
method, 481

parameter method, 502
passing data, 492
reading method, 493

Constructor
accessor property, 493
arguments, 495
code analysis, 455
ClaimApplication class, 492, 493, 499
ClaimDetails class, 490, 491, 496, 497
class code, 457
code analysis, 458
console window, 494, 500, 502, 503
creation, 783–785
custom structure, 455
definition, 454–458
DisplayInvoiceReceipt() 

method, 497–499
features, 456, 490
instantiation, 457
invoice receipt, 495, 501
numberOfClaimsEntered, 493
overloading

additional fields, 472
agent class, 461
calling method, 487
ClaimApplication class, 469, 479
ClaimDetails class, 467, 472–478
code analysis, 478, 479
concepts, 470
console window, 471, 488, 489
CoreCSharp, 466
definition, 459
DisplayInvoiceReceipt 

methods, 487
distinct categories/groups, 460
encapsulate field, 484
error message, 484
hospital roles, 465

Conditional/ternary operator (cont.)

Index



1065

HowManyClaimsAreBeingMade() 
method, 470

instructions, 465
Int32 class, 463
Main() method, 460, 479
maintenance and testing, 460
math class, 464
methods, 460
MethodsV1, 459
MethodsValue.cs class, 468
MethodsValue() method, 489
objects, 471
school roles, 465
separation, 465

parameter method, 502
templates, 456
this keyword, 456

Const string interpolation, 639–644
Contains() method, 621–623
Copy a file

Copy() method, 672–674
handling processes, 671

CopyAFile(), 693
Copy() method, 672–674
CoreCSharp, 700, 730, 807, 834, 874, 

894, 1034
C# programming, 3, 4, 40, 181, 330, 854

application formats, 37
ASP.NET, 40
assigned values, 34
built-in, 33
class/classes, 36

concepts, 48
instances, 47
InsuranceQuote, 47
Main() method, 48
naming conventions, 49, 50
real application, 47
valid/invalid identifiers, 50
variables/methods, 48

common type system, 33
compilation process, 5, 6
console application, 37–39
.csproj file, 4
enumeration, 34
namespace, 46, 47
.NET MAUI, 39, 40
overwritten values, 34
reference types, 35
structure, 35

args array, 45
class, 44
code analysis, 42
CSharpNotes.docx, 43
Main() method, 44, 45
method, 44
namespace, 42, 43
syntax/format, 40
templates, 41
top-level statements, 41, 42

types, 32, 33
user-defined, 33
value types, 33

CreateJSON(), 766, 767
Create() method, 655
.csproj file, 4, 798, 1033
CustomerBinary class, 727, 731, 737, 745, 

747, 751
Customer class, 859–861
CustomerJSON class, 763, 764, 766
Customer.json file, 768
CustomerBinary object  

details, 749, 750
Customer struct, 775–777
CustomerXML, 751, 755, 757, 761

D
DataContractSerializer, 751
Data conversion, 936–941

Index



1066

Data types, 881
common type system, 94
conversion

assignment, 113
automatic conversion, 98
blank line, 106
brackets () method, 113
code analysis, 111
concatenation, 113, 114, 117
console input/assign, 116, 118
console output, 107, 109
data type string, 115, 118
debugging mode, 117
escape sequences, 110
framework, 101
heading/message, 105
implicit/explicit, 96
Main() method, 104
message displays, 106
narrowing, 98
.NET app, 100
Program.cs file, 102
project creation, 100
quick actions/refactorings, 103
ReadLine() method, 119
refactoring option, 103
rename option, 103
solution folder, 101
source code, 98, 99
startup project, 102
steps, 118
string interpolation, 114–116, 120
string variable, 104
System.Convert class, 97
tab indentation, 111
type declaration, 112
user input/assigning, 105
variable scope, 112
vehicleColour, 119
vehicleManufacturer, 99, 104, 105, 

108, 113

vehicleModel variable, 116
widening, 97
WriteLine() method, 108

framework types, 95, 96
interoperability, 94
labs, 928–935
nullable (see Nullable reference types)
primitive types, 94
string, 96
value/reference types, 93
variable differences

compiler error, 122
convert class, 125
code analysis, 124
console input/assign, 121
data type int, 120, 121
error list window, 122
implicit/explicit, 123
Int32() method, 124
Parse() method, 126
steps, 120
string, 121
ToInt32() method, 125

DayOfWeek, 805
Debugging, 117, 600, 700, 923
Declaration, 112, 335, 355, 804, 806, 

856, 857
Default constructor, 454, 455, 490, 492, 

507, 752, 775–779
Default value, 34, 336, 337, 1055
Delegates, 854, 855

complex example, 842–851
concept, 831–835
declarations, 832, 833
labs, 1011, 1012, 1015–1019
Microsoft site, 831–834
signature, 833
single (see Single delegate)
stages, 832

DeleteAFile(), 693
Delete() method, 675–677

Index



1067

Deserialization
code, 758, 759
comments, 744
file handling, 727
serialized file, class, 743–749

Deserialize(), 762, 768
DeserializeAsync(), 762
DetermineVATAmount(), 837, 838
DivideByZeroException, 695, 697, 705, 724
Divider, 848
Double quote, 66, 113, 233, 634, 

1035–1037, 1039

E
Email address, 623, 624
EmailNotification() method, 865, 866, 

869, 870
Embedded quotes, 1036
Encapsulation, 448, 788
Enum class, 809, 810, 814
Enumerations, 1002–1010

assigning values, 815, 816
descriptive names, 803
example, 804–806
foreach iteration, 811–814
index, 809
instance, 809
integer values, 803
iterated items, 810
length variable, 810
methods, 809–812
sample application, 818–830
values, 806–808, 814, 815

Equal strings, 613
Error message, 123, 124, 150, 268, 534, 

706, 796, 800, 1051
Errors, 701, 781, 785, 789, 796
Escape sequence, 110, 111, 634, 1036
Estimated value, 826, 828, 1004

Event handler
application code, 857, 858
customer/policy classes, 859–864
programming muscle, 858, 859

Events
ChangeAccountStatus 

method, 864–865
declaring, 856, 857
EmailNotification() method, 865–867
handling, 857–864
programming labs, 1017–1026
publisher, 853–856
raise, 857
remoce method, 869, 870
subscriber, 853–856
TextMessageNotification() 

method, 867–869
Exceptional event, 693
Exception handling

calculation, 695
catch block, 697–699, 702, 703
code, 693, 694
emergency device, 693
FileNotFoundException, 707–710
finally block, 699
index out of bounds, 695
Main() method, 700, 701
methods and fields, 705
multiple exceptions, 704–708
StackTrace, 713
theory of exceptions, 699
tools, 696
try block, 696
zero exception, 695

ExceptionHandlingWithSwitch  
class, 720

Exceptions, 693, 704–707, 986–989
exNoFile.Message, 710
Expression-bodied members, 736, 737
Extra spaces, 596, 618

Index



1068

F
Fallback, 698
Fat arrow, 736
File access, 741
File class

copying, 671–674
deletion, 674–677
file view, 657
methods, 650, 652
reading, 665–672
show all files, 656
static methods, 651
stream, 680–685
StreamWriter class, 679, 680
text file, 657
writing, 658–664

File handling, 727, 982–986
data structure, 647
file class, 649–658
file path, 648
.NET, 648
streams, 648

File mode, 741
File name, 741
FileNotFoundException,  

694, 707–710, 723
File path, 598, 648
File.ReadAllLines(), 651
FileStream class,  

649, 728, 741, 745
File success message, 674
Finalizer, 775
Finally block, 696, 699, 710–713
foreach iteration, 811–814
Format() method

code applications, 627
formatting items, 628–630
spacing, 633, 634
string interpolation, 630–633
@ Verbatim, 634–637

G
Game application, 647
Generic class, 877–885
Generic method, 877–891
Generic parameters, 877–885
Generics

C# language, 873
class, 877–885
method, 877–885
parameters, 873, 877–885
PolicyMatcher class, 874
programming labs, 1026–1031
programming muscle, 874

GetBytes() method, 661
GetHardwareValue(), 717
GetName() method, 809, 813, 

814, 817–818
Getters, 753, 754
GetValues() method, 814–815, 817, 818

H
HARDWARE policy type, 1048, 1050
Hardware type, 818, 826
hardwareTypeFactor, 819
HardwareType() method, 843, 849
Hardware value, 714, 815, 818, 826
HardwareValueException, 714
hardwareValueFactor, 819, 823
Hypertext Transfer Protocol (HTTP), 762

I
IFormatter, 740, 745
Immutable, 596, 597, 789
IndexOf() method, 622–624
IndexOutOfRangeException, 694, 695
Input/output operation

black/white console, 54
code analysis, 54–56

Index



1069

console app, 60
ConsoleV1 code, 62
console window, 65, 68
Console.WriteLine()/Console.

ReadLine() method, 58
context menu, 65
cubes, 57
directives, 64
dot notation, 56
event handlers, 57, 58
explorer panel, 62
framework version, 61
keyboard key, 67
language selection, 59
learning process, 53
lightning bolt symbol, 57
message displays, 69
methods/variables, 56
process, 53
project creation, 59
ReadLine() method, 65, 67, 68
solution/project details, 60, 61
spanner, 57
statements, 64
tasks, 53
traditional code, 63
unused code, 63
window preferences

access modifier, 72, 74
background and text, 72
background color, 71
console display, 69
curly braces, 73
Main() method, 74
method signature, 74
properties/methods, 72
public keyword, 73
text color, 70

WriteLine() method, 54, 66, 68
Insert GB, 626

Insertion sort, 914–921
Insert() method, 624–627
Instantiation, 489, 780–782
Integer values, 33, 162, 337, 407, 803, 876
Integrated Development Environment 

(IDE), 4, 38, 55, 78, 166, 463, 464
Interfaces/abstract classes, 775, 974–977

abstract methods, 532
CalculateTax() method, 524
CalculateVAT() method, 533
characteristics, 529
classes, 523
class template, 531
code analysis, 533
concepts

characteristics, 552
coding method, 552
console window, 562
CountryOne class, 560
CountryTwo/CountryThree 

classes, 561
default methods, 552
developer implementation, 553, 554
developers, 555
EcommerceApplication class, 558
folder creation, 554
IEcommerceBilling class, 556, 558
manager, 553
source code, 556
startup object, 559
statement, 552
TaxCalculation() method, 556
template code, 555

concrete class, 527, 529
CoreCSharp, 530
CRate() method, 525
default method

compile error, 587
concepts, 582
console window, 586, 589

Index



1070

IPolicy Interface, 582
Main() class, 585
overridden version, 588
PolicyApplication.cs, 584
PolicyManager class, 583, 587
Program class, 584
source code, 582
startup project, 586
upcasting technique, 588

definition, 524
ecommerce application, 523
EcommerceBilling abstract class, 528
implementation

card types, 563
console window, 567, 571, 578, 581
CountryOne class, 564
CountryThree method, 569
CountryTwo.cs, 576
CountryTwoDebit class, 580
CountryTwo methods, 567, 571
differences, 581
EcommerceApplication class,  

565, 570, 577
folder creation, 572
ICreditCardPayment.cs, 574, 575
IEcommerceBilling.cs, 573, 574
IEcommercePayment, 563, 572
inheritance, 562, 564
IPaymentMethod, 573, 574, 579
payment method, 566
requirement, 567
source code, 564
startup class, 578
template code, 563

instantiate
abstract class, 533
AbstractVATCalculations class, 535
CalculateTotalPrice() method, 536
CalculateVAT() method, 536

concrete class template, 534
console window, 537, 539
constructor, 535
error message, 534
Main() method, 533
solution explorer panel, 534
source code, 538
VATCalculations class, 534, 535
VATCalculator class, 537, 539

manager, 525
method signatures/return types, 524, 525
Program.cs file, 531
project creation, 530
RegionalRateCalculation() 

method, 525
RegionBRate() method, 525
sealed class, 528
source code, 556
static member

AbstractVATCalculations class, 542
CalculateDiscountedAmount() 

method, 542
class/method abstract, 545
class template code, 545
concrete method, 545
console window, 543, 550, 551
CountryOne class, 546, 549
CountryThree class code, 547
CountryTwo class code, 546
discountRate, 542
EcommerceApplication class, 

548, 550
Main() method, 539
manager/instance 

characteristics, 541
MethodsValue, 540
VATCalculator class, 543

static members/methods/
fields, 590–592

TaxCalculation() method, 524, 529

Interfaces/abstract classes (cont.)

Index



1071

VatCalculation() method, 523
Internet of Things (IoT), 16, 854
Interpolation, 630–633, 1041

const string, 639–644
spacing, 633, 634
string, 1042–1044

Interpreted verbatim, 1034
Iterations, 349, 901–909, 921

break statement
Boolean section, 307
execution, 308
if construct, 307
maximumNumberOfClaims, 307

concepts/constructs, 276
construct options, 275
continue statement

console window, 312
counter value, 309
differences, 310
implementation, 310, 311
maximumNumberOfClaims, 309
program execution, 313
scenario, 309

do (while) loop
add variables, 315
break/continue keywords, 313
break statement, 321–324
class template, 315
code analysis, 314
console window, 319–321
continue statement, 324–327
events, 318, 319
formatting data, 314
numberOfClaimsBeingMade, 316
source code, 317, 318

instructions, 275
labs, 947–954
for loop, 811–814

adding option, 280
break/continue keywords, 277

break statement, 290–294
claimAmount, 281, 282
claimDate, 282
cleaner code, 289
code construct, 277
code details, 282, 283
code execution, 283
console window, 283, 284, 290
construct, 276
continue statement, 294–298
details, 279
formatting data, 276
initial value, 288
input values, 288
Main() method, 278
maximumNumberOfClaims, 291
principle, 285
Program.cs file, 278
remove option, 286
repairShopID, 280
return keyword, 278
stages, 285, 287
variable declaration/value 

assignment, 286
variables, 279
vehiclePolicyNumber, 281

selection, 275
while loop

break/continue keywords, 298
code analysis, 299
code details, 304
comparison, 305
console window, 305, 306
constructs, 302
input values, 301
Main() method, 300
program details, 299
return, 298
user input, 302, 303
variables, 300

Index



1072

Iterative binary  
search, 900–908

IVehicleInsuranceQuote, 974, 975

J, K
JSON, 762–770
JSONSerialisation class, 764
JSON Serialize() method, 764
Just-In-Time (JIT), 5–7

L
Language-Integrated Query (LINQ) 

library, 363, 368
Legal C# code, 1042
Length property, 462, 604–605
Linear search

academic or technical  
interview, 893

algorithm, 893
application, 894–900
binary search, 893
data structure, 893
parameter method, 898
returned value, 897

List patterns, 1044–1050
Logical operators

AND operator, 247
C# operators

AND, 249
OR, 249
short-circuit evaluation, 249

NOT operator, 248, 249
OR operator, 248
overview, 247

Long Term Support (LTS), 15, 16
Loosely coupled code, 877
Lower case, 620
Lowercase ASCII characters, 1055

M
Main() method, 601, 603, 655, 656, 731, 

740, 764, 776, 780, 791, 845, 847, 
858, 887, 895, 902, 910, 912, 1035

Matching string, 616, 1046
Member properties, 784–788
Members, 843–845
Memory usage, 597
Methods

access modifier, 377–380
CalculateCommission(), 378
concepts/functions, 375–377
general format, 378
local function, 429

application output, 434
CalculateRepairCostIncludingVAT()  

method, 431, 432
CalculateVATAmount, 432
costOfRepairWithVAT, 433
Main() method, 430
message display, 433
separation of concern (SOC), 429
SOLID principles, 429
source code, 430
test-driven development 

approach, 429
variables, 433

Main() method, 379
modularization, 375
null parameter checking

adding variables, 438
application output, 440, 441, 443
approaches, 441
ArgumentNullException.

ThrowIfNull() method, 442
DisplayInvoice()  

method, 439, 440
holding variables, 441
Main() method, 438
overview, 437

Index



1073

outer method variable, 437
overloading, 425–428
parameter (see Parameter methods)
parentheses (), 378
procedures, 376
return type, 377
static local function, 434–437
value method, 381

application output, 407
assigning values, 404
calling statement, 400, 404, 405
code analysis, 398
commented assignment, 402
console window, 406
data type, 397
differences, 399
instructions, 401
method signature, 397
MethodsVoid.cs, 399
ordered steps, 400
Parse() method, 399
refactoring, 403
return statement, 401–403, 405
return type, 398
source code, 398
void methods, 397

void method, 381
application, 387, 396
calling, 383
call method, 395
class template, 385
code analysis, 383
console window, 395
CoreCSharp, 384
CurrentValueOfCounter(), 390
declaration and  

creation, 382, 388
DisplayAllItemsInTheArray(), 393
Main() method, 389, 394
MethodsVoid.cs class, 387

modularization, 397
program code, 385–387
Program.cs file, 384
project creation, 384
ReadTheAmountBeing 

Claimed(), 392
ReadTheRepairDate(), 392
ReadTheRepairShopId(), 390
ReadTheVehiclePolicyNumber(), 391
static keyword, 387, 388
WriteClaimAmountTo 

TheArray(), 392
WriteRepairDateToTheArray(), 393
WriteRepairShopIdTo 

TheArray(), 391
WriteVehiclePolicyNumber 

ToTheArray(), 391
Method signature, 74, 407, 524, 

831, 835–836
Microsoft documentation, 729, 730, 

861, 1055
Microsoft site, 798, 799, 831–834
Mixed parameter  

types, 883–885
Modifiers, 482, 785, 1034
Multicast delegates, 833, 841, 842

chaining, 841
invoked, 842, 843
local level variable, 839
references, 839
target method, 840, 841

Multiple catch  
clauses, 705, 706

Multiple exceptions, 704–708
Multiple-line comments

comment blocks, 89–91
console output, 91
Main() method, 89
program code, 89, 90

myMixedVehicleRegistrations, 609

Index



1074

N
.NET programming language

compilation process, 5, 6
cross-platform, 3, 5, 39
evolution/progression, 2, 3
framework

business, 9
command prompt, 20
controls, 8, 9
current releases, 15
formats, 13, 14
full/maintenance, 16
installation, 14
inversion control, 8
vs. library, 9
long term support, 15
Microsoft site, 14
runtimes, 13, 20
SDK version, 16–19
verification, 19, 20

libraries, 1
managed/unmanaged code, 10
MAUI, 39, 40
Microsoft website, 40
numerical library, 8, 9
runtime environment, 2
runtime errors, 7
templates, 84–88
time and runtime, 6, 7
Visual Studio (see Visual Studio)
WriteLine() method, 1, 2

Non-nullable, 127, 797
NonSerializable member, 750
Non-string data type, 595
Nullable reference types, 797–801

code analysis, 130, 137
console input/assign, 132, 134
context, 126
DateTime type, 135–137, 140
decimal type, 131

float/double data types, 130
implicit conversion, 129, 133
message warning, 127
methods, 138
non-nullable type, 127
Parse() method, 136
properties, 138
structs, 139
ToInt32() method, 129, 130
variable, 133
WriteLine() method, 128

Null value, 126, 440, 441,  
797, 800, 801

O
Object-oriented programming (OOP), 

447, 448
Operating system, 3, 14, 19, 854
OurGenericType, 878, 879, 882
OverflowException, 725

P
Parameterless constructor, 803
Parameter methods, 960, 967

AccumulateClaimAmount() 
method, 420

actual values, 407
adding method, 419
application output, 425
arguments, 409, 422
association, 410
business logic, 408
calling method, 423
claimAmount() method, 415
code analysis, 409, 410
code declaration, 417
code execution, 419
console window, 424, 425
do while construct, 420

Index



1075

input arguments, 408
invoice details, 423
local variables, 411
Main() method, 422
passing values, 414, 416, 418
ReadTheRepairDate() method, 417
ReadTheRepairShopId() method, 

411, 412
repairShopId, 412
static keyword, 412, 414
static variable, 415, 416
test data, 424
totalOfAllClaims, 420
VAT, 419, 421
vehiclePolicyNumber, 414, 415
WriteRepairShopIdToTheArray() 

method, 413
Parameter types, 880, 883–885
Parsing, see Casting/parsing
Policy11, 1053, 1054
Policy class, 842, 843, 858, 865
PolicyDueForRenewal() method, 843
Policy instances, 847
PolicyIsDueForRenewal, 848, 850
Policy list, 848–850
PolicyMatcher class, 873–876
PolicyMatcherGeneric, 878, 882
Policy type factor, 819, 822
policyType field, 800, 801
Policy types, 800, 818, 826, 1044, 1045, 1048
Polymorphism, 426
PremiumGreaterThanTwenty() method, 

843, 848, 850
Private properties, 737, 738
Programming labs, 953–959

arithmetic, 940–942
classes, 966–974
coding skills, 923
C#practice exercises, 923
data conversion /arithmetic, 936–940

data types, 928–936
delegates, 1011–1017
enumerations, 1002–1010
events, 1017–1026
exceptions, 986–989
file handling, 982–986
generics, 1026–1031
interfaces, 974–977
iteration, 947–953
methods, 959–966
selection, 942–947
serializsation, class, 989–996
solutions, 923–928
string handling, 977–982
structs, 996–1002
WriteLine(), 924–929

Programming languages, 773
advantages/disadvantages, 27–29
facts, 28

Programming muscle, 730–733, 806
Property accessors, 483, 733, 734, 

788, 843–845
PropertyInsurance class, 997
Publisher, 853–856

Q
QuoteMethodsClass, 967, 972–973

R
rawStringLiterals11V2, 1041
ReadAllBytes() method, 669–671
ReadAllLines() method, 667–669
ReadAllText() method, 665–667
ReadJSON(), 769, 770
Read() method, 649, 680
Readonly struct, 788

creation, 789–792
members, 793–798

Index



1076

Receiver, 853
Reference types, 93, 126–140, 773, 

774, 797–801
Registrations, 977
Regular string, 599

backslash, 599
code, 600

RenewalMatcher class, 885–887, 889
Replace() method, 619–621
Rethrow keyboard, 716–725
Return type, 377, 383, 398, 831, 835, 836

S
Seek() method, 649, 688, 689
Selection

labs, 942–943
output, 944
solutions, 943–947

Self-documenting, 704, 834
Serializable class, 728, 729, 731–733
Serialization

access modifier, 749, 750
attribute, 728–738
binary data, 727
byte stream, 727
code, 746, 754, 755
and deserialization, 727, 728
JSON, 762–770
labs, 989–996
Main() method, 728
nonserialized, 728–738
object, 738–743
refresh button, 742
serialized file to a class, 743–749
XML, 751–763

Serialize() method, 728, 741, 762, 764
SerializeAsync() method, 762, 766
SerializedCustomer, 738
Setters, 730, 737, 753, 754, 790, 791

Single delegate
local variable, 837
method signature, 835, 836
return type, 835, 836
target method, 836, 837

Single-line comments
code statement, 80
console project, 83
CoreCSharp, 84
forward slash symbols (//), 79
framework, 83
inline comment, 80
project code, 82
projects/solutions, 80
rename option, 81, 82
solution explorer, 84
statements, 79

Software developers, 923
Software Development Kit (SDK)

architecture options, 16–19
download process, 17, 18
grant permission screen, 19
installation, 18

Solution Explorer panel, 62, 102, 1033
Space character, 608
Spacing, 633, 634
Special characters, 597, 599, 1036
Split() method, 607–610
StackTrace, 713–714
StartsWith(), 605–607
Startup program, 748
Static methods, 590–592, 651
StreamReader class, 677–679, 711

methods, 679, 680
Read() method, 680–682
stream, 677, 678
synchronous/asynchronous 

processes, 678
Streams, 648, 677, 678
StreamWriter class, 679, 680, 755

Index



1077

StreamWriter WriteLine( ) 
method, 682–685

String class, 246, 247, 596, 601
String.Format(), 627–637
String handling, 647

application, 595, 596
array, 614
CompareTo(), 611–615
Concat(), 616, 617
Contains(), 621–623
IndexOf() method, 622–624
Insert() method, 624–627
labs, 977–981
length property, 604, 605
literals, 597–601
manipulation, 595–597
$@ or @$, 637–644
Replace(), 619–621
replacement, 597
Split(), 607–610
StartsWith(), 605–607
String.Format(), 627–637
substring, 601–604
ToLower(), 615–617
ToUpper(), 615–617
Trim(), 617, 618

String interpolations,  
630–633, 1042–1044

spacing, 633, 634
String materials

application, 1034
double quote, 1036
interpolated values, 1042
text, 1038

String variable, 99, 104, 601, 653–655
Structs, 996–1002

auto default, 1050–1055
C#, 773
C# 8, 793–801
vs. class, 774–776

coding, 773
constructor creation, 783–785
declaration, 775
default constructor, 776–778
encapsulation, 788
instantiation, 780–782
member properties, 784–788
new keyword, 780–782
readonly, 788–792
reference types, 773, 774
user constructor, 779–781
value types, 773, 774

Subscriber, 853–855
Substring() method, 601–604
Switch construct, 217–225, 720
Switch statement, 721, 722
Synchronous processes, 678
SystemException, 698
System.IO namespace, 651, 653, 672
System namespace, 595
System.Text.Json namespace, 762

T
Target method, 836, 837, 840, 841
Ternary operator, see Conditional/ternary 

operator
Text file, 657

data written, 660
TextMessageNotification()  

method, 867
TextReader class, 679, 680
Throw keyword, 699–703, 714–717
Tightly coupled method, 877
ToLower() method, 615–617
ToString() method, 809, 861
totalOfAllClaims, 410, 419, 841
ToUpper() method, 615–617
Trim() method, 617–618
Typist, 596

Index



1078

U
Unhandled exception, 672, 693
User constructor, 779–781
User interface (UI), 4, 38, 40
UseStreamWriterRead() method, 693

V
Value-added tax (VAT), 419, 421, 523
VALUE methods, 959
Value types, 773, 774
Variable, 734, 735, 903, 904
VatCalculation method, 523, 831, 832
VehicleInsuranceQuote class, 974
Verbatim @, 1035, 1036
@ Verbatim, 634–637
Verbatim string, 597, 1034

backslash, 598
line, 598

Visual Studio, 734
community edition, 22, 38
download page, 21
drop-down menu, 23
installation, 22, 23

sign in, 24
verification, 24
web page, 21

W
Warning wave 7, 799, 1055–1057
Web browser, 647
WriteAllBytes(), 661–664
WriteAllLines() method, 660, 661
WriteAllText() method, 658–660
WriteLine() method, 682, 683, 709, 787, 

837, 838, 1040
labs, 924
solutions, 924–927

Write() method, 649

X, Y
XmlSerializer, 755, 758
XML serialization, 751–763

Z
Zero exception, 695

Index


	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: .NET
	.NET: What Is It?
	.NET Core: What Is It?
	C# Language Versioning
	.NET and C# Compilation Process
	Compile Time and Runtime
	Framework and Library
	Library
	Framework

	Managed and Unmanaged Code
	Chapter Summary

	Chapter 2: Software Installation
	About the .NET Framework
	Installing the .NET Framework
	Verify the .NET Framework Installation

	Installing Visual Studio
	Verify the Visual Studio Installation


	Chapter Summary

	Chapter 3: Introduction
	Computer Program
	Programming Languages
	A Computer Program: A Recipe
	Type in C#
	The Basic Operations of a Computer

	C# Program Application Formats
	Format 1: Console Application
	Format 2: .NET MAUI
	Format 3: ASP.NET Web Applications

	The Structure of a C# Program
	Namespaces
	Classes
	Naming a Class: Class Identifiers


	Chapter Summary

	Chapter 4: Input and Output
	Write to and Read from the Console
	Change Console Display Settings

	Chapter Summary

	Chapter 5: Commenting Code
	C# Single-Line Comments
	New .NET 6 Templates
	C# Multiple-Line Comments
	Chapter Summary

	Chapter 6: Data Types
	Data Types, Variables, and Conversion
	Data Types
	Conversion from One Data Type to Another
	Converting
	Something a Little Different with Our Variables

	C# 8 Nullable Reference Types

	Chapter Summary

	Chapter 7: Casting and Parsing
	Data Types, Casting, and Parsing
	Chapter Summary

	Chapter 8: Arithmetic
	Arithmetic Operations
	Common Arithmetic Operators
	Integer Division
	Solution Explorer and Project Analysis
	Other Operators
	Plus Equals ( +=)
	Minus Equals ( -=)
	Multiply Equals ( *=)
	Divide Equals ( /=)
	Square Root


	Chapter Summary

	Chapter 9: Selection
	Arithmetic Operations
	Selection
	Comparison Operators
	The if Construct
	The if-else Construct
	The if else if Construct

	The switch Construct
	The switch Construct Using when
	switch with Strings
	switch with Strings
	Additional Example

	Logical Operators
	Using the AND Operator
	Using the OR Operator
	Using the NOT Operator
	Conditional Operator (Ternary Operator)
	Nested Ternary Conditional Operator

	Chapter Summary

	Chapter 10: Iteration
	Iteration and Loops
	Introduction to Iteration
	For Loop
	Break Statement
	Continue Statement

	While Loop
	Break Statement
	Continue Statement

	Do (While) Loop
	Break Statement
	Continue Statement


	Chapter Summary

	Chapter 11: Arrays
	Arrays: A Data Structure
	Single-Dimensional Arrays
	Choice 1: Declaring and Creating an Array in Two Stages
	Choice 2: Declaring and Creating an Array in One Stage
	Referencing the Array Elements

	foreach Loop
	IndexOutOfBounds Exception

	Ranges and Indices: C# 8 and Above
	Range


	Chapter Summary

	Chapter 12: Methods
	Methods: Modularization
	Methods: Concepts of Methods and Functions
	Some Points Regarding Methods
	Three Types of Methods
	Void Methods
	Value Methods
	Parameter Methods
	Method Overloading
	C# 7 Local Function
	C# 8 Static Local Function
	C# 10 Null Parameter Checking
	C# 10 Null Parameter Checking Approach

	Chapter Summary

	Chapter 13: Classes
	Classes and Objects in OOP
	A Class Is a Data Structure
	Type 1: Fields
	Type 2: Constants
	Type 3: Methods
	Type 4: Properties
	Type 5: Constructor
	Constructor Overloading

	Constructor
	Another Constructor

	Additional Example for Classes and Objects
	CircleFormulae Class
	RectangleFormulae Class


	Chapter Summary

	Chapter 14: Interfaces
	Interfaces and Abstract Classes
	The Interface or Abstract Class as a Manager
	Instantiate the Abstract Class?
	Static Members of the Abstract Class
	Concept of an Interface
	Implementing Multiple Interfaces
	Concept of Default Method in an Interface
	Concept of Static Methods and Fields in an Interface

	Chapter Summary

	Chapter 15: String Handling
	String Handling and Manipulation
	String Literals
	Substring
	Length
	StartsWith()
	Split()
	CompareTo()
	ToUpper() and ToLower()
	Concat()
	Trim()
	Replace()
	Contains()
	IndexOf()
	Insert()
	String.Format()
	Formatting the Items in the String
	String Interpolation
	String Interpolation: Spacing
	@ Verbatim

	What About $@ or @$?
	Const String Interpolation


	Chapter Summary

	Chapter 16: File Handling
	File Handling
	An Overview of File Handling
	File Class
	Writing to a File
	WriteAllText()
	WriteAllLines()
	WriteAllBytes()

	Reading from a File
	ReadAllText()
	ReadAllLines()
	ReadAllBytes()

	Copy a File
	Copy()

	Delete a File
	Delete()

	StreamReader Class
	Stream
	Synchronous and Asynchronous
	StreamReader Class Methods

	StreamWriter Class
	Reading from a Stream
	Writing to a Stream
	Async Methods and Asynchronous Programming
	WriteLineAsync

	FileStream
	FileModes


	Chapter Summary

	Chapter 17: Exception Handling
	Exceptions
	What Is an Exception?
	try
	catch
	finally
	throw
	Multiple Exceptions
	FileNotFoundException
	finally
	StackTrace
	throw
	rethrow

	Chapter Summary

	Chapter 18: Serialization
	Serialization and Deserialization
	Deserialization
	Attribute [NonSerialized]
	Serializing the Object
	Deserializing the Serialized File to a Class
	Access Modifier [NonSerialized]
	Serialization Using XML
	Serialization Using JSON

	Chapter Summary

	Chapter 19: Structs
	Concept of a Struct as a Structure Type
	Difference Between Struct and Class
	Struct with a Default Constructor Only
	Struct with a User Constructor
	Struct Instantiation Without the New Keyword
	Struct Instantiation with the New Keyword
	Creating a Constructor
	Creating Member Properties (Get and Set Accessors)
	Encapsulation
	Readonly Struct
	Creating a Readonly Struct
	C# 8 readonly Members
	C# 8 Nullable Reference Types

	Chapter Summary

	Chapter 20: Enumerations
	Concept of Enumerations
	Defining an Enumeration
	Enumeration Examples

	Enumerated Values: Use and Scope
	Enumeration Methods
	Using the foreach Iteration
	Enumeration Values: GetValues()
	Assigning Our Own Values to the Enumeration
	Use the GetName() and GetValues() Methods
	Sample Application Using Enumerations

	Chapter Summary

	Chapter 21: Delegates
	Concept of Delegates
	Single Delegate
	Declare the Delegate with Its Return Type and Method Signature
	Instantiate the Delegate and Set Its Target Method
	Invoke the Delegate

	Multicast Delegates
	Instantiate the Delegate Again and Set the New Instances’ Target Method
	Chain the Delegates
	Invoke the Multicast Delegate

	More Complex Example

	Chapter Summary

	Chapter 22: Events
	Concept of Events
	Publisher and Subscriber
	Declare an Event
	Raise an Event
	Handle an Event
	Add a Method to an Event Using +=
	Refer the Event to a Second Method Using +=
	Refer the Event to a Third Method Using +=
	Remove a Method from an Event Using -=

	Chapter Summary

	Chapter 23: Generics
	Concept of Generics
	Generic Class, Generic Method, Generic Parameters
	Generic Class, Generic Method, Mixed Parameter Types
	Generic Method Only

	Chapter Summary

	Chapter 24: Common Routines
	Common Programming Routines with C#
	Linear Search
	Create an Application That Will Implement a Linear Search

	Binary Search (Iterative Binary Search)
	Bubble Sort
	Insertion Sort

	Chapter Summary

	Chapter 25: Programming Labs
	C# Practice Exercises
	Chapter 4 Labs: WriteLine()
	Lab 1
	Lab 2
	Lab 3
	Lab 4
	Lab 1: Possible Solution with output shown in Figure 25-1
	Lab 2: Possible Solution with output shown in Figure 25-2
	Lab 3: Possible Solution with output shown in Figure 25-3
	Lab 4: Possible Solution with output shown in Figure 25-4

	Chapter 6 Labs: Data Types
	Lab 1
	Lab 2
	Lab 3
	Lab 4
	Lab 1: Possible Solution with output shown in Figure 25-5
	Lab 2: Possible Solution with output shown in Figure 25-6
	Lab 3: Possible Solution with output shown in Figure 25-7
	Lab 4: Possible Solution with output shown in Figure 25-8

	Chapter 7 Labs: Data Conversion and Arithmetic
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-9
	Lab 2: Possible Solution with output shown in Figure 25-10

	Chapter 8 Labs: Arithmetic
	Lab 1
	Lab 1: Possible Solution with output shown in Figure 25-11

	Chapter 9 Labs: Selection
	Lab 1
	Lab 2
	Lab 3
	Lab 1: Possible Solution with output shown in Figure 25-12
	Lab 2: Possible Solution with output shown in Figure 25-13
	Lab 3: Possible Solution with output shown in Figure 25-14

	Chapter 10 Labs: Iteration
	Lab 1
	Lab 2
	Lab 3
	Lab 4
	Lab 1: Possible Solution with output shown in Figure 25-15
	Lab 2: Possible Solution with output shown in Figure 25-16
	Lab 3: Possible Solution with output shown in Figure 25-17
	Lab 4: Possible Solution with output shown in Figure 25-18

	Chapter 11 Labs: Arrays
	Lab 1
	Lab 2
	Lab 3
	Lab 1: Possible Solution with output shown in Figure 25-19
	Lab 2: Possible Solution with output shown in Figure 25-20
	Lab 3: Possible Solution with output shown in Figure 25-21

	Chapter 12 Labs: Methods
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-22
	Lab 2: Possible Solution with output shown in Figure 25-23

	Chapter 13 Labs: Classes
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-24
	Lab 2: Possible Solution with output shown in Figure 25-25

	Chapter 14 Labs: Interfaces
	Lab 1
	Lab 1: Possible Solution with output shown in Figure 25-26

	Chapter 15 Labs: String Handling
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-27
	Lab 2: Possible Solution with output shown in Figure 25-28

	Chapter 16 Labs: File Handling
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-29
	Lab 2: Possible Solution with output shown in Figure 25-30

	Chapter 17 Labs: Exceptions
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-31
	Lab 2: Possible Solution with output shown in Figure 25-32

	Chapter 18 Labs: Serialization of a Class
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-33
	Lab 2: Possible Solution with output shown in Figure 25-34

	Chapter 19 Labs: Structs
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-35
	Lab 2: Possible Solution with output shown in Figure 25-36

	Chapter 20 Labs: Enumerations
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-37
	Lab 2: Possible Solution with output shown in Figure 25-38

	Chapter 21 Labs: Delegates
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-39
	Lab 2: Possible Solution with output shown in Figure 25-40

	Chapter 22 Labs: Events
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-41
	Lab 2: Possible Solution with output shown in Figure 25-42

	Chapter 23 Labs: Generics
	Lab 1
	Lab 2
	Lab 1: Possible Solution with output shown in Figure 25-43
	Lab 2: Possible Solution with output shown in Figure 25-44


	Chapter Summary

	Untitled
	Chapter 26: C# 11
	C# New Features
	Raw String Literals
	New Lines in String Interpolations
	List Patterns
	Auto Default Struct
	Warning Wave 7

	Chapter Summary

	Index

